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xvii

Preface

This book deals with the mechanics and numerical simulations of plates and shells,
which are flat and curved thin-walled structures, respectively (called shell structures
for short in this book). They have very important applications as complete structures
or structural elements in many branches of engineering. Examples of shell structures in
civil and mechanical engineering include slabs, vaults, roofs, domes, chimneys, cooling
towers, pipes, tanks, containers and pressure vessels; in shipbuilding – ship and subma-
rine hulls, in the vehicle and aerospace industries – automobile bodies and tyres and the
wings and fuselages of aeroplanes.

The scope of the book is limited to the presentation of the theory of elastic plates and
shells undergoing small deformation (thus assuming linear constitutive and kinematic
equations).

The book is aimed at the large international community of engineering students, uni-
versity teachers, professional engineers and researchers interested in the mechanics of
shell structures, as well as developers testing new simulation software. The book can be
the basis of an intermediate-level course on (computational) mechanics of shell struc-
tures at the level of doctoral, graduate and undergraduate studies. The reader should
have the basic knowledge of the strength of materials, theory of elasticity, structural
mechanics and FEM technology; basic information in these areas is not repeated in
the book.

The strength of the book results from the fact that it not only provides the theoretical
formulation of fundamental problems of mechanics of plates and shells, but also several
examples of analytical and numerical solutions for different types of shell structures. The
book also contains some advanced aspects related to the stability analysis and a brief
description of classical and modern finite element formulations for plates and shells,
including the discussion of mixed/hybrid models and so-called locking phenomena.

The book contains a comprehensive presentation of the theory of elastic plates and
shells, formulations and solutions of fundamental mechanical problems (statics, sta-
bility, free vibrations) for these structures using exact approaches and computational
(approximate) methods, with emphasis on modern capabilities of the finite element (FE)
technology. In the book we introduce a large number of examples that illustrate various
physical phenomena associated with the behaviour of shell structures under external
actions. Comparisons of analytical and numerical solutions are given for several bench-
mark tests. The book includes plenty of boxes and tables that contain sets of formulae or
data and check values describing the examples. They help the reader to find and integrate
the information provided and draw conclusions.
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xviii Preface

The authors are researchers and teachers from the Institute for Computational Civil
Engineering of Cracow University of Technology. They have done research on structural
mechanics for years, in particular on the theories and advanced computational methods
for shell structures, and they also have a long history of teaching the subject to students
and practitioners. The selection of the contents of the book is based on this experience.
The motivation to write the present book has also come from the fact that there are no
books that contain, in one volume, the foundation of the theory and solutions of selected
problems using simultaneously analytical and numerical methods.

Following a sequence of subjects: mathematics, theoretical mechanics, strength of
materials, structural mechanics, computer science, numerical methods and the finite
element method – we have developed a comprehensive course on the mechanics of shell
structures. This course contains: (i) discussion of the assumptions and limits of appli-
cability of selected theories on which mathematical models are based, (ii) choice of a
method to solve the problem efficiently, (iii) analytical and/or numerical calculations
simulating physical phenomena or processes, (iv) confrontation of the results of theo-
retical and numerical analysis and (v) evaluation of the calculation methodology and
results.

Maria Radwańska and Jerzy Pamin were members of Professor Zenon Waszczyszyn’s
research team, who implemented the finite element code ANKA for buckling and non-
linear analysis of structures at the end of the twentieth century. This resulted in the
1994 Elsevier book: Waszczyszyn, Z. and Cichoń, Cz. and Radwańska, M., Stability of
Structures by Finite Element Method.

Next, we briefly describe the contents of the book, which is divided into five parts.
Part 1 is the introductory part that gives a compact encyclopedic overview of the fun-
damentals of the theory and modelling of plates and shells in the linear elastic range.
A description of static analysis of (plane) plates is contained in Part 2 and of (curved)
shells in Part 3. Part 4 includes information on the selected problems of buckling and free
vibrations of shell structures. In Part 5, the authors discuss the general aspects of finite
element analysis, including the modelling process, evaluation of the quality of finite ele-
ments and accuracy of solutions, Part 5 also contains a brief presentation of advanced
formulations of finite elements for plates and shells.

While working on the book, we felt special gratitude to two of our teachers: Profes-
sors Zenon Waszczyszyn and Michał Życzkowski, who we always thought of as scientific
authorities in the field of structural mechanics. In particular, we are deeply indebted to
Professor Zenon Waszczyszyn for his invaluable contribution to our knowledge, motiva-
tion to do research and to participate in high-level university education. Under his guid-
ance we got to know the theory of plates and shells, computational mechanics applied
in civil engineering and modern numerical methods; in particular, the finite element
method.

The authors wish to express their appreciation to several colleagues from the Institute
for Computational Civil Engineering for discussions and help during the preparation
of the book, in particular to A. Matuszak, E. Pabisek, P. Pluciński, R. Putanowicz and
T. Żebro. We also record our gratitude to our students who cooperated with us in the
computation of numerous examples: M. Abramowicz, M. Bera, I. Bugaj, M. Florek, S.
Janowiak, A. Kornaś and K. Kwinta.
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Notation

Detailed notation for theoretical analysis

Indices

𝛼, 𝛽 = 1, 2 Greek indices (for curvature lines and surface coordinates)

i, j, k = 1, 2, 3 Latin indices (for 3D space)

n, m, t indices for membrane, bending, transverse shear states

j = 0, 1, 2,… number of a components of trigonometric series or number of
circumferential wave (half-wave)

(i, j) indices describing number of waves of deformation in two directions

Coefficients and variables

𝛼T coefficient of thermal expansion of a material

A
𝛼
: A1, A2 Lame coefficients

b̂ = [b̂x, b̂y, b̂z]T prescribed body forces

b
𝛼𝛽

components of II (second) metric tensor

𝛽 =
√

1
R h

4
√

3(1 − 𝜈2) coefficient in equation of local bending state in cylindrical shell

C0, C∗ initial and current configuration of a body (shell)

C, E = C−1 matrices of local flexibility and stiffness in constitutive equations

Dn = E h
1 − 𝜈2 cross-sectional stiffness in membrane state

Dm = E h3

12(1 − 𝜈2)
cross-sectional stiffness in bending state

Dt = k E h
2(1 + 𝜈)

, k = 5
6

cross-sectional stiffness in transverse shear state

(e
𝛼
,n), (e(z)

