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Foreword

Data cleaning is often the most time-consuming part of data analysis. Although it has
been recognized as a separate topic for a long time in Official Statistics (where it is called
‘data editing’) and also has been studied in relation to databases, literature aimed at the
larger statistical community is limited. This is why, when the publisher invited us to
expand our tutorial “An introduction to data cleaning with R”, which we developed for
the useR!2013 conference, into a book, we grabbed the opportunity with both hands. On
the one hand, we felt that some of the methods that have been developed in the Official
Statistics community over the last five decades deserved a wider audience. Perhaps, this
book can help with that. On the other hand, we hope that this book will help in bringing
some (often pre-existing) techniques into the Official Statistics community, as we move
from survey-based data sources to administrative and “big” data sources.

For us, it would also be a nice way to systematize our knowledge and the software
we have written on this topic. Looking back, we ended up not only writing this book,
but also redeveloping and generalizing much of the data cleaning R packages we had
written before. One of the reasons for this is that we discovered nice ways to generalize
and expand our software and methods, and another is that we wished to connect to the
recently emerged “tidyverse” style of interfaces to the R functionality.

What You Will Find in this Book

This book contains a selection of topics that we found to be useful while developing data
cleaning (data editing) systems. The range is very broad, ranging from topics related to
computer science, numerical methods, technical standards, statistics and data model-
ing, and programming.

This book covers topics in “technical data cleaning”, including conversion and inter-
pretation of numerical, text, and date types. The technical standards related to these data
types are also covered in some detail. On the data content side of things, topics include
data validation (data checking), error localization, various methods for error correction,
and missing value imputation.

Wherever possible, the theory discussed in this book is illustrated with an executable
R code. We have also included exercises throughout the book which we hope will guide
the reader in further understanding both the software and the methods.

The mix of topics reflects both the breadth of the subject and of course the interests
and expertise of the authors. The list of missing topics is of course much larger than that
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xii Foreword

what is treated, but perhaps the most important ones are cleaning of time series objects
and outlier detection.

For Who Is this Book?

Readers of this book are expected to have basic knowledge of mathematics and statis-
tics and also some programming experience. We assume concepts such as expectation
values, variance, and basic calculus and linear algebra as previous knowledge. It is ben-
eficial to have at least some knowledge of R, since this is the language used in this book,
but for convenience and reference, a short chapter explaining the basics is included.

Acknowledgments

This book would have not been possible without the work of many others. We would like
to thank our colleagues at Statistics Netherlands for fruitful discussions on data valida-
tion, imputation, and error localization. Some of the chapters in this book are based on
papers and reports written with co-authors. We thank Jeroen Pannekoek, Sander Schol-
tus, and Jacco Daalmans for their pleasant and fruitful collaboration. We are greatly
indebted by the R core team, package developers, and the very supportive R community
for their relentless efforts.
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About the Companion Website

Do not forget to visit the companion website for this book:

www.data-cleaning.org

There you will find valuable materials designed to enhance your learning, including:

• supplementary materials

http://www.data-cleaning.org
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1

Data Cleaning

1.1 The Statistical Value Chain

The purpose of data cleaning is to bring data up to a level of quality such that it can
reliably be used for the production of statistical models or statements. The necessary
level of quality needed to create some statistical output is determined by a simple
cost-benefit question: when is statistical output fit for use, and how much effort will it
cost to bring the data up to that level?

One useful way to get a hold on this question is to think of data analyses in terms of
a value chain. A value chain, roughly, consists of a sequence of activities that increase
the value of a product step by step. The idea of a statistical value chain has become
a common term in the official statistics community over the past two decades or so,
although a single common definition seems to be lacking.1 Roughly then, a statistical
value chain is constructed by defining a number of meaningful intermediate data prod-
ucts, for which a chosen set of quality attributes are well described (Renssen and Van
Delden 2008). There are many ways to go about this, but for these authors, the pic-
ture shown in Figure 1.1 has proven to be fairly generic and useful to organize thoughts
around a statistical production process.

