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Preface

The device scaling concept, which can lead to increase in both switching speed and integrated 
density of MOSFETs with reasonable power consumption, has been the main guiding principle 
of the integrated device engineering over the past 40 years. It has been recognized, however, 
that conventional device scaling has confronted difficulties below the sub‐100 nm regime, 
owing to several physical and essential limitations directly related to device miniaturization. 
As a consequence, new device technologies to overcome these difficulties are highly required. 
A group of these new device technologies, called technology boosters, include high‐k gate stack 
technologies, high carrier mobility channels, ultrathin‐body structures, multigate structures, 
metal source/drain, and novel operating principles. The basic purpose of these technologies are 
to boost or improve specific device parameters, such as carrier velocity, gate leakage current, 
short‐channel effects, subthreshold slope, and so on.

Given the large number of technology options mentioned above, physically based device 
simulations will play an important role in developing the most promising strategies for forth-
coming nanometer era. In particular, most of the device architecture and material options are 
expected to affect the performance of MOSFETs through the band structure, the electrostatics 
and the scattering rates of carriers in the channel region. Therefore, microscopic or atomistic 
modeling is necessary to obtain a physical insight and to develop a quantitative description of 
the carrier transport in ultrascaled MOSFETs. In this context, this book aims to offer a 
thorough explanation of carrier transport modeling of nanoscale MOSFETs, covering topics 
from the atomistic band structure calculation to the most recent challenges targeting beyond 
the end of the International Technology Roadmap for Semiconductors (ITRS). We also focus 
on the roles of phonon transport in ultrascaled MOSFETs, which are getting a lot more 
attention lately as major thermal management challenges on the LSI chip.

As for the modeling methodology, we have highlighted the multi‐subband Monte Carlo 
method because of some distinct advantages compared to other methods. Specifically, it 
provides us with the ability to explore all transport regimes, including diffusive, quasi‐ballistic 
and even quantum transport (by applying a Wigner Monte Carlo technique) regimes, and also 
introduces new scattering mechanisms without increasing its computational resources. 
The physical interpretation of calculated results is intuitively comprehensible, owing to its 
particle description of the carrier transport. The dynamical equation of the Wigner function 
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(i.e. the Wigner transport equation) is very similar to the Boltzmann transport equation, except 
in the influence of the potential whose rapid space variations generate quantum mechanical 
effects. Furthermore, it coincides with the non‐equilibrium Green’s function formalism under 
a ballistic transport. We have illustrated the details of the Wigner Monte Carlo technique and 
its application to the quantum transport analysis of III‐V MOSFETs in this book.

To go beyond the end of the ITRS roadmap, several alternative or innovative devices 
are  being investigated, such as nanowires, carbon nanotubes, graphenes and tunnel‐FETs. 
We have dealt with nanowires and some atomic layer 2‐D materials related to graphene, and 
have discussed their performance potentials by comparisons with those of competitive 
MOSFETs composed of Si and III‐V compound semiconductors.

This book was written for graduate students, engineers and scientists who are engaged in 
work on nanoscale electronic devices, and was designed to provide a deeper understanding of 
physical aspects of carrier transport in real electronic devices. Familiarity with quantum 
mechanics, basic semiconductor physics and electronics is assumed. After working through 
this book, students should be prepared to follow current device research, and to actively 
participate in developing future devices.

Hideaki Tsuchiya
Yoshinari Kamakura
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Emerging Technologies

1.1  Moore’s Law and the Power Crisis

Figure 1.1 shows the famous Moore’s law for a metal‐oxide‐semiconductor field‐effect tran-
sistor (MOSFET) integrated in an electronic logic circuit, which illustrates the annual varia-
tions in the number of transistors and in transistor size in a simple way. Since large‐scale 
integrated (LSI) circuit technology was invented in the 1960s, the progress of miniaturization 
techniques based on scaling law has achieved significant advancement in the electronics 
industry, up to the present date. However, from the year around 2005, the increase in power 
consumption of LSI circuits has become a major problem. To succeed in the scaling law, not 
only the geometrical dimensions of MOSFET, a basic building block of LSI circuit, but also 
their power supply voltage, are required to be scaled down simultaneously. However, the 
power supply voltage has ceased to fall, at around 1 V after 2005. There are various reasons 
for this – for example: to suppress characteristic variability among hundreds of millions of 
integrated MOSFETs; to cut wasteful power consumption in the off‐state; to maintain high‐
speed performance, and so on. Consequently, LSI consumption power or, in terms of global 
influence, the total electrical power consumed by IT devices and systems all over the world, 
increases rapidly year by year.

