
THIRD EDITION

BUILDING SYSTEMS FOR INTERIOR DESIGNERS

CORKY BINGGELI, ASID

Building Systems for Interior Designers

BUILDING SYSTEMS FOR INTERIOR DESIGNERS

THIRD EDITION

Corky Binggeli, ASID

This book is printed on acid-free paper.

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748–6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for damages arising herefrom.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762–2974, outside the United States at (317) 572–3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Cover image: © Matejay/iStockphoto

Cover design: Wiley

Library of Congress Cataloging-in-Publication Data:

Binggeli, Corky, author.

Building systems for interior designers / Corky Binggeli.—Third edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-92554-6 (hardback)

ISBN 978-1-118-92555-3 (ePub)—ISBN 978-1-118-92556-0 (Adobe PDF)—ISBN 978-1-118-92554-6 (hardback) 1. Buildings—Environmental engineering, 2. Buildings—Mechanical equipment—Design and construction. 3. Buildings-Electric equipment-Design and construction. I. Title.

TH6014.B56 2016

696—dc23

2015031808

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Preface xi	Air Films and Air Spaces 29
Acknowledgments xii	Insulation Types and Forms 30
	Energy-Efficient Design 32
PART I	Passive Systems 32
THE BUILDING, THE ENVIRONMENT,	Active Solar and Hybrid Systems 34
AND HEALTH AND SAFETY	The Design Process 34
	- The Design Team 34
CHAPTER 1	Integrated Design 36
Environmental Conditions and the Site 3	Sustainable Design 36
Introduction 3	Energy Efficiency and Conservation 36
Climate Change 4	Sustainability and Green Design 36
Energy Sources 5	Energy and Materials 37
Electricity 5	Setting Sustainability Goals 38
Renewable Energy Sources 5	Sustainable Design Strategies 38
Non-Sustainable Energy Sources 9	LEED System 39
Global Climate Change 10	High Performance Buildings 39
Energy Consumption by Buildings 11	
Building Site Conditions 12	CHAPTER 3
Building Placement 12	Designing for Human Health and Safety 41
Climates 12	Introduction 41
Site Conditions 14	Human Body and the Built Environment 41
Interior Layout 18	Maintaining Thermal Equilibrium 41
Existing Buildings 18	Visual and Acoustic Comfort 44
	Other Human Environmental Requirements 45
CHAPTER 2	Hazardous Materials 46
Designing for the Environment 19	Renovation Considerations 46
Introduction 19	Lead 46
Building Envelope 19	Asbestos 46
History 20	Mold 47
Dynamic Building Envelope 20	Building Codes and Standards 47
Building Envelope and Codes 21	Building Codes 47
Exterior Walls 21	Standards and Organizations 48
Roofs 22	Federal Codes and Regulations 49
Heat Flow and the Building Envelope 24	Energy Efficiency Requirements 50
Terminology 24	
Thermodynamics 24	PART II
Heat Flow and Building Envelope 25	BUILDING COMPONENTS
Moisture Flow through Building Envelope 27	
Envelope Thermal Performance 28	CHAPTER 4
Insulation Materials 28	Building Forms, Structures, and Elements 53