𝛼 ,n) local base versors on middle surface and on equidistant surface from the
middle surface in initial configuration

(e∗
𝛼
,n∗) local base versors on middle surface in current configuration

eT = [en
, em

, et] generalized strain vector (membrane, bending and transverse shear
components)
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xx Notation

en = [𝜀11, 𝜀22, 𝛾12]T membrane strain vector

𝜀11, 𝜀22, 𝛾12 = 𝜀12 + 𝜀21 membrane strains: normal and shear in middle surface

𝜀x, 𝜀
𝜃
, 𝛾x𝜃 membrane strains in cylindrical system

𝜀
𝜑

, 𝜀
𝜃
, 𝛾
𝜑𝜃

membrane strains in spherical system

em = [𝜅11, 𝜅22, 𝜒12]T bending strain vector

𝜅11, 𝜅22, 𝜒12 = 𝜅12 + 𝜅21 bending strains: changes of curvature and warping of middle surface

𝜅x, 𝜅
𝜃
, 𝜒x𝜃 bending strains in cylindrical system

𝜅
𝜑

, 𝜅
𝜃
, 𝜒

𝜑𝜃
bending strains in spherical system

et = [𝛾1z, 𝛾2z]T transverse shear strain vector

𝛾xz, 𝛾
𝜃z transverse shear strains in cylindrical system

𝛾
𝜑z, 𝛾

𝜃z transverse shear strains in spherical system

E, 𝜈, G = E∕(2 + 2 𝜈) material constants: Young’s modulus, Poisson’s ratio, Kirchhoff’s modulus

f rise of shallow shell

F Airy’s stress function

ik base versors related to Cartesian coordinates xk

g
𝛼𝛽

components of I (first) metric tensor

h thickness of shell

K Gaussian curvature of surface

𝜆 = 𝜋∕𝛽 length of half-wave for exponential-trigonometric function in local
membrane-bending state of cylindrical shell

m11, m22, m12 = m21 moments: bending and twisting in middle surface

mx, m
𝜃
, mx𝜃 moments in cylindrical system

m
𝜑

, m
𝜃
, m

𝜑𝜃
moments in spherical system

n11, n22, n12 = n21 membrane forces: normal and tangential in middle surface

nx, n
𝜃
, nx𝜃 membrane forces in cylindrical system

n
𝜑

, n
𝜃
, n

𝜑𝜃
membrane forces in spherical system

nI, nII, mI, mII principal membrane forces and bending moments

ñ
𝜈s, t̃

𝜈
effective boundary forces (tangential membrane and transverse shear)

n
𝜈
, ñ

𝜈s, t̃
𝜈
, m

𝜈
generalized boundary forces

n̂
𝜈
, n̂

𝜈s, t̂
𝜈
, m̂

𝜈
prescribed generalized boundary loads

𝜈, s, n directions of boundary base vectors

p̂ = [p̂1, p̂2, p̂n]T vector of prescribed surface loads

p̂b, ûb vectors of prescribed generalized boundary loads and displacements

P̂i prescribed concentrated force in corner i

Π, Π(z) middle and equidistant surfaces in initial configuration

Π∗, Π∗ (z) middle and equidistant surfaces in current configuration
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Notation xxi

Π
𝜈
, Πs cross-sectional planes: normal and tangent to middle surface

Π
𝛼
∶ Π1,Π2 two transverse cross-sectional planes normal to middle surface

Π, U , W total potential energy, internal energy, external load work

r = f (x), r = f (𝜑) meridian equation for axisymmetric shell

R
𝛼
: R1, R2 principal curvature radii for middle surface of a shell

s arch coordinate for a line on surface

sT = [sn
, sm

, st] vector of generalized resultant forces for membrane, bending and
transverse shear states

sb = [n
𝜈
, ñ

𝜈s, t̃𝜈 ,m𝜈
]T vector of generalized boundary forces

ŝb = [n̂
𝜈
, n̂

𝜈s, t̂𝜈 , m̂𝜈
]T vector of presribed boundary forces

sn = n = [n11, n22, n12]T vector of membrane forces

sm = m = [m11,m22,m12]T vector of bending and twisting moments

st = t = [t1, t2]T vector of transverse shear forces

𝜍 =
√

R
h

4
√

3(1 − 𝜈2) coefficient in equation of local bending state in spherical shell

Ti effective force in a corner used in static boundary conditions

𝜗 = [𝜗1, 𝜗2, 𝜗n]T vector of rotations

𝜗
𝛼
: 𝜗1, 𝜗2 two rotations of normal to middle surface

𝜗n rotation around normal to middle surface

𝜗x = 𝜑y, 𝜗y = −𝜑x two rotations of normal to middle plane of plate under bending in
Cartesian system (two alternative notations)

𝜎nn, 𝜎ns, 𝜎nz stresses: in-plane normal, in-plane tangential, transverse shear

u = ux, v = uy, w translations with respect to local system (x, y, z)

U , V , W translations with respect to global system (X,Y ,Z)

u = [u1,u2,w, 𝜗1, 𝜗2, 𝜗n]T generalized displacement vector

u = [u1,u2,w]T translation vector in three-parameter thin shell theory

u = [w, 𝜗1, 𝜗2]T generalized displacement vector in three-parameter moderately thick plate
theory

u = [u1,u2,w, 𝜗1, 𝜗2]T generalized displacement vector in five-parameter moderately thick shell
theory

ub = [u
𝜈
,us,w, 𝜗𝜈] vector of generalized boundary displacements

ûb = [û
𝜈
, ûs, ŵ, �̂�𝜈] vector of prescribed generalized boundary displacements

Un, Um, Ut strain energy in membrane, bending and transverse shear states

𝜉
𝛼
: 𝜉1, 𝜉2 curvilinear surface coordinates on middle surface z = 0

𝜉
𝛼
= const. coordinate lines on middle surface

𝜉1 = x, 𝜉2 = y Cartesian coordinates

𝜉1 = 𝜑, 𝜉2 = 𝜃 spherical coordinates
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xxii Notation