A nice trait of the schema in Figure 1.1 is that it naturally introduces activities that are
typically categorized as ‘data cleaning’ into the statistical production process. From the
left, we start with raw data. This must be worked up to satisfy (enough) technical stan-
dards so it can serve as input for consistency checks, data correction, and imputation
procedures. Once this has been achieved, the data may be considered valid (enough) for
the production of statistical parameters. These must then still be formatted to be ready
for deployment as output.

One should realize that although the schema nicely organizes data analysis activi-
ties, in practice, the process is hardly linear. It is more common to clean data, create
some aggregates, notice that something is wrong, and go back. The purpose of the value
chain is more to keep an overview of where activities take place (e.g., by putting them
in separate scripts) than to prescribe a linear order of the actual workflow. In practice, a
workflow cycles multiple times through the subsequent stages of the value chain, until
the quality of its output is good enough. In the following sections we will discuss each
stage in a little more detail.

1 One of the earliest references seems to be by Willeboordse (2000).

Statistical Data Cleaning with Applications in R, First Edition. Mark van der Loo and Edwin de Jonge.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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Raw data Input data Valid data Statistics Output

Extract
and coerce

Edit and
impute

Analyze
and infer

Format

Data cleaning

Figure 1.1 Part of a statistical value chain, showing five different levels of statistical value going from
raw data to statistical product.

1.1.1 Raw Data

With raw data, we mean the data as it arrives at the desk of the analyst. The state of such
data may of course vary enormously, depending on the data source. In any case, we take
it as a given that the person responsible for analysis has little or no influence over how
the data was gathered. The first step consists of making the data readily accessible and
understandable. To be precise after the first processing steps, we demand that each value
in the data be identified with the real-world object they represent (person, company,
something else), for each value it is known what variable it represents (age, income,
etc.), and the value is stored in the appropriate technical format (number and string).

Depending on the technical raw data format, the activities necessary to achieve the
desired technical format typically include file conversion, string normalization (such as
encoding conversion), and standardization and conversion of numerical values. Joining
the data against a backbone population register of known statistical objects, possibly
using procedures that can handle inexact matches of keys, is also considered a part of
such a procedure. These procedures are treated in Chapters 3–5.

1.1.2 Input Data

Input data are data where each value is stored in the correct type and identified with
the variable it represents and the statistical entity it pertains to. In many cases, such a
dataset can be represented in tabular format, rows representing entities and columns
representing variables. In the R community, this has come to be known as tidy data
(Wickham, 2014b). Here, we leave the format open. Many data can be usefully repre-
sented in the form of a tree or graph (e.g., web pages and XML structures). As long as all
the elements are readily identified and of the correct format, it can serve as Input data.

Once a dataset is at the level of input data, the treatment of missing values, implausible
values, and implausible value combinations must take place. This process is commonly
referred to as data editing and imputation. It differs from the previous steps in that it
focuses on the consistency of data with respect to domain knowledge. Such domain
knowledge can often be expressed as a set of rules, such asage >= 0,mean(profit)
> 0, or if ( age < 15 ) has_job = FALSE. A substantial part of this book
(Chapters 6–8) is devoted to defining, applying, and maintaining such rules so that data
cleaning can be automated and hence be executed in a reproducible way. Moreover, in
Chapter 7, we look into methodology that allows one to pick out a minimum number of
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fields in a record that may be altered or imputed such that all the rules can be satisfied.
In Chapter 9, we will have a formal look on how data modification using knowledge
rules can be safely automated, and Chapter 10 treats missing value imputation.

1.1.3 Valid Data

Data are valid once they are trusted to faithfully represent the variables and objects they
represent. Making sure that data satisfies the domain knowledge expressed in the form of
a set of validation rules is one reproducible way of doing so. Often this is complemented
by some form of expert review, for example, based on various visualizations or reviewing
of aggregate values by domain experts.