Insulation Materials 28

Introduction 53	Doors 96			
History 53	Thermal Performance 96			
Building Form 54	Exterior Doors 96			
Structural System 54	Interior Doors 97			
Foundations 54	Door Types 99			
Building Loads 55	Fire Doors 101			
Types of Building Loads 56	Door Hardware 102			
Compression, Deflection, and Tension 56				
Spanning Openings 56	PART III			
Vertical Supports 59	ACOUSTICS			
Lateral Forces 61				
Shearing Forces 61	CHAPTER 7			
Grid Frameworks 62	Acoustic Design Principles 105			
Service Cores 62	Introduction 105			
Structural Types 63	Sound Basics 105			
Light Frame Structures 63	Sound Propagation 105			
Post-and-Beam and Heavy Timber 63	Sound Waves 106			
Masonry Structures 64				
Concrete Structures 67	Frequency 106			
Metal Structures 68	Sound Magnitude 106			
Other Structural Types 69	Hearing 107			
other otructarar types os	Human Ear 107			
CHAPTER 5	Loudness 107			
Floor/Ceiling Assemblies, Walls, and Stairs 70	Sound Masking 108			
	Directivity and Discrimination 109			
Introduction 70	Sound Sources 109			
Horizontal Structural Units 70	Speech 109			
Floor/Ceiling Assemblies 70	Music 109			
Interior Design Concerns 72	Noise 109			
Floor Systems 72	Vibration 110			
Wall Systems 74	Sound Paths 110			
Load-Bearing Walls and Frames 74	Attenuation 110			
Interior Walls and Partitions 75	Reflected Sound 110			
Stairs and Ramps 75	Natural Sound Reinforcement 112			
Stairs 75	Absorbed Sound 113			
Ramps 81				
	CHAPTER 8			
CHAPTER 6	Architectural Acoustics 114			
Windows and Doors 83	Introduction 114			
Introduction 83	History 114			
History 83	Acoustic Codes and Standards 115			
Windows 84	Acoustic Design 115			
Window Selection 84	Design Process 115			
Window Types 85	Room Acoustics 115			
Glazing 87	Building Noise Control 116			
Window Frames 89	Controlling Exterior Noise 116			
Storm Windows and Screens 89	Controlling Interior Noise 117			
Thermal Transmission 90	Background Noise 118			
Shading and Solar Control 92	Sound Transmission 118			
Toplighting and Skylights 94	Airborne and Structure-Borne Sound 118			
Toplighting 94	Measuring Sound Transmission 120			

Sound Absorption 121	Water Distribution 151		
Reducing Acoustic Energy 121	Well Water 151		
Measuring Sound Absorption 121	Municipal Water Supply Systems 152		
Reverberation 124	Water Quality 152		
Sound Isolation 124	Distribution within Buildings 153		
Mass 124	Hot Water 158		
Resiliency 125	Hot Water Heaters 160		
Tightness 125	Chilled Water 163		
Compound Barriers 125	Gas Supply and Distribution 163		
Floor/Ceiling Assemblies 125			
Special Acoustic Devices 126	CHAPTER 10		
Sound Transmission Between Spaces 126	Waste and Reuse Systems 164		
Walls and Partitions 126	Introduction 164		
Flanking Paths 126	History 165		
Impact Noise 129	Sanitary Waste Systems 165		
Materials and Acoustics 130	Sanitary Piping Elements 165		
Acoustic Products 130	Residential Waste Piping 170		
Ceiling Products 130	Large Building Waste Piping 170		
Wall Panels 133	Treating and Recycling Wastewater 171		
Flooring 133	Recycled Water 171		
Window Treatments and Upholstery 134	Rural Sewage Treatment 172		
Acoustic Applications 134	Centralized Sewage Treatment Systems 174		
Acoustic Criteria 135	Solid Waste Systems 174		
Offices 135	Recycling 174		
Music Performance Spaces 138	Small Building Solid Waste Collection 174		
Auditoriums 138	Large Building Solid Waste Collection 175		
Lecture Rooms 139			
Schools 139	CHAPTER 11		
Public Toilet Rooms 139	Fixtures and Appliances 176		
Residential Buildings 139	Introduction 176		
Electronic Sound Systems 141	History of Bathrooms 176		
Sound Reinforcement Systems 141	Plumbing Fixtures 177		
Sound Systems for Specific Spaces 141	General Code Requirements 177		
	Bathroom Fixtures 178		
PART IV	Water Closets 179		
WATER AND WASTE SYSTEMS	Urinals 182		
	Bidets 183		
CHAPTER 9	Lavatories and Sinks 184		
Water Supply Systems 145	Bathtubs 186		
Introduction 145	Showers 191		
History 145	Steam Rooms and Saunas 194		
Codes and Testing 146	Residential Bathroom Design 194		
Plumbing and Construction Drawings 146	Bathroom Design History 195		
Water Sources and Use 146	Bathroom Planning 195		
Water Use 146	Designing Public Toilet Rooms 196		
Hydrologic Cycle 148	Toilet Room Accessibility 196		
Precipitation 148	Drinking Fountains 196		
Surface Water, Groundwater, and Stormwater 149	Appliances and Equipment 197		
Conservation 150	Residential Kitchens 197		
Protecting the Water Supply 151	Residential Appliances 198		