The power consumption of a MOSFET is expressed by:

	 P f C V I Vload dd off dd
2 	 (1.1)

where f, C
load

, V
dd

 and I
off

 represent the operating frequency, the load capacitance, the power‐
supply voltage, and the off‐current, respectively. The first term on the right‐hand side of 
Equation (1.1) corresponds to the power required to charge and discharge a MOS capacitor, 
(i.e., a consumed power at on‐state), and the second term, consumed power at off‐state. The 
ceasing to fall of V

dd
, as mentioned above, has mainly induced the increase in consumed power 

at on‐state. On the other hand, owing to the drain‐induced barrier lowering (DIBL) 

1
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phenomenon, which is caused by reduction of the gate electrostatic control over the channel 
with decreasing the channel length, I

off
 is beginning to increase exponentially, as shown in 

Figure 1.2. This leads to a drastic increase in consumed power at off‐state – which, for in-
stance, decreases the battery life of mobile devices such as smartphones and wearable 
appliances.

1.2  Novel Device Architectures

To reduce the off‐state power consumption, novel structure MOSFETs that possess better gate 
electrostatic control to suppress DIBL have received a lot of attention [1.1]. The representative 
new device structures are shown in Figure 1.3. In 2012, the Intel Corporation released an 
announcement stating that they were starting to manufacture central processing units (CPUs) 

T
he

 n
um

be
r 

of
 tr

an
si

st
or

s 
in

 a
 c

irc
ui

t (
Lo

g 2
) 35

30

25

20

15

10

5

0

10 μm

G
at

e 
le

ng
th

200 billion
@2018

The number of 
transistors

Transistor size

7 nm@2018
4 Si atoms

1 Si atom

Moore’s law
(twice per two years)

Vdd= 5 V

Voltage scaling 
hit the wall at 1 V

1960 1970 1980 1990 2000 2010 2020(year)

1 μm

100 nm

10 nm

1 nm

0.1 nm

Voltage
scaling

Figure 1.1  Moore’s law for a MOSFET integrated in a LSI.

I o
n

I o
ff

Vdd

I D
 (

lo
g)

0

Ioff increase

DIBL increases SS

VG

Figure 1.2  Influences of DIBL on I
D
 – V

G
 characteristics. DIBL degrades the subthreshold slope (SS) 

and then causes an exponential I
off

 increase.



Emerging Technologies	 3

constructed from FinFETs [1.2]. This was a landmark in the electronic industry, because a 
three‐dimensional transistor has been commercialized for the first time since the planar type 
MOS transistor was invented in 1960. A GAA nanowire MOSFET, shown in Figure 1.3(d), is 
considered one of the ultimate structures of FinFETs and, therefore, globally active and 
competitive research has been promoted.

As seen in Figure 1.3, these new structure MOSFETs have an ultrathin Si channel sand-
wiched in between gate oxides or insulators of substrate. In particular, Si channels in FinFET 
and GAA nanowire MOSFET are completely surrounded by oxides. As a result, the Si channel 
thickness T

Si
 fluctuates along a transport direction in atomic scale, as shown in Figure 1.4.

When T
Si

 is thinner than a spatial extent of carrier’s wave function, the T
Si

 fluctuation 
produces spatial fluctuation of quantized sub‐band along the transport direction, and thus 
leads to an additional scattering source for carriers. Consequently, the carrier mobility 
may seriously decrease in nanometer‐scaled new structure MOSFETs. The influence of 
the T

Si
 fluctuation was first investigated by H. Sakaki et al. experimentally and theoreti-

cally for GaAs/AlAs quantum well structures [1.3]. They found that the electron mobility 
reduces in proportion to the sixth power of quantum well thickness, which shows that the 
interface fluctuation scattering is the dominant scattering mechanism in thin quantum 
well structures.