𝜉1 = r, 𝜉2 = 𝜃 polar coordinates

𝜉1 = x, 𝜉2 = 𝜃 cylindrical coordinates

z coordinate in direction normal to the middle surface Π (distance of
equidistant surface Π(z) from middle surface Π, z = 0 corresponds to the
middle surface Π)

xk : x1, x2, x3 Cartesian coordinates with respect to versors ik

(X,Y ,Z) Cartesian coordinate system

Ω problem domain

𝜕Ω boundary of domain

𝜕Ω
𝜎
, 𝜕Ωu boundary with prescribed loads and displacements, respectively

Tr reference temperature

T0 temperature on middle surface

ΔT0 = T0 − Tr temperature change (independent of z) with respect to reference
temperature

ΔTh = ΔT(h∕2)
− ΔT(−h∕2)

temperature difference between limiting shell surfaces z = ±h∕2

Detailed notation for numerical analysis

Indices

e index of finite element (FE)

(ef ) index of interelement boundary

n, node index of FE node

Abbreviations

NNDOF , NEDOF ,
NSDOF

number of degrees of freedom (dofs) for node, element and
structure

NSE number of FEs in a structure

NEN , NSN number of FE nodes and of structure nodes

NGP number of Gauss points

Coefficients and variables

𝜶u, 𝜶
𝜎
, 𝜶

𝜀
mathematical dofs for interpolation of displacement, stress, strain
fields

Bn, Bm, Bt matrices in kinematic relations for membrane, bending and
transverse shear states

Dn, Dm, Dt matrices in constitutive equations for membrane, bending and
transverse shear states
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Notation xxiii

fe, fe
b vector of substitute nodal forces which represent loads in FE and on FE

boundary

F global vector of substitute nodal forces after assembly process

Ip[u], Ic[𝝈] potential and complementary energy functionals

Ip,m, Ic,m modified potential and complementary energy functionals

IH-R[u,𝝈] two-field Hellinger–Reissner functional

IH-W[u,𝝈, 𝝐] three-field Hu–Washizu functional

G(e f )[𝝈,u(e f )] component added to functional and associated with the equilibrium of
tractions on interelement boundary

H (e f )[u, t(e f )] component added to functional and associated with the continuity of
displacements on interelement boundary

J , det J jacobian, determinant of Jacobi matrix

ken, kem, ket element stiffness matrix for membrane, bending and transverse shear
states

ke
𝜎

stress stiffness matrix in initial and linearized buckling analysis

ke
u displacement stiffness matrix for FE in linearized buckling analysis

L matrix of differential operators in kinematic strain-displacement equations
𝜺 = L u

N matrix of shape functions used for displacement field approximation

Nu, N
𝜎
, N

𝜀
matrices for approximation of displacement, stress, strain fields in two- or
three-field formulation in mixed FEs

P∗, Q∗ vectors of reference loads and displacements for one-parameter loading
process

qe = qe
u element generalized displacement vector for displacement-based FE model

qnode nodal generalized displacement (dof) vector for displacement-based FE
model

qe
u, qe

𝜎
, qe

𝜀
vectors of element generalized displacement, stress and strain dofs,
respectively, for different FE models

q(e f )
u , q(e f )

t vectors of generalized displacement or, respectively, traction dofs on
interelement boundary

Q vector of generalized displacements for structure

u(x), 𝝈(x), 𝜺(x) displacement, stress, strain fields approximated within FE domain

u(e f )(s), t(e f )(s) displacement and traction function approximated along interelement
boundary

Rsupp support reaction vector for structure

𝜉, 𝜂, 𝜁 natural normalized dimensionless coordinates

Ωe, 𝜕Ωe area and boundary of FE

𝜕Ω(e f ) interelement boundary
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xxiv Notation

Conversions between imperial and metric system units

Quantity Imperial units International System of Units (SI)

length 1 in. = 2.54 cm = 0.0254 m

1 ft. = 30.48 cm = 0.3048 m

area 1 in.2 = 6.45 cm2 = 0.000645 m2

1 ft2 = 929 cm2 = 0.0929 m2

force 1 lb-f = 1 lbf = 4.45 N = 0.00445 kN

moment 1 lbf-in. = 11.31 Ncm = 0.0001131 kNm

intensity of membrane
force

1 lbf/in. = 1.751 N/cm = 0.175 kN/m

intensity of moment 1 lbf-in./in. = 4.45 N/cm/cm = 0.00445 kNm/m

pressure 1 psi = 1 lbf/in.2 = 0.690 N/cm2 = 6.90 kN/m2
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Fundamentals: Theory and Modelling
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1

General Information

1.1 Introduction

In the classification of mechanical structures, somewhere between one-dimensional
(1D) bar structures and three-dimensional (3D) solid structures, a class of
two-dimensional (2D) plates and shells (thin-walled flat and curved structures)
can be distinguished. The attention is focused on a deformable solid body, which is
limited by two surfaces (top and bottom) and lateral surfaces, see Figure 1.1. The
distance between the top and bottom surfaces, identified as the thickness, is small
compared to the other dimensions of the body (e.g. radius of curvature or span),
measured referring to the so-called primary surface (2D physical model), most often
taken as the middle surface defined as equidistant from the top and bottom surfaces.

The following, generally accepted nomenclature is going to be used throughout the
book:

• shells = thin-walled curved shells
• curved membranes = special shells that have no bending rigidity
• plates = thin plane structures that have some subclasses:

– flat membranes = plates with load in the middle plane, sometimes also called
panels

– plates under bending = plates with transverse load (normal to the middle plane),
sometimes also called slabs

In the general description, for all these classes we will use the name ‘shell structures’
or, in brief, ‘shells’. In other words, we understand that shell structures can be flat.

Scientists, teachers, students, engineers and even the authors of software are inter-
ested in the mechanics of plates and shells. Due to the variety of potential users, the
following variants of the mechanical theory have evolved:

• general advanced tensorial shell theory
• technical (engineering) shell theory

The scope of this book is limited to the case of linear constitutive and kinematic
equations.

The theory is the basis for the construction of appropriate mathematical models (sets
of differential and algebraic equations) and is associated with the calculation method
that can be used to solve general or particular mechanical problems.

Plate and Shell Structures: Selected Analytical and Finite Element Solutions, First Edition.
Maria Radwańska, Anna Stankiewicz, Adam Wosatko and Jerzy Pamin.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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4 Plate and Shell Structures

(a)

top surface

middle surface

bottom surfacelateral surface

thickness
axis

(b) (c)

Figure 1.1 Structures: (a) bar (1D), (b) surface (2D) and (c) solid (3D)

In Section 1.2, encyclopedic information on the development of theories describing
elastic plates and shells is included.