Laundry Areas 201 Compressed Air 202

PART V HEATING, COOLING, AND VENTILATION SYSTEMS

CHAPTER 12

Principles of Thermal Comfort 205

Introduction 205 History 205

Thermal Comfort 206

Designing for Thermal Comfort 206

Comfort Range 209

Principles of Heat Transfer 211

Thermal Energy Transfer 211

Air Temperature and Air Motion 214

Water Vapor and Heat Transfer 215

Thermal Capacity and Resistance 216

Thermal Mass 216

Thermal Conductivity 218

Thermal Resistance 218

Thermal Feel 218

Mechanical Engineering Design Process 219

Phases of Design Process 219

Thermal Comfort Zones 220

Heating and Cooling Loads 220

CHAPTER 13

Indoor Air Quality, Ventilation, and Moisture Control 222

Introduction 222

ASHRAE Standards and LEED 222

Indoor Air Quality 223

Illnesses Related to Buildings 223

Sources of Pollution 224

Indoor Air Quality Equipment 226

Plants and Indoor Air Quality 228

Controls for Indoor Air Quality 229

Infiltration and Ventilation 229

Infiltration 229

Ventilation 229

Natural Ventilation 230

Attic and Roof Ventilation 232

Mechanical Ventilation 233

Residential Ventilation Systems 233

Fans 235

Humidity and Moisture Control 239

Water Movement 239

Humidity 239

Condensation 240 Dehumidification 242

CHAPTER 14 Heating and Cooling 243

Introduction 243

Architectural and Engineering Considerations 243

HVAC Design Process 244

History 245

Building Energy Conservation 246

Codes and Standards 247

Heating Systems 247

Central Heating Systems 248

Building Heating Fuels 248

Solar Space Heating 249

Fireplaces and Wood-Burning Stoves 250

Mechanical Heating Systems 253

Radiant Heating 255

Electric-Resistance Heat 257

Natural Convection Heating Units 258

Warm-Air Heating 259

Cooling Systems 262

History of Cooling 262

Passive Cooling 263

Mechanical Cooling 263

Heating, Ventilating, and Air Conditioning (HVAC) Systems 267

HVAC Zones 268

HVAC System Components 268

HVAC Distribution 269

Terminal Delivery Devices 270

Control Systems 271

PART VI **ELECTRICAL AND LIGHTING SYSTEMS**

CHAPTER 15

Electrical System Basics 275

Introduction 275

History 275

Electrical System Design Process 276

Codes and Standards 276

Principles of Electricity 277

Types of Electricity 277

Electrical Current 278

Electrical Power Sources 280

Photovoltaic (PV) Power 281

Other Electrical Energy Sources 283

Electricity and Safety 283

Electrical Shocks 283

Grounding 284

Electrical Fire Safety 285 Circuit Protection 285

CHAPTER 16 Electrical Distribution 288

Introduction 288

Electrical System Design Procedure 288

Electrical Service Equipment 289

Electrical Power Distribution Systems 289

Interior Distribution 293

Branch Circuits 293

Electrical Wiring and Distribution 294

Interior Wiring Systems 295

Full Access Floors and Wiring 297

Low-Voltage Wiring 298

Power Line Carrier Systems 298

Electrical Emergency Systems 298

Wireless Systems 299

Electrical Design for Residences 299

Residential Code Requirements 299

Residential Branch Circuits 300

Wiring Devices 302

Outlet and Device Boxes 303

Electrical Plugs 304

Electrical Receptacles 304

Switches 305

Electrical Loads 306

Residential Appliances 307

Appliance Control and Energy Conservation 311

CHAPTER 17 Lighting Systems 313

Introduction 313

History of Lighting 313

Lighting Design Team 314

Lighting Calculation Methods 314

Lighting Design Process 315

Lighting Codes and Standards 316

Light and Vision 317

Physics of Light 318

Vision 319

Color and Light 321

Ouantity of Light 322

Glare 322

Lighting Effects 324

Daylighting 324

History of Daylighting 324

Characteristics of Daylight 324

Daylighting Design 325

Daylighting and Fenestration 326

Electric Lighting 328

History of Electric Lighting 328

Electric Lighting Design 328

Electric Light Sources 329

Characteristics of Sources 330