Once data is deemed valid, the statistics can be produced by known modeling and
inference techniques. Depending on the preceding data cleaning process, these tech-
niques may need those procedures into account, for example, when estimating variance
after certain imputation procedures.

1.1.4 Statistics

Statistics are simply estimates of the output variables of interest. Often, these are sim-
ple aggregates (totals and means), but in principle they can consist of more complex
parameters such as regression model coefficients or a trained machine learning model.

1.1.5 Output

Output is where the analysis stops. It is created by taking the statistics and preparing
them for dissemination. This may involve technical formatting, for example, to make
numbers available through a (web) API or layout formatting, for example, by preparing
a report or visualization. In the case of technical formatting, a technical validation step
may again be necessary, for example, by checking the output format against some (json
or XML) schema. In general, the output of one analyst is raw data for another.

1.2 Notation and Conventions Used in this Book

The topics discussed in this book relate to a variety of subfields in mathematics, logic,
statistics, computer science, and programming. This broad range of fields makes com-
ing up with a consistent notation for different variable types and concepts a bit of a
challenge, but we have attempted to use a consistent notation throughout.

General Mathematics and Logic
We follow the conventional notation and use ℕ, ℤ, and ℝ to denote the natural, integer,
and real numbers. The symbols ∨, ∧, ¬ stand for logical disjunction, conjunction, and
negation, respectively. In the context of logic, ⊕ is used to denote ‘exclusive or’. Some-
times, it is useful to distinguish between a definition and an equality. In these cases, a
definition will be denoted using ≡.



�

� �

�

4 1 Data Cleaning

Linear Algebra
Vectors are denoted in lowercase bold, usually x, y,…. Vectors are column vectors unless
noted otherwise. The symbols 𝟏 and 𝟎 denote vectors of which the coefficients are all
1 or all 0, respectively. Matrices are denoted in uppercase bold, usually A,B,…. The
identity matrix is denoted by 𝕀. Transposition is indicated with superscript T and matrix
multiplication is implied by juxtaposition, for example, xT AT Ax. The standard Euclidean
norm of a vector is denoted by ‖x‖, and if another Lk norm is used, this is indicated with
a subscript. For example, ‖x‖1 denotes the L1 norm of x. In the context of linear algebra,
⊗ and ⊕ denote the direct (tensor) product and the direct sum, respectively.

Probability and Statistics
Random variables are denoted in capitals, usually X,Y ,…. Probabilities and probability
densities are both denoted by P(X). Expected value, variance, and covariance are
notated as E(X), V(X), and cov(X,Y ), respectively. Estimates are accented with a hat,
for example, Ê(X) denotes the estimated expected value for X.

Code and Variables
R code is presented in fixed width font sections. Output is prefixed with two hashes.
age <- sample(100,25,replace=TRUE)
mean(age)
## [1] 52.44

Sometimes, it is useful to distinguish between the variable in the code and the logical
concept. In such cases, the code variable will be denoted age, and the concept will be
denoted age.
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2

A Brief Introduction to R

The following sections provide an overview of some of R’s core features. Besides an
installation of R, we recommend installing one of the available integrated development
environments (IDEs) for R. A good IDE does not only offer a nice interface to R and its
help system but also helps you to organize projects, code, and data.

To benefit the most of this tutorial, it is a good idea to try out the code examples for
yourself, play around with them, and to explain the results.

2.1 R on the Command Line

After starting R, or an IDE that connects to R, you have access to an interactive console,
or command-line interface. The first use of it is to replace a pocket calculator. You can
type in a calculation, and R will return the answer (preceded by a [1]).

1 + 1
## [1] 2

To get started, experiment with the following statements. Make sure to play around a
little. All common mathematical functions are implemented in R.

1 + 1
3ˆ2
sin(pi/2)
(1 + 4) * 3
exp(1)
sqrt(16)

To reuse results or values, you can store them with the <- operator.
x <- 10
y <- 20

R has now remembered the values 10 and 20 and named them x and y. In fact, x and y
are now officially R objects. R is very flexible, and there are several other ways to define
an R object. We may replace <- with =, we may replace a statement x <- 10 with
10 -> x, or we can be extra verbose and use assign("x",10). The = operator is
the only one that is encountered with some frequency in practice. Since = is also used
for named argument passing in function calls (see Section 2.6.1), we recommend using
the <- for assignment.