The description of shell structures, which makes them different from bar (1D) and
solid (3D) bodies, must contain the following aspects:

• information on the coordinate systems and geometry of representative surfaces
• specification of kinematic constraints related to the mode of deformation
• definitions of so-called generalized strains with respect to the middle surface
• definitions of resultant forces and moments on the middle surface
• characteristics of fundamental stress and strain states

Detailed discussion is given in Sections 1.3 and 1.4.
A classification of plates and shells can be performed taking into account the slen-

derness (thickness to span ratio), the shape of the middle surface, the definitions and
assumptions presented further in Section 1.4 and the character of stress distribution
along the thickness, related to the stress state. In Section 1.5 and in Box 1.1, we present
the classification of surface structures according to these aspects.

Thin-walled shell structures of various types are very important structural elements.
Examples of shell structures can be encountered in civil and mechanical engineering
(slabs, vaults, roofs, domes, chimneys, cooling towers, pipes, tanks, containers, pres-
sure vessels), shipbuilding (ship hulls, submarine hulls) and in the vehicle and aerospace
industries (car bodies and tyres, wings and fuselages of aeroplanes).

From an engineering point of view, it is necessary to predict different modes of
behaviour of plates and shells under applied loading. In the case of a (flat) plate
subjected to a transverse load, static equilibrium is preserved by the action of bending
and twisting moments and transverse shear forces. On the other hand, the (curved)
shell structure is able to carry the load inducing membrane tension or compression,
distributed uniformly throughout the thickness (it is an optimal case from the viewpoint
the material strength). This feature of shell structures makes them more economical
and stiffer in comparison to plates.

Familiarity with the technical shell theory is necessary for engineers who are respon-
sible for the safety of structures and are supposed to take into account various safety
factors using computer-aided design.
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Box 1.1 Summary of classification of shell structures

Thin plates for h
Lmin

<
1

10

Moderately thick plates for 1
10

≤ h
Lmin

Thin shells for h
Rmin

≤ 1
20

Moderately thick shells for 1
20

<
h

Rmin
≤ 1

6

Thick shells for 1
6
<

h
Rmin

Shallow shell for
f
L
<

1
5

h – thickness of plate or shell

L – characteristic dimension of plate or shell

Lmin – the smallest dimension in the middle plane of a plate

Rmin – smaller of two principal radii of curvature

f – distance of shell from the horizontal plane, of its projection,
that is rise

w – representative deflection

Geometrically linear theory of plates

with small deflections for |w| < h
5

von Kármán theory of plates

with moderately large deflections for |w| ≈ h

Geometrically nonlinear theory of plates

with large deflections for |w| > 5h

As emphasized in Ramm and Wall (2004), shell structures exhibit the strong influ-
ence of initial geometry, slenderness, type of loading and boundary conditions on the
deformation and load carrying capacity. Small variations or even imperfections of these
parameters can change the structural response significantly and, in particular, cause loss
of stability.

Shells are characterized by an advantageous ratio of stiffness to weight, which makes
them suitable for lightweight and long-spanned structures. Moreover, optimal shells are
designed to carry predominantly membrane forces with minimum bending effects. It is
therefore extremely important to understand the principal mechanical features of plates
and shells before using computer-aided design involving numerical simulation.
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1.2 Review of Theories Describing Elastic Plates and Shells

The general description of the historical development of plate and shell theory, as well
as details of specific theories are referred to in a lot of books and monographs. Here, the
authors do not try to present the developmental trends of this branch of mechanics, even
limiting interest to the theory of elastic plates and shells undergoing small deformations.

The beginnings of the linear theory of plates and shells date back to the nineteenth
century, however, the vibration problem of bells was considered by Leonhard Euler in
1764. The name of Sophie Germain is associated with the theory of plates: in 1811 she
submitted work on plates for a contest announced by the French Academy of Sciences.

Following the two encyclopaedic elaborations:

• Mechanics of Elastic Plates and Shells, vol. 8 in Technical Mechanics (Borkowski et al.
2001)

• Models and Finite Elements for Thin-walled Structures, Chapter 3 by Bischoff et al.
in vol. 2 of The Encyclopedia of Computational Mechanics (Stein et al. 2004)

the authors of this book would like to mention the names of researchers associated with
the theories of plates and shells from three different, consecutive periods (listing names
in alphabetical order):

• nineteenth century:
A. Cauchy, S. Germain, A.E. Green, G. Kirchhoff, A.H. Love, S.D. Poisson and
L. Rayleigh

• first half of the twentieth century:
E. Cosserat and F. Cosserat, A.L. Gol’denveizer, Th. von Kármán, S. Lévy, A.I. Lur’e
and E. Reissner

• second half of the twentieth century:
Y. Başar, B. Budiansky, L.H. Donnell, J.L. Ericksen, W. Flügge, J.M. Gere, K. Girkmann,
K.Z. Golimov, R. Harte, Z. Kączkowski, W.T. Koiter, W.B. Krätzig, H. Kraus, R.D.
Mindlin, K.M. Mushtari, P.M. Naghdi, F.I. Niordson, W. Nowacki, V.V. Novozhilov,
W. Pietraszkiewicz, E. Ramm, J.L. Sanders, J.G. Simmonds, I. Szabó, S.P. Timoshenko,
C. Truesdell, V.Z. Vlasov, W. Wunderlich, S. Woinowski-Krieger, Cz. Woźniak and
W. Zerna

We also mention some previous works relevant to the subject of this book, dividing
them into:

• books dealing with the basis of mechanics: Timoshenko and Goodier (1951), Fung
(1965), Washizu (1975), Reddy (1986), Borkowski et al. (2001) and Stein et al. (2004)

• monographs related to the theories of plates and shells: Girkmann (1956),
Timoshenko and Woinowsky-Krieger (1959), Kolkunov (1972), Nowacki (1980),
Niordson (1985), Noor et al. (1989), Waszczyszyn and Radwańska (1995), Reddy
(1999), Başar and Krätzig (2001), Borkowski et al. (2001), Reddy (2007), Radwańska
(2009), Wiśniewski (2010) and Oñate (2013)

The general formulation of the theory of thin-walled structures is determined by their
specific geometry with one dimension (thickness) much smaller in comparison to the
other two dimensions. There are two essential concepts that can be used to formulate
the mathematical description of the problem.
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One possibility is to start from the equations of three-dimensional continuum,
describing a body with a specified geometry. Applying a power series representation of
certain quantities as a function of coordinate z (measured in the direction of a thickness)
the reduction to a two-dimensional theory is performed. Using a specified number of
terms of this representation a 2D problem with varying accuracy of approximation is
obtained.