For SOI‐MOSFETs, K. Uchida et al. experimentally demonstrated that the same channel 
thickness dependence as for Sakaki’s result is obtained for T

Si
s less than 3 nm, as shown in 
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(c) (d)

(b)

Figure 1.3  Representative new device structures. (a) ultrathin‐body (UTB) silicon‐on‐insulator (SOI) 
structure; (b) double‐gate (DG) structure; (c) Fin or trigate structure; and (d) gate‐all‐around (GAA) 
nanowire structure.
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Figure 1.5 [1.4]. Therefore, there are growing concerns about the degradation of the on‐state 
device performance in new structure MOSFETs with a nanometer channel thickness. 
However, the role of the T

Si
 fluctuation under a quasi‐ballistic transport, where scattering 

events inside the channel decrease to several times, has not yet been fully understood. 
To  deeply understand it, we need to develop a device simulation technique considering 
quantum confinement and scattering effects at the atomic level. We will describe such a 
challenge in Chapter 3.

In addition to the scattering by the T
Si
 fluctuation mentioned above, phonon scattering and 

impurity scattering also play an important role. In particular, intrinsic channels are likely 
adopted in novel structure MOSFETs and, thus, deep understanding of phonon scattering 
processes in ultrashort channel MOSFETs should be important. Carrier transport in this 
regime has been actively discussed in terms of the quasi‐ballistic transport since K. Natori 
proposed the concept of ballistic MOSFET [1.5].

As for phonon scattering processes, interestingly, inelastic phonon emission processes can 
suppress carriers backscattering to the source and then promote ballistic transport, contrary to 
common sense, in the case of ultrashort‐channel MOSFETs [1.6, 1.7]. This is considered to be 

Λ
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Figure  1.4  Spatial fluctuation of Si channel thickness along transport direction, which emerges in 
ultrathin Si films with a nanometer thickness.
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due to the fact that once a carrier has lost its kinetic energy by a few multiples of k
B
T (about 

60 meV for silicon) via inelastic phonon emission processes, the carrier has little chance of 
returning to the source, due to the potential bottleneck barrier, and is eventually absorbed into 
the drain; thus, the ballisticity improves. We will discuss this subject in detail in the first half 
of Chapter 3.

The continued scaling of transistor dimensions and integrated density is causing major 
thermal management challenges on the LSI chip [1.8]. In particular, the novel structure 
MOSFETs have Si channels surrounded by the gate oxides and insulators, which have a lower 
thermal conductivity than Si [1.9]. Therefore, thermal energies generated in a device via 
optical phonon emission are readily accumulated inside the device, which might lead to deg-
radation of the device performance. In Chapter  4, we will discuss phonon transport in Si 
nanostructures, to examine such a heat generation problem qualitatively.

1.3  High Mobility Channel Materials

The reduction of V
dd

 is essential to decrease on‐state power consumption. Higher mobility 
channel materials can increase the on‐current because the carrier’s velocity becomes higher at 
the same V

dd
, and thus they are expected to achieve equal or superior performance to 

Si MOSFETs under a lower V
dd

 operation [1.10], as shown in Figure 1.6.
The effective masses and mobilities of representative semiconductors are summarized in 

Table 1.1. Compared to Si, Ge has both a higher electron mobility and a higher hole mobility, 
while III‐V compound semiconductors, that is, InP and In

0.53
Ga

0.47
As, have a significantly 

higher electron mobility. One of the important reminders is that the solid solubility of donors 
in III‐V semiconductors is limited to less than, or comparable to, 2 × 1019 cm–3 [1.11]. 
Consequently, III‐V MOSFETs generally exhibit a higher parasitic resistance in source and 
drain electrodes than Si MOSFETs do [1.12–1.15]. This also may lead to “source starvation” 
[1.12, 1.13], which cannot maintain a large flow of ballistic carriers heading in the channel, 
owing to the insufficient impurity scattering in the lightly doped source. We will discuss this 
subject in the first half of Chapter 5.

The higher mobilities of III‐V semiconductors are mainly due to their lighter effective 
masses. But then, a lighter effective mass carrier has a larger tunneling probability through a 
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ff
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I d
 (

lo
g)

Vg
0

Ion increase

Si

Vdd2

Figure 1.6  On‐current increase due to high‐mobility channel MOSFETs. They are expected to achieve 
a lower V

dd
 operation than conventional Si MOSFETs.
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finite potential barrier. Figure 1.7(a) shows the tunneling probabilities calculated for Si and 
In

0.53
Ga

0.47
As through the potential barrier with 0.5 eV height and 6 nm width, which supposes 

an off‐state of a sub‐10 nm MOSFET. The effective masses were given as m* = 0.19 m
0
 for Si 

and 0.046 m
0
 for In

0.53
Ga

0.47
As.

It is found that In
0.53

Ga
0.47

As exhibits several orders of magnitude larger tunneling proba-
bility than Si. This phenomenon leads to a tunneling leakage current between source and drain 
electrodes at off‐state, as shown in Figure 1.7(b). Therefore, this is called “source‐drain direct 
tunneling (SDT).” SDT might be a major obstacle in downscaling III‐V MOSFETs into the 
deca‐nanometer or nanometer scale [1.16, 1.17]. We will discuss this subject in the second 
half of Chapter 5.