Statistical Data Cleaning with Applications in R, First Edition. Mark van der Loo and Edwin de Jonge.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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The content of an R object can be printed simply by typing its name in the console.
x
## [1] 10

R objects can be stored for further computation, the results of which may again be
stored.
x + y
## [1] 30
z <- x * y
q <- xˆ2*z
q
## [1] 20000

Finally, we note that values and variables can be compared using standard comparison
operators.
x <= y
## [1] TRUE
x == y
## [1] FALSE
x > y
## [1] FALSE

Observe that the operator testing for equality is written as the double equals symbol
‘==’. Make sure not to confuse this with the single equals symbol, which functions as
assignment operator.

2.1.1 Getting Help and Learning R

R has a built-in help system where every possible function is described. If you know the
name of the function, its help file can be requested with the ? operator. For example, to
show the help of the function mean, type the following:
?mean

If you are not sure of the function’s name, the help files may be searched using the double
question mark operator.
??average

IDEs for R have built-in search for the help files that may be more convenient.
There are a number of good online resources to get help from fellow users. Most

notably, the Q&A site stackoverflow.com provides many R-related questions
that have already been answered by users (and questions about many other topics as
well). In fact, if you type an R-related question in a search engine, chances are that the
first hit is a stackoverflow page. You may also want to subscribe to the R-help mailing
list (see https://www.r-project.org/mail.html). Here, questions are often
answered by the developers of the GNU R itself. Do observe the ‘netiquette’ and follow
the posting guide before posting a question to the list. In particular, you should search
the mailing list prior to posting a question to avoid double posts.

Besides resources where answers to questions can be found, there are many blogs dis-
cussing R and applications of R. A good way to become familiar with all the possibilities

http://www.stackoverflow.com
https://www.r-project.org/mail.html
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of R is to frequently visit r-bloggers.com, where many R-related blogs are collected
and presented in a newspaper-like format. Browsing through the blogs allows you to
stumble upon functions and ideas that you cannot get from just following a tutorial.

Learning R is not something you should do alone. Besides the online community from
which you can benefit, many cities have R user groups that organize frequent meetings
that you can join. If your organization is using R, it is a good idea to organize a local
user group within the organization. All you need is a room, a projector, and a laptop
to start organizing meetings. In our experience, user meetings are a very efficient (and
fun!) way to share knowledge and experiences among colleagues, friends, or classmates.
The point is that even in base R, there are thousands of functions and many ways to solve
the same problem. Informal user meetings are a good way of bumping into solutions you
otherwise might not have thought of.

2.2 Vectors

The most basic type of object in R is called a vector, a sequence of values of the same type.
The object is so basic that you have already worked with them. When in the previous
examples we computed x + y, R was in fact adding two numeric vectors of length 1
containing the numbers 10 and 20.

There are several ways to create a vector. One simple way is to use the function c()
(for concatenate, or combine).

# a vector with numbers 1, 2, and 3
c(1,3,5)
# a vector with two text elements
c("hello world","hello universe")

Ordered number sequences can be generated with the colon operator (:) or with the
seq function.

# a vector with numbers 1,2,...,10
1:10
# a sequence of numbers from 1 to 6 in 100 steps.
seq(1,6,length.out=100)

Sequences of random numbers from various distributions can be generated as well.
# 100 numbers drawn from the standard normal distribution
rnorm(100)
# 50 numbers drawn from the uniform distribution on [2,7]
runif(50,min=2,max=7)

You may try to combine values of a different type in a vector, but R will then convert
the type when necessary.

c(1,"hello", 3.14)
## [1] "1" "hello" "3.14"

When this vector is printed, there are quotes around the ‘numbers’ "1" and "3.14".
That is because R decided to convert these numbers to text since one of the elements
in the vector is text (you can always convert a number to text but not the other way

http://www.r-bloggers.com
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around). By the way, in R such a conversion of type is usually referred to as coercion,
which is just another word for the same thing.