Alternatively, one can adopt suitable kinematic assumptions and treat a thin-walled
structure as a two-dimensional continuum representation of a substitute problem, (see
Borkowski et al. 2001). This option is associated with direct methods of formulating
two-dimensional models of plates and shells, based on appropriate static and kinematic
hypotheses. The approximation in this theory is that the deformed state of the shell is
determined entirely by the configuration of its middle surface.

Beside the two approaches based on three-dimensional continuum mechanics or
two-dimensional surface-based theories we mention a so-called Cosserat surface
concept, see for instance Chapter 3 in vol. 2 of Stein et al. (2004). This approach is
an extension of classical continuum formulation by adding information about the
orientation of a material point equipped with rotational degrees of freedom.

Among the developed theories for shells a few specific approaches can be distin-
guished:

• general theory applying any parametrization of the curved middle surface
• theory that uses the orthogonal parameterization of the middle surface based on

principal curvature coordinates
• general membrane-bending shell theory with or without the consideration of trans-

verse shear deformation
• theories for particular cases of shells (e.g. for cylindrical or spherical shells of

revolution)
• theory of plates
• theory of flat membranes

The full set of equations of the linear theory of shells, which contains Kirchhoff plate
equations as a special case, are given in pages 173–174 of Love (1944). This theory is
called the Kirchhoff–Love (K–L) theory of first approximation or order. In theory based
on assumptions of K–L the effects of transverse shear and normal strains in the thick-
ness direction are neglected. The weakening of these assumptions leads to enhanced
variants of the equations, the so-called second and third approximations. This involves
more complex forms of measurement of deformation and construction of constitutive
equations. In fact, the first approximation theory is mathematically and physically incor-
rect. When the kinematic equations and constitutive equations, used in this approach,
are substituted into the sixth equilibrium equation (expressing equilibrium of moments
around the normal to the middle surface), the equation is not satisfied. The sixth equi-
librium equation guarantees that all strains vanish for small rigid-body rotations of the
shell.

The inconsistency of Love’s first order theory was removed in the improved theory
for thin shells by Sanders (1959), formulating the equations in principal curva-
ture coordinates. For this new improved theory modified equilibrium equations,
strain-displacement relations and boundary conditions were derived using the
principle of virtual work. The detailed information about the basics of theory of
Sanders is presented in Chapter 3.
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Koiter checked and corrected Love’s theory (see Koiter 1960). An assessment of the
order of magnitude of the terms in Love’s strain-energy expression was carried out.
Appropriate consistent stress-strain relations for stress resultants and equilibrium
equations in tensorial form were presented. In the theory the sixth equation of
equilibrium is satisfied identically.

In work of Budiansky and Sanders (1963) the equations of the ‘best’ first-order linear
elastic shell theory were formulated for shells of arbitrary shape in a coordinate system
related to the middle surface using general tensor notation.

In the broad literature a variety of kinematic and constitutive equations can be found,
because different simplifications were used in their derivation. The summary of various
descriptions of the strain state and kinematic relations (even for linear analysis) is also
presented in the work by Lewiński (1980). The following four essential features of the
improved first approximation shell theory are cited here from this paper:

• matrices of generalized strains (membrane strains and changes of curvature) and
stress resultants (forces and moments) are symmetric

• constitutive equations are decoupled
• the sixth equation of equilibrium is identically satisfied
• a rigid motion of the shell does not cause strains or stresses

Now, a little information about the classical three-parameter Sanders thin shell theory
is given, because this formulation is applied in our book. The equations are considered
to be the most suitable with respect to both theoretical and numerical applications. In
the geometry description the orthogonality of the coordinate lines implies that the first
metric tensor is diagonal, and the surface is described by only two Lame parameters and
two radii of curvature (or curvatures themselves), see Subsection 1.3.2. The following
fields are used in the shell problem description: translation(s), rotation(s), generalized
strain(s) and stress resultants, all defined with respect to the two-dimensional middle
surface. In this three-parameter thin shell theory three translations u1,u2,w are adopted
as independent variables in the description of the deformation (see Subsection 1.4.1).

The five-parameter theory is used to describe moderately thick shells with five inde-
pendent generalized displacements: three translations u1,u2,w and two rotations 𝜗1, 𝜗2
(see Subsection 1.4.2).

At this point the assumptions adopted in this book are specified:

• translations, rotations and strains are assumed to be small enough for nonlinear com-
ponents in the kinematic and equilibrium equations to be omitted (thus taking into
account only the first order terms)

• the initial undeformed configuration of the structure is the reference configuration
• the material is treated as isotropic linearly elastic, described by Hooke’s constitutive

equations, that is to define the material only two parameters are used: Young’s mod-
ulus and Poisson’s ratio

A more advanced tensorial formulation of the theory of shell structures can be found,
for instance, in Başar and Krätzig (2001). The theoretical foundations there are coupled
with:

• local formulation using differential and algebraic equations
• global formulations employing energy theorems and variational principles for plates

and shells
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In Chapter 3 of Vol. 2 of Stein et al. (2004), entitled ‘Models and Finite Elements
for Thin-walled Structures’, both the mathematical and mechanical foundations of the
theory of plates and shells and the description of FE formulations are presented. The
chapter includes an extensive derivation of kinematic equations and strains, constitu-
tive equations and stresses as well as the parametrization of displacements and rotations,
both in linear and nonlinear range. The long list of references contains 211 items from
1833 to 2003.

Most recent efforts of scientists are aimed at the analysis of:

• anisotropic, composite (in particular layered) shells
• shells undergoing large deformations (with varying magnitude of displacements, rota-

tions and strains)
• shell in inelastic (in particular plastic) states

However, these issues are beyond the scope of this book. The reader is referred to the fol-
lowing works on nonlinear theories of plates and shells: Woźniak (1966), Pietraszkiewicz
(1977, 1979, 2001), Crisfield (1982), Hinton et al. (1982), Kleiber (1985), Borkowski et al.
(2001), Wiśniewski (2010), de Borst et al. (2012).

1.3 Description of Geometry for 2D Formulation

The description of the geometry of 2D surfaces is based on the works by Waszczyszyn
and Radwańska (1995) and Radwańska (2009).