Table 1.1  Effective masses and mobilities of representative semiconductors.

Material Si Ge InP In
0.53

Ga
0.47

As

electron mass m
e
 (m

0
) 0.19/0.98 (m

t
/m

l
) 0.082/1.59 (m

t
/m

l
) 0.082 0.046

mobility (cm2/ V · s) 1600 3900 5400 25 000
hole mass m

hh
/m

lh
 (m

0
) 0.49/0.16 0.28/0.044 0.45/0.12 0.51/0.22

mobility (cm2/ V · s) 430 1900 200 450
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1.4  Two‐Dimensional (2‐D) Materials

Graphene, a one‐atom‐thick carbon sheet arranged in a honeycomb lattice [1.18], is known to 
exhibit the highest electron mobility of all presently‐known materials and, therefore, its appli-
cation to high‐speed electronic devices is strongly anticipated. However, since graphene has 
no band gap, the electrical conduction cannot be fully switched off by tuning the gate voltage, 
which is necessary for digital applications. To open a band gap, several methods have been 
proposed, as shown in Figure 1.8. Graphene nanoribbon (Figure 1.8(a)) uses quantum con-
finement effect in its transverse direction, while bilayer graphene (Figure 1.8(b)) introduces 
symmetry breaking between two carbon layers via a vertical electric field or interaction 
between a graphene layer and its substrate.

Although these methods actually open a band gap in graphene, the characteristic linear 
dispersion relation is distorted and, furthermore, an effective mass appears in graphene 
nanoribbons. Accordingly, accurate consideration of the band structure is important in order 
to assess the device characteristics of semiconducting graphene devices.

Practical application of graphene devices require a reliable substrate, but the mobility in 
graphene on SiO

2
 substrates is limited to 25 000 cm2/ Vs [1.19–1.21]. The reason for this 

mobility reduction on SiO
2
 substrates is considered to be the additional scattering mechanisms 

induced by the substrate, such as charged impurities, polar and non‐polar surface optical pho-
nons in the SiO

2
, and substrate surface roughness. On the other hand, a drastic improvement 

of the mobility to 140 000 cm2/Vs near the charge neutrality point was reported using a hex-
agonal boron nitride (h‐BN) substrate [1.22]. Hence, h‐BN substrate is expected to be suitable 
for graphene electronic devices. For practical design and analysis of graphene devices, we will 
need to consider the scattering from the substrates precisely.

The discovery of graphene, and the succeeding tremendous advancement in this field of 
research, have promoted the search for similar two‐dimensional (2‐D) materials composed 
of other group IV elements. The silicon or germanium equivalents of graphene are called silicene 
and germanene. A 2‐D silicene has been successfully fabricated on (0001)‐oriented thin films of 
zirconium diboride (ZrB

2
), that were grown epitaxially on Si (111) wafers [1.23]. Theoretical 

simulations showed that silicene and germanene have no band gap, similar to graphene. On the 
other hand, 2‐D materials such as silicane, germanane [1.24], MoS

2
 [1.25, 1.26] and black phos-

phorus [1.27, 1.28] exhibit a band gap larger than about 1 eV, though they are monolayer‐thick 
materials. These 2‐D materials with a sufficiently large band gap may have advantages in the 
application to LSI devices over graphene‐based materials. We will discuss the electronic 
properties of 2‐D materials and their performance potentials as an FET channel in Chapter 7.

εz

W F

(a) (b)

Figure 1.8  (a) Graphene nanoribbon; and (b) bilayer graphene to open a band gap.
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1.5  Atomistic Modeling

As described in Section 1.2, Si UTB‐SOI MOSFET, shown in Figure 1.3 (a) has better gate 
electrostatic control over the channel than conventional Si bulk MOSFET, and thus is expected 
to be immune to short‐channel effects such as DIBL, and threshold voltage lowering with 
decreasing the channel length. Experimentally, extremely‐scaled SOI‐MOSFETs with Si 
channel thickness less than 1 nm have been fabricated, as shown in Figure 1.9(a) [1.29].