This automatic conversion has consequences for everyday use. For example, the func-
tion read.csv reads csv files into R’s working memory. It automatically detects the
value types of the columns assuming that the first row contains the column names. Now
if you feed it a csv file, where one of the columns contains all numeric data, except in
one field, say somewhere at the bottom, that whole column will be interpreted as a cat-
egorical variable by default. Of course this behavior can be controlled, but it is typical
of R to perform coercion rather than throwing an error.

There are a few basic vector types with which R can work, listed in the following table:

logical Boolean values TRUE or FALSE
integer Whole numbers, ℤ
numeric Real numbers, ℝ
complex Complex numbers, ℂ
character Text
raw Binary data.

There are also types for storing categorical and ordered data.

factor Categorical data, unordered
ordered Ordinal data

These types are really integer vectors combined with a table that describes which cate-
gory (level) is stored as what integer.

You can ask any object of what type it is, using the class function.
x <- 1:3
y <- c("foo", "bar")
class(x)
## [1] "integer"
class(y)
## [1] "character"

There are two more types of metadata stored with a vector. The first is its number of
elements, which can be retrieved with the length function.
length(y)
## [1] 2

Secondly, the elements of a vector can be given names. For example:
shoesize <- c(jan=43, pier=39, joris=45, korneel=42)

The names are printed when a vector is printed to screen, but they do not affect any
computations based on the vector.
mean(shoesize)
## [1] 42.25

The names of a vector can be retrieved with the names function.
names(shoesize)
## [1] "jan" "pier" "joris" "korneel"
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2.2.1 Computing with Vectors

All arithmetic and comparison operators and mathematical functions can be used on
numerical vectors as you would on single numbers. The convention is that such opera-
tors and functions work element-wise on vectors.

x <- c(2,3,5,7)
y <- c(1,2,4,8)
x + y
## [1] 3 5 9 15
x < y
## [1] FALSE FALSE FALSE TRUE
exp(-x) + sin(y)
## [1] 0.9768063 0.9590845 -0.7500645 0.9902701

The result of adding or comparing two vectors is again a vector, which may be stored
and used in further computation.

It is possible to combine two vectors of different length. To compute the result, the
shortest vector is repeated over the longer one.

3 + x
## [1] 5 6 8 10
z <- c(1,2)
z + y
## [1] 2 4 5 10

Here, R adds 3 to each element of x. In the second line, it adds 1 to the first element of
y and 2 to the second element of y. It then notices that it got to the end of the vector
z, so it starts back at the beginning adding 1 to the third element of y and 2 to the
second element of y. The formal term for this is recycling; it is a behavior that is deeply
embedded in R. A natural question is what happens when one tries to add two vectors
where the shorted vector does not ‘fit’ a whole number of times on the longer vector.
The reader is invited to test this by executing the following statement:

1:3 + 5:8

Besides vectorized operations where vectors are combined to new vectors of similar
size, the content of vectors can be summarized in various ways.

x <- rnorm(100)
# compute the mean
mean(x)
## [1] 0.01797222
# compute the sample variance
var(x)
## [1] 1.355544
# standard deviation
sd(x)
## [1] 1.164278
# Tukey's five-number summary
fivenum(x)
## [1] -2.3084766 -0.7386481 -0.2128319 0.8240454 2.9226912
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Especially useful is the function summary, which can be used to summarize just about
any type of R object, including vectors.
summary(x)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.30848 -0.73186 -0.21283 0.01797 0.81193 2.92269

It is also possible to visualize the data in vectors. Common plotting functionality
includes the following:
x <- rnorm(100)
y <- x + rnorm(100)
# scatterplot
plot(x,y)
# boxplot
boxplot(x)
# histogram
hist(x)