1.3.1 Coordinate Systems, Middle Surface, Cross Section, Principal Coordinate
Lines

The analysis of thin and moderately thick shell structures is most often performed with
respect to the middle surface, that is to a geometrically two-dimensional object; only
thick shells are treated as three-dimensional bodies.

The geometry of a shell structure is defined when the shape of the middle surface, the
boundary contour and the thickness distribution have been specified. In the theoretical
consideration we assume for simplicity that the thickness is constant.

Two families of curves are introduced. They are parametrized with so-called curvi-
linear coordinates 𝜉1, 𝜉2, see Figure 1.2a, used for an explicit definition of the position
of a point on the surface, In most cases a general curvilinear coordinate system will be
employed, and further a discussion of particular cases will be provided, for instance the
cylindrical (x, 𝜃), spherical (𝜑, 𝜃) or Cartesian (x, y) coordinate systems will be applied.
In the two-dimensional description of shells analogous pairs of variables (e.g. R

𝛼
) or

pairs of formulae (e.g. ds
𝛼
= A

𝛼
d𝜉

𝛼
) will be used, where the Greek index 𝛼 represents

numbers 1 or 2.
On the middle surface the so-called principal curvature lines related to principal cur-

vature radii are specified. Many equations formulated for particular shells refer to these
principal (extreme) curvature lines.

At any point P on the middle surface a cross section can be defined. We consider
two normal section planes Π1 and Π2, see Figure 1.2b. These planes are perpendic-
ular to each other and their intersections with the middle surface generate arc seg-
ments of unit length ds

𝛼
= 1. We emphasize that the intersection of the planes Π

𝛼
is a
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Figure 1.2 (a) A middle surface with curvilinear coordinates 𝜉
𝛼

and local base vectors e
𝛼
,n at point P,

(b) straight fibre – intersection of planes Π
𝛼

, 𝛼 = 1, 2. Source: Waszczyszyn and Radwańska (1995).
Reproduced with permission of Waszczyszyn.

ξ1 = φ

ξ2 = θ
ξ2 = θ

ξ1 = x

ξ2 = y

ξ1 = x

(a) (b) (c)

Figure 1.3 Three surfaces: (a) spherical, (b) cylindrical and (c) shallow hyperbolic, corresponding to
appropriate coordinate systems

straight fibre (the so-called director), see Figure 1.2b. Its behaviour during deformation
is precisely described according to the so-called kinematic hypothesis of Kirchhoff–Love
(see Subsection 1.4.1) or Mindlin–Reissner (see Subsection 1.4.2).

Surface coordinates 𝜉
𝛼

are used to identify three common types of surface (see
Figure 1.3):
(a) spherical surface described in a spherical coordinate system (𝜑, 𝜃)
(b) cylindrical surface in a cylindrical system (x, 𝜃)
(c) shallow ruled hyperbolic surface in a Cartesian system (x, y)

1.3.2 Geometry of Middle Surface

For point P on the middle surface Π the connection between global Cartesian coordi-
nates X, Y , Z and local curvilinear coordinates 𝜉1, 𝜉2 is expressed by the relation

r = X iX + Y iY + Z iZ (1.1)
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where:

X = f1(𝜉1, 𝜉2), Y = f2(𝜉1, 𝜉2), Z = f3(𝜉1, 𝜉2) (1.2)

On the middle surface, a two-dimensional segment P − P1 − M − P2 is identified,
resulting from the intersection of four lines 𝜉1 = const., 𝜉1 + d𝜉1 = const., 𝜉2 = const,
𝜉2 + d𝜉2 = const. (see Figure 1.4a). Next, curve l is considered. The curve, parametrized
by coordinate 𝜆, passes through points P and M that are located on the elementary
surface subdomain, with lengths of sides ds

𝛼
, 𝛼 = 1, 2 measured by so-called Lame

parameters A
𝛼
, which are magnitudes of the tangential vectors r

,𝛼
:

ds
𝛼
= A

𝛼
d𝜉

𝛼
, A

𝛼
= |r

,𝛼
| = |g

𝛼
|, ( )

,𝛼
= 𝜕( )
𝜕𝜉

𝛼

, 𝛼 = 1, 2 (1.3)

r = r[𝜉1(𝜆), 𝜉2(𝜆)], dr =
(
𝜕r
𝜕𝜉1

d𝜉1

d𝜆
+ 𝜕r
𝜕𝜉2

d𝜉2

d𝜆

)
d𝜆 = r

,1 d𝜉1 + r
,2 d𝜉2 (1.4)

The length of the arch between points P and M on line l is calculated using the formula

(ds)2 = r
,1 ⋅ r

,1 (d𝜉1)2 + 2r
,1 ⋅ r

,2 d𝜉1d𝜉2 + r
,2 ⋅ r

,2 (d𝜉2)2

= (A1)2 (d𝜉1)2 + 2A1A2 cos(g1, g2) d𝜉1d𝜉2 + (A2)2 (d𝜉2)2 (1.5)

The product of tangential vectors g
𝛼

defines the first (I) metric tensor g
𝛼𝛽

g
𝛼𝛽

= g
𝛼
⋅ g

𝛽
= r

,𝛼
⋅ r

,𝛽
(1.6)

Moreover, the I fundamental quadratic form of the surface is derived

(ds)2 = g11 (d𝜉1)2 + 2g12 d𝜉1d𝜉2 + g22 (d𝜉2)2 (1.7)

Next, base vectors with unit length (versors) e
𝛼
,n are obtained:

e
𝛼
=

r
,𝛼

A
𝛼

=
g
𝛼

A
𝛼

, n = e3 = e1 × e2 (1.8)

r

M Π
Δr Δr

m
n dr

(a) (b)

m

M

n

lR

Πv
ξ1 =

 const.

ξ
2 + dξ

2  = const.

ξ 1 
+ dξ 1

 = co
nst.

ξ
2  = const.