Selecting Light Sources 330

Luminaire Light Control 334

Light Source Controls 335

Remote Source Lighting 335

Luminaires 336

Characteristics of Lighting Fixtures 336

Lighting Fixture Selection 338

Lighting Controls 340

Tuning and Maintenance 341

Emergency Lighting 342

Lighting Design Applications 343

Residential Applications 343

Residential Applications 343

Commercial Applications 343

PART VII FIRE SAFETY, CONVEYANCE, SECURITY, AND COMMUNICATIONS

CHAPTER 18 Fire Safety Design 347

Introduction 347

History 347

Design for Fire Safety 348

Basic Principles 348

Fire Risk 348

Combustion 349

Fire Safety Codes 350

Construction Types 351

Occupancy Hazard Classifications 351

Means of Egress 352

Building Types 352

Means of Egress Components 353

Protecting the Building 359

Compartmentation 360

Construction Assemblies and Elements 361

Materials and Fire Protection 364

Codes and Standards 364

Finish Classes and Test Ratings 365

Firefighting 366

Smoke Management 366

Fire Detection 367

Residential Detectors 368

Fire Alarm Systems 369

Residential Alarm Systems 369

Commercial and Institutional Systems 370

x | CONTENTS

Alarm System Operation 370
Fire Suppression 371
Sprinkler Systems 372
Other Fire Suppression Systems 374
Portable Fire Extinguishers 374

CHAPTER 19 Conveyance Systems 376

Introduction 376 History 376 Codes and Standards 377 Elevators 377 Elevator Design 377 Elevator Machines 381 Passenger Elevators 381 Freight Elevators 383 Service Cars and Special Elevators 383 Elevator Security 384 Elevator Systems 384 Elevator Lobbies 384 Escalators and Moving Walks 384 Escalators 384 Moving Walks and Ramps 387 Materials Handling 388 Dumbwaiters 388

Conveyors 388

Pneumatic Systems 389 Automated Container Delivery Systems 389

CHAPTER 20 Communications, Security, and Control Equipment 390

Introduction 390 Signal Systems 390 Communication Systems 391 Residential Communications 391 Office Building Communications 392 School Communication Systems, 392 Data and Communications Wiring 392 Premise Wiring 393 Television 393 Telecommunications 394 Security Systems 394 Security Equipment 395 Control and Automation Equipment 396 Automation 396 Intelligent Buildings 396 Building Controls 397

Bibliography 398 Index 399

Preface

The first edition of *Building Systems for Interior Environments* arose from my need for a textbook to use in teaching interior design students that gave them the understanding and skills to work with architects and engineers. This third edition of *Building Systems for Interior Environments* updates the role of interior designers as part of the building design team, and addresses their special needs for information on today's building system design and equipment.

Interior designers today work closely with other design and construction professions to provide functional, sustainable, and healthy buildings. Sophisticated digital control systems permit design that supports varied occupancy and work styles and schedules. This results in more individualized control of the interior environment, which is conducive to worker satisfaction and productivity.

Sustainable design supports a holistic approach to building systems, where the older territorial distinctions between the various building system and architectural/engineering disciplines are opening up. Existing buildings are being adapted and reused for new purposes. The impact of energy efficiency and water conservation in buildings is widely recognized. This third edition of *Building Systems for Interior Environments* reflects these changes.

In addition, the third edition benefits from the comments of experienced educators as to the best ways to organize and focus the information. The updated contents are arranged to flow smoothly in an order that facilitates the teaching process.