2.2.2 Arrays and Matrices

An array is just a vector, endowed with a bit of metadata that states its dimensions.
Arrays can be created with the array function.
A <- array(1:12, dim=c(2,3,2))

Here, we created a 2 × 3 × 2 array containing the numbers 1–12. We advise you to
execute the above statement and observe the order in which R has filled this multidimen-
sional array. Many data structures can usefully be represented as (multidimensional)
arrays, with high-dimensional tables being the obvious example. Since arrays are all but
equal to vectors, we can perform computations with them just like we can with vectors.
2 * A
c(1,2) * A

A matrix is an array that has precisely two dimensions. The purpose of a matrix in
R is to represent the objects familiar from linear algebra. Matrices can be created with
the matrix function.
A <- matrix(1:6,ncol=2)
b <- matrix(c(-1,1),nrow=2)

Since matrices are vectors under the hood, the multiplication A*A is executed element-
wise. This means that linear operations on matrices (addition and multiplication by a
constant) work as expected out of the box, thanks to recycling. To perform matrix oper-
ations, some special operators and functions are available in R. Below is an overview of
the most important operations.

A %*% b Matrix multiplication Ab
t(A) Matrix transposition AT

solve(t(A)%*%A,b) Solve the linear system AT Ax = b
solve(t(A)%*%A) Compute the inverse (AT A)−1

svd(A) Singular value decomposition of A.
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Exercises for Section 2.2

Exercise 2.2.1 On the command line, do the following:

a) Compute 12 + 22 + · · · + 502.
b) The mean of the sequence 6, 7,… , 75
c) Can you generate the sequence (1, 2, 4, 8) in a single statement (not using c())? Hint:

think of recycling.

Exercise 2.2.2 If you create a vector with numbers in them, R by default stores them as
numeric, or real values. You can force R to store integers by adding L after a number.
x <- c(1L, 2L, 7L)

Now, execute the following code:
y <- 2 * x

Inspect the class of x and y and explain what happened.

2.3 Data Frames

A data frame is R’s way to represent a rectangular data structure, where every row
represents an observation, and every column represents a variable. An R-data frame
is basically a sequence of vectors that may carry values of a different type, but they must
all be of the same length.

R has a number of built-in datasets that can be used for examples and exercises.
data(iris)
head(iris,3)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa

Here, we use the function head to print the first three lines of the dataset. The iris
dataset contains sepal and petal length and width for three kinds of species of iris (see
?iris for references). Like vectors, data frames can be summarized or plotted.

summary(iris)
plot(iris)

The summary command summarizes each column, and the plot command produces a
matrix plot with scatter plots of each variable against one another. Other useful metadata
can be retrieved with the following functions:

# the number of rows
nrow(iris)
# the number of columns
ncol(iris)
# both nr of rows and columns
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dim(iris)
# names of the columns
names(iris)
# a shorter summary of a data.frame
str(iris)

The function str (short for structure) gives a technical overview of the contents of a
data.frame, whereas summary gives a statistical summary.

Columns can be retrieved, added, or removed using the dollar operator.

# compute the mean sepal width
mean(iris$Sepal.Width)
## [1] 3.057333
# add a 'ratio' column
iris$ratio <- iris$Sepal.Width/iris$Sepal.Length
head(iris, 2)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ratio
## 1 5.1 3.5 1.4 0.2 setosa 0.6862745
## 2 4.9 3.0 1.4 0.2 setosa 0.6122449
# remove the 'ratio' column again
iris$ratio <- NULL

2.3.1 The Formula-Data Interface

Many functions in R support the so-called formula-data interface. This interface is
aimed at specifying a relation between variables, separately from where the data can be
found. A formula is an R-expression of the form

[dependent variable] ∼ [independent variables]

where independent variables, or sometimes functions thereof, are stated on the right
side of the tilde (∼). Try the following examples to get a feel for this concept:

# specify a linear model
m <- lm(Sepal.Length ∼ Sepal.Width + Species, data=iris)
summary(m)

# create a boxplot for each species
boxplot(Sepal.Length ∼ Species, data = iris)

# create a scatterplot
plot(Sepal.Length ∼ Sepal.Width, data = iris)

2.3.2 Selecting Rows and Columns; Boolean Operators

Being able to select subsets of data is a fundamental skill to data processing. In R, there
are many ways to do so, including methods provided by packages. Here, we limit our-
selves to methods provided by base R.