PΠs

P

dr

P1

P2

ds
2

ds1

Figure 1.4 Description of objects: (a) on middle surface Π and in plane Πs, (b) in plane Π
𝜈
. Source:

Waszczyszyn and Radwańska (1995). Reproduced with permission of Waszczyszyn.
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where × denotes the vector product of two vectors. The components of load p̂ and dis-
placement vectors u can be defined using the local base versors (e

𝛼
,n):

p̂ = p̂1e1 + p̂2e2 + p̂nn (1.9)
u = u1e1 + u2e2 + wn (1.10)

The measure of the middle surface curvature for a shell, denoted by m, can be calculated
as the length of projection of vector Δr on direction n, see Figure 1.4b

m = n ⋅ Δr = n ⋅
(

dr + 1
2

d2r + ...
)
= 1

2
n ⋅ d2r + ... . (1.11)

To this end the second (II) metric tensor b
𝛼𝛽

b
𝛼𝛽

= r
,𝛼𝛽

⋅ n = −r
,𝛼
⋅ n

,𝛽
(1.12)

and the II fundamental form of the surface

2m = b11 (d𝜉1)2 + 2b12 d𝜉1d𝜉2 + b22 (d𝜉2)2 (1.13)

are defined. For line l its curvature radius R and curvature k are calculated as

1
R
≡ k = lim|Δr|→0

2m
|Δr|2 = n ⋅

d2r
ds2 (1.14)

In relation to the so-called principal coordinate lines, for which g12 = b12 = 0, two
extreme principal curvature radii R

𝛼𝛼
, as well as two characteristic parameters, mean

curvature H and so-called Gaussian curvature K , are calculated using the formulae:

k
𝛼𝛼

= − 1
R
𝛼𝛼

=
b
𝛼𝛼

g
𝛼𝛼

=
b
𝛼𝛼

(A
𝛼
)2 (1.15)

k2 − 2Hk + K = 0, H = 1
2
(k1 + k2), K = k1k2 (1.16)

1.3.3 Geometry of Surface Equidistant from Middle Surface

Similar to point P on the middle surface Π (see Figure 1.5), we consider point P(z) on
surface Π(z), equidistant from the middle surface. The position vector r(z) of point P(z) is
the sum of position vector r of point P and vector zn:

r(z) = r + zn, −h
2
≤ z ≤ h

2
(1.17)

The following objects ds(z)𝛼 , e(z)
𝛼 , A(z)

𝛼 , R(z)
𝛼 , 𝛼 = 1, 2, are introduced for the equidistant

surface. They are associated with analogous objects for the middle surface by linear
functions of coordinate z:

ds(z)𝛼 = A(z)
𝛼 d𝜉

𝛼
, e(z)

𝛼 = 1
A(z)
𝛼

r(z),𝛼 , n(z) ≡ n (1.18)

A(z)
𝛼 = A

𝛼

(
1 + z

R
𝛼

)
, R(z)

𝛼 = R
𝛼

(
1 + z

R
𝛼

)
(1.19)
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Figure 1.5 Middle surface Π and
equidistant surface Π(z). Source:
Waszczyszyn and Radwańska (1995).
Reproduced with permission of
Waszczyszyn.

r(z)

Π

P(z)

e2

e1P

r

n = n(z)

Π(z)

zn
e1

(z)

e2
(z)

ξ1 = const.

ξ1
(z)

 = const.

ξ2 = const.

ξ2
(z)

 = const.

1.3.4 Geometry of Selected Surfaces

We will now present three typical coordinate systems and three selected surfaces as
well as scalar, vector and tensor quantities, useful in the description of a surface identi-
fied with the middle surface of a shell structure. We will specify base vectors and the
first metric tensor. Omitting detailed derivations, we will provide formulae used for
the description of geometry of these surface. For more information on the subject, the
reader is referred, for instance, to Başar and Krätzig (2001).

1.3.4.1 Spherical Surface
A spherical surface is located in a 3D space with a Cartesian coordinate system (x1 =
x, x2 = y, x3 = z). On this surface point P is considered, whose position is defined using
two spherical surface coordinates 𝜉1 = 𝜑, 𝜉2 = 𝜃 and radius R1 = R2 = R (see Figure 1.6).

In the global system of axes xi, i = 1, 2, 3, the position vector r of point P is written
first with Cartesian coordinates xi, and next using two spherical coordinates 𝜉

𝛼

r = xi ii = R sin𝜑 sin 𝜃 i1 + R cos𝜑 i2 + R sin𝜑 cos 𝜃 i3 (1.20)
Base vectors (e

𝛼
,n) are derived from the formulae:[

g1
g2

]
= R

[
cos𝜑 sin 𝜃 i1 − sin𝜑 i2 + cos𝜑 cos 𝜃 i3

sin𝜑 cos 𝜃 i1 + 0 i2 − sin𝜑 sin 𝜃 i3

]

e
𝛼
= 1

R
g
𝛼
, n = sin𝜑 sin 𝜃 i1 + cos𝜑 i2 + sin𝜑 cos 𝜃 i3

(1.21)

Figure 1.6 Spherical surface

n

x1 = x

x3 = z
ξ2 = θ

ξ1 = φ
P

r(φ)
x2 = y

R

e1

e2

i3

i2

i1
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The following formulae are used in the description of a sphere:

• Lame parameters:

A1 = |g1| = R, A2 = |g2| = R sin𝜑 (1.22)

• first metric tensor

g
𝛼𝛽

=

[
g11 g12

g21 g22

]
=
[ R2 0

0 R2 sin2
𝜑

]
(1.23)

• principal curvature radii

R1 = R2 = R (1.24)

• Gaussian and mean curvatures:

K = 1
R2 , H = 1

R
(1.25)

1.3.4.2 Cylindrical Surface
A cylindrical surface, for which the symmetry axis is identical to axis x1 = x of the Carte-
sian coordinate system (x, y, z), is shown in Figure 1.7. The position of point P from the
cylindrical surface is specified using three Cartesian coordinates xi, which are related to
two cylindrical surface coordinates 𝜉1 = x and 𝜉2 = 𝜃 and radius R.