Part I looks at environmental conditions and the site, the building envelope and the building design process, sustainable design, the interaction of the human body with the built environment, and how building codes protect us. Part II addresses building forms, structures, and elements including floor/ceiling assemblies, walls, stairs, windows, and doors. Part III introduces acoustic design principles and architectural acoustics. Part IV addresses water supply, waste, and reuse systems, as well

as plumbing fixtures and appliances. Part V covers principles of thermal control, indoor air quality, ventilation, and moisture control, and heating and cooling. Part VI explains electrical system basics and electrical distribution, as well as lighting systems. Part VII concludes the book with coverage of fire safety design, conveyance systems, and communications, security, and control equipment.

More than 40 percent of the third edition's text is new. This edition contains over 485 illustrations, approximately 260 of which are new and 160 redrawn or revised. There are also over 175 tables, 125 of which are new or significantly revised. References to related materials in other chapters are included. Tips indicating material of assistance and interest to interior designers are also included. Key terms are defined in the text and indicated in **bold**. Quotations from architectural and engineering sources aid in understanding the perspective of other design professionals.

Interior designers need to understand the viewpoints and respect the expertise of other design professionals. *Building Systems for Interior Designers* provides the information they need to do this, without delving into engineering calculations. It focuses on the parts of the building design process that most affect the occupants' functional needs, and provides a technical but readily understandable foundation for the design of interior spaces. Residential as well as commercial and institutional spaces are included.

Building Systems for Interior Designers is listed by the National Council for Interior Design Qualification (NCIDQ) as a reference for preparation for the NCIDQ exam. The third edition is supplemented by online materials including an Instructors Manual with knowledge areas, topics for discussion, and definitions of key terms, PowerPoint presentations for each chapter, and a Test Bank with sample questions. Supplemental material is available at www.wiley.com/go/bsid3e.

Corky Binggeli, ASID Arlington, MA

Acknowledgements

The authorship of a book involves a great amount of solitary work and persistence. Turning the manuscript and illustrations into a published book involves the efforts of many others. I have now published seven books—plus second and third editions of some of them—with the team at John Wiley & Sons, and I want to thank them once again for their professionalism, support, and good advice.

I especially want to thank my editors, Paul Drougas, Lauren Poplowski, and Seth Schwartz, their able assistants Michael New and Melinda Noack, and production editor Amy Odum.

The feedback of my colleagues and students is invaluable in assuring that this edition meets their needs. I especially

benefitted from the review team of Dr. Jane L. Nichols, IDEC, NCIDQ, High Point University; Ji Young Cho, LEED AP, Kent State University; and Brian Sweny, AIA, IIDA, LEED AP, IDEC, SEED, Savannah College of Art and Design.

As is the case with all my books, I am indebted to my husband, Keith Kirkpatrick, for his support and assistance. He puts up with my obsessive focus, makes sure I am properly fed, and gives solid advice when I'm struggling with a decision. Keith also reviewed and commented on all of the illustrations. Thank you, Keith!

PART

THE BUILDING, THE ENVIRONMENT, AND HEALTH AND SAFETY

Interior designers today work closely with other design and construction professionals to provide functional, sustainable, and healthy buildings. Sustainable design is supporting a holistic approach to building systems, and older territorial distinctions between various architectural and engineering disciplines are opening up. Existing buildings are valued for the materials and energy they embody, and many projects involve the renovation of building interiors.

Interior designers are increasingly working as part of environmentally aware design teams. Sustainable design involves interior designers observing the impact of a building's site, climate, and geography on its interior spaces. Building interiors are increasingly open to natural settings and views, and the interior designer's work may bridge interior and exterior spaces. Wise energy use dictates awareness of how sun, wind, and heat or cold affect the building's interior.

While focusing on building elements that affect interior designers, *Building Systems for Interior Designers*, *Third Edition* addresses this multidisciplinary approach to building design. We begin our study of building systems in Part I by looking at the relationships among the environment, the building, and human health and safety.

Chapter 1, "Environmental Conditions and the Site," looks at climate change, energy sources and consumption, and how site conditions affect building design.

Chapter 2, "Designing for the Environment," investigates the building envelope and the role of insulation in heat flow. Energy efficient design, the building design process, and sustainable design are introduced.

Chapter 3, "Designing for Human Health and Safety," addresses the interaction of the human body with the built environment and how building codes protect us.