Perhaps, the most convenient command to select a subset of records using base R is
thesubset function. For example, to select a subset of records from the built-inwomen
dataset whose height exceeds 70, we can do the following:

subset(women, height > 70)
## height weight
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## 14 71 159
## 15 72 164

The function accepts a data.frame and a logical statement that expresses the con-
dition(s) for records in the subset. Note that we do not need to reference the women
dataset in the logical statement. The subset function understands that height must
be a variable stored in women. To build up logical statements, R supports the following
basic Boolean operations and quantifiers:

& Logical AND
| Logical OR
! Logical NOT
xor() Logical EXCLUSIVE OR.
all() Only true if every value in the input is TRUE.
any() Only true if at least one value in the input is TRUE.

2.3.3 Selection with Indices

The second way to make selections from a dataset is to use vectors of indices. An index
vector may be a logical vector of the same size as the object selected from or an
integer or numeric vector stating the desired positions. To make a selection from
an R object (vector, data frame), one uses the square bracket operators.

x <- c(1,7,10,13,19)
# select the 2nd element
x[2]
## [1] 7
# select the 2nd and 5th element
x[c(2,5)]
## [1] 7 19
# set the first element to 0
x[1] <- 0
# select all elements equal to zero
x[x==0]
## [1] 0
# set all elements equal to zero equal to 1
x[x==0] <- 1

To understand the last two statements, recall that a logical expression such as x==0
returns a logical vector, which may then be used as an index. Mastering indices is
one of the most important R skills to acquire since it allows you to very flexibly and
quickly find and alter data.

It is possible to separate the computation of an index from its application to data by
storing a computed index prior to usage.

# find x < 15; I is a logical vector
I <- x < 15
# find x > 1; J is a logical vector
J <- x > 2
# select elements in x satisfying both I and J
x[I&J]
## [1] 7 10 13
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There are a number of functions that can help you find specific values in a vector.

min, max The smallest or largest value
which.min, which.max The position of the smallest or largest value
which Position of TRUEs in a logical vector

Here are some examples.
max(x)
## [1] 19
which.max(x)
## [1] 5
which(x == 7)
## [1] 2

Since data frames have two dimensions, you need two indices to select from them, one
for the rows and one for the columns. For example, to select rows 3–7 and columns 2–4
from the iris dataset, do the following:
iris[3:7,2:4]
## Sepal.Width Petal.Length Petal.Width
## 3 3.2 1.3 0.2
## 4 3.1 1.5 0.2
## 5 3.6 1.4 0.2
## 6 3.9 1.7 0.4
## 7 3.4 1.4 0.3

Indices before the comma select rows, and indices after the comma select columns.
Leaving out an index means ‘make no selection’, that is, everything is returned. Here,
we select all columns for the first row.
iris[1, ]

Similarly, we can select all rows for columns 2–4.
iris[ ,2:4]

There is one caveat when selecting columns in the above procedure. If only a single
column is selected, for example,iris[, 1], R will return a vector, rather than a single-
column data frame. There are two ways to prevent this behavior. The first is by providing
the extra argument drop=FALSE (meaning, dimensions will not be dropped).
iris[,1,drop=FALSE]

The second way is to not provide a comma and use only a single index when selecting
columns.
iris[1]

Finally, we note that it is also possible to select columns with (vectors of ) column names.
iris[ iris$Sepal.Length < 6, 'Species', drop=FALSE]

2.3.4 Data Frame Manipulation: The dplyr Package

The dplyr package of Wickham and Francois (2014) offers a set of functions that facil-
itate a very consistent way of working with data frames. The package will be discussed
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briefly in Section 4.2.3, but it also comes with an excellent tutorial, which can be found
at the package’s CRAN page.