The main formulae for the calculation of characteristic parameters, vectors and tensor
are (the names are as for the previous surface):

r = xi ii = x i1 + R sin 𝜃 i2 + R cos 𝜃 i3 (1.26)

[
g1

g2

]
=
[ 1 i1

R cos 𝜃 i2 − R sin 𝜃 i3

]

[
e1

e2

]
=
[ 1 i1

cos 𝜃 i2 − sin 𝜃 i3

]

n = sin 𝜃 i2 + cos 𝜃 i3

(1.27)

x3 = z

e1

r
n

P

x1
 = x = ξ1

x2 = y

R

i2

e2

i3
i1

ξ2 = θ

Figure 1.7 Cylindrical surface
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A1 = |g1| = 1, A2 = |g2| = R (1.28)

g
𝛼𝛽

=
[

g11 g12
g21 g22

]
=
[

1 0
0 R2

]
(1.29)

R1 = ∞, R2 = R (1.30)

K = 0, H = 1
2R

(1.31)

1.3.4.3 Hyperbolic Paraboloid
The surface called the hyperbolic paraboloid is defined over a rectangle with dimensions
2a × 2b on plane x3 = z = 0 with two Cartesian coordinates 𝜉1 = x, 𝜉2 = y. The surface
(see Figure 1.8) is defined by the equation:

z(x, y) = kxy, k =
f

ab
, m = z

,y = kx, n = z
,x = ky (1.32)

The characteristic formulae used to describe the surface in question are:

r = xi ii = x i1 + y i2 + kxy i3 (1.33)

[
g1
g2

]
=
[

1 i1 + n i3
1 i2 + m i3

]
[

e1
e2

]
= 1√

1 + m2 + n2

[
g1
g2

]

n = 1√
1 + m2 + n2

(−n i1 − m i2 + i3)

(1.34)

A1 = |g1| ≈ 1, A2 = |g2| ≈ 1 (1.35)

g
𝛼𝛽

=
[

g11 g12
g21 g22

]
=
[

1 + n2 mn
mn 1 + m2

]
(1.36)

Figure 1.8 Hyperbolic paraboloid

x2 = y

x1 = x
b

b

f

a x3 = z

e1

n

P
i2 e2

i1
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1.4 Definitions and Assumptions for 2D Formulation

1.4.1 Generalized Displacements and Strains Consistent with the Kinematic
Hypothesis of Three-Parameter Kirchhoff–Love Shell Theory

The Kirchhoff–Love (K–L) kinematic hypothesis, adopted for thin shell structures, can
be formulated in the following manner:

A straight fibre, located at the intersection of two cross-sectional planes, normal
to the undeformed (initial) middle surface of a shell, after application of external
actions remains straight and normal to the deformed (current) middle surface and
has an unchanged length.

To describe the fields of generalized displacements and strains it is necessary to use
two surfaces Π, Π(z) in the initial configuration, as well as two analogous surfaces Π∗,
Π∗(z), marked by ∗ and related to the current configuration (after deformation).

In the description of kinematics two middle surfaces Π and Π∗ (in initial and current
configurations, respectively) are used (see Figure 1.9).

In the analysis of the current configuration the following vectors are distinguished:
position vector r, displacement (translation) vector u and rotation vector𝛝, whose com-
ponents are related to the local base (e

𝛼
,n) from the initial middle surface Π:

r∗ = r + u (1.37)
u = u1e1 + u2e2 + wn (1.38)
𝛝 = −𝜗2e1 + 𝜗1e2 + 𝜗nn = 𝜑1e1 + 𝜑2e2 + 𝜑nn (1.39)

For the rotation vector we can use two types of components: 𝜗
𝛼
, 𝜗n or 𝜑

𝛼
, 𝜑n (see

Figure 1.10).

Π

e2

u

P*

e1

n

P

e2
*n*

e1
*

Π*

r r*

(a)

P

uxz

ϑx

P*(z)

P*
z

w
(z

)

w

P(z)

u(z)

(b)

ξ1 = x

z

x

Figure 1.9 (a) Middle surfaces Π and Π∗ (before and after deformation), (b) graphical interpretation of
kinematic K–L hypothesis for the special case of a flat shell (plate) on plane (𝜉1, z); analogical section
can be shown for plane (𝜉2, z). Source: Waszczyszyn and Radwańska (1995). Reproduced with
permission of Waszczyszyn.



�

� �

�

1 General Information 17

Figure 1.10 Description of rotations of vector n normal
to middle surface. Source: Waszczyszyn and Radwańska
(1995). Reproduced with permission of Waszczyszyn.

e2

n

n*
ϑ1

φ1

ϑ2
φ2

e1 ξ2

ξ1

During deformation of the middle surface the orthogonal unit base (e
𝛼
,n) changes

into a different base (e∗
𝛼
,n∗), in general nonorthogonal:

e∗
𝛼
= 1

A∗
𝛼

r∗
,𝛼
≈ e

𝛼
+ 𝛿e

𝛼

= e
𝛼
+ 1

A
𝛼

(
u
𝛽,𝛼

−
A
𝛼,𝛽

A
𝛽

u
𝛼

)
e
𝛽
+ 1

A
𝛼

(
w
,𝛼
−

A
𝛼

R
𝛼

u
𝛼

)
n (1.40)

n∗ = e∗
1 × e∗

2 = n + 𝛿n = n − 𝜗2e1 + 𝜗1e2 (1.41)

The formula (1.41) expresses the change of normal vector n into new vector n∗ by
means of two rotations 𝜗

𝛼
(see Figure 1.10).

The displacements at point P(z) on surface Π(z), equidistant from the middle surface Π,
are calculated on the basis of translations u

𝛼
,w and rotations 𝜗

𝛼
, defined at point P on

the middle surface Π:

u(z)
1 = u1 + z 𝜗1, u(z)

2 = u2 + z 𝜗2, w(z) = w (1.42)

The K–L kinematic constraints imply the following relations between two rotations
𝜗
𝛼

and three translations u
𝛼
,w:

𝜗1 = − 1
A1

𝜕w
𝜕𝜉1

+
u1

R1
, 𝜗2 = − 1

A2

𝜕w
𝜕𝜉2

+
u2

R2

𝜗
𝛼
= − 1

A
𝛼

𝜕w
𝜕𝜉

𝛼

+
u
𝛼

R
𝛼

, 𝛼 = 1, 2
(1.43)

Equations (1.43) show the possibility of using a shortened notation of two analogous
formulae to describe two-dimensional shell structures.

The third rotation 𝜗n, around the normal, is related to the translations by the following
equation

𝜗n = 1
2

[(
1

A2

𝜕u1

𝜕𝜉2
− 1

A1

𝜕u2

𝜕𝜉1

)
−
(A1,2u1

A1A2
−

A2,1u2

A1A2

)]
(1.44)

The name three-parameter theory of shell structures originates from the fact that only
three translations of points from the middle surface, written in a vector

u = [u1,u2,w]T (1.45)

and treated as independent components, suffice to describe generalized displacements
of the shell (three translations and three rotations).