Exercises for Section 2.3

Exercise 2.3.3 The built-in women dataset contains two columns of data representing
the average height (inches) and weight (pounds) of American women aged 30–39 (for some
year prior to 1975).

a) Add a column called heightM representing height in meters. One inch equals
2.54 cm.

b) Add a column called weightKg representing weight in kilograms. One kilogram
equals 2.2046 lb.

c) The Quetelet index QI, (also body-mass index) is computed as

QI =
weight in kilogram
(height in meter)2 .

Add a column called QI with the Quetelet index for each row in the women dataset.
d) Compute the mean and median Quetelet index for this dataset.
e) How many indices are above 23? (Hint: you can count the number ofTRUEs in a vector

by using computing the sum over them).

Exercise 2.3.4 Use (computed) indices to answer the following questions:

a) How many rows in the iris dataset have Petal.Length larger than 5 and
Sepal.Width smaller than 3. Hint you can sum over logical vectors to count
the number of TRUEs.

b) There are two specimens of iris that have Sepal.Length equal to 5.7 and
Sepal.Width equal to 2.8. Of what species are they? Use a single R statement to
select the species from the dataset.

c) Of what species is the iris with the largest Sepal.Length?

Exercise 2.3.5 The winsorized mean is a robust way to estimate the mean that works
by replacing every value above (or below) a certain threshold with the threshold. Compute
the winsorized mean of the column Sepal.Length, with threshold 7. Do this by first
replacing every value > 7 with 7 and then computing the mean (the correct answer is
5.80533).

2.4 Special Values

Similar to most programming languages, R has provisions to represent exceptional val-
ues such as ±Inf, NaN (not a number), NA (missing value), and NULL.

The value Inf represents the result of a numerical calculation such as 1/0, which,
when written as limx→01∕x, would yield ∞. Not a number, or NaN, results from com-
putations such as 0/0 or Inf-Inf, where even taking a limit is undefined. We will be
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more precise about these concepts in Section 3.1.3. For now, we only mention that con-
ceptually, one can think of the number system with which R computes is the augmented
real line

ℝ ∪ {±∞} ∪ NaN ∪ NA, (2.1)

where NA represents a missing value. All of R’s arithmetic operations and mathematical
functions are closed on this set. That is, if you feed any operation element(s) from (2.1),
the result will be in the same set.
6/0
## [1] Inf
6/0 - Inf
## [1] NaN

In general, you can a reason aboutInf as if it is an ordinary number, with a few special
rules you would expect, such as Inf + x == Inf for any finite number x. This also
means that it can be detected using standard boolean operators.
x <- c(1,2,Inf)
x == Inf
## [1] FALSE FALSE TRUE

The NaN value is conceptually a bit different. Informally, it can be understood as an
‘undefined’ value. Since we cannot be definite about the outcome when comparing an
undefined value with another value, defined or undefined, any comparison with NaN
will result in NA.
x <- c(1,2,NaN)
x == NaN
## [1] NA NA NA

In fact, any calculation involving NaN will yield something undefined; either a missing
value or NaN but never a number. The way to detect NaNs is with a special detector
function called is.nan.
is.nan(x)
## [1] FALSE FALSE TRUE

For numeric data, there is a convenient function is.finite that establishes whether
a value from the set of Eq. (2.1) represents a finite number.
is.finite(c(2,1,3,NA,7,Inf,NaN))
## [1] TRUE TRUE TRUE FALSE TRUE FALSE FALSE

The value NULL can be thought of as the empty set. Unlike all the other special values,
NULL has no type (its class is NULL) and length zero.
length( c(1,NULL,2))
## [1] 2
length( c(1,NA,2))
## [1] 3

Since NULL has no length and is not a vector (try is.vector(NULL)), comparing a
vector with NULL needs to be defined separately. In R, such comparisons yield a logical
vector of length zero.