Currently, hydrogen termination of the channel is used in device modeling, as a compro-
mise between efficiency and accuracy. However, in such atomic‐scale dimensions, not only 
the quantum confinement effects, but also the roles of interfaces between the Si channel 
and the SiO

2
 oxides, will be important to achieve good agreement with experimental 

results. Thus, state‐of‐the‐art ab initio simulation techniques, such as a density‐functional 
first‐principles method [1.30], or a density‐functional tight‐binding method [1.31], where 
practical atomic structures are assumed for SiO

2
 layers, as shown in Figure 1.9(b), have 

been applied to reveal large quantitative differences, in comparison with simulations of 
H‐terminated Si film.

Furthermore, considering the sub‐10 nm technology node, GAA nanowire MOSFET with 
ideal gate electrostatic controllability is attracting a lot of attention. Figure 1.10 shows the 
schematic of GAA nanowire MOSFET constructed from a diamond crystal, where a square‐
shaped cross‐section is assumed. In nanowire MOSFETs with the channel length shorter than 
10 nm, its cross‐sectional dimensions are supposed to be less than 5 nm. Hence, the number of 
atoms in the cross‐section becomes countable, as shown in Figure 1.10(a), (b) and (c).

Accordingly, the electronic states significantly depend on geometrical parameters such as 
wire orientation and cross‐sectional dimension [1.32]. Moreover, not only electrons, but also 
phonons, are spatially confined to a nanometer scale [1.33, 1.34]. To deeply understand their 
behaviors, we need an atomistic device simulation technique based on a first‐principles 
approach [1.35, 1.36], or a tight‐binding approach [1.37, 1.38], if necessary coupled with 
phonon band structure calculation and electron‐phonon interaction modeling [1.33, 1.34]. We 
will describe such a challenge in Chapters 2 and 6.

K. Uchida et al., IEDM (2003) 805.

SOI thin film
(a) (b)

SiO2

Si

SiO2

Figure 1.9  (a) Experimentally fabricated SOI‐MOSFET with Si channel thickness of 0.7 nm, which 
corresponds to the 5‐atomic‐layer thickness of Si atoms [1.29]. (b) Example of SOI atomic structure 
used for ab initio simulations.
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In summary, the introduction of new device structures and new channel materials are 
expected to improve the device performance of MOSFETs, without depending on conven-
tional geometrical scaling. On the other hand, they can exhibit quite different features from 
conventional MOSFETs, because they are “new” technologies. Most of them are caused by 
quantum mechanical properties of carriers. In a sense, breaking the miniaturization limit of Si 
MOSFETs relies on the well‐managed control of quantum mechanical effects and, therefore, 
the role of quantum mechanical simulation and atomistic analysis techniques will become 
more and more important than ever.
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First‐principles calculations 
for Si nanostructures

A knowledge of the band structure of a material is the first necessary step to understanding 
and predicting its electronic properties. With the recent advancement in semiconductor micro-
fabrication technologies, novel device architectures, coupled with nano‐structures such as 
ultrathin films and nanowires, have been proposed. The band structure plays a fundamental 
role in determining both the electrostatics and the dynamics of carriers in those nano‐structures. 
In this chapter, the band structures computed for Si nano‐structures using first‐principle 
density‐functional theory are presented, and atomistic effects in Si nano‐structures are 
discussed.

2.1  Band structure calculations

2.1.1  Si Ultrathin‐body structures

With aggressively downscaling to a nanometer scale of the VLSI technology, ultrathin‐body 
(UTB) structures of Si, such as silicon‐on‐insulator (SOI) and FinFETs, are getting a lot of 
attention because of their superior immunity to short channel effects. Experimentally, 
extremely‐scaled SOI‐MOSFETs with Si channel thickness less than 1 nm were fabricated as 
shown in Figure 2.1, and fundamental device operation was successfully reported [2.1]. In such 
atomic‐scale dimensions, not only the quantum confinement effects, but also the roles of inter-
faces between Si channel and gate oxides will be important. We here present our atomistic 
investigation on electronic properties of SOI channels, based on a first‐principles simulation.

Figure 2.2 shows the atomic structures used in the Si‐UTB simulations, where we employed 
three types of spatial confinement [2.2]. The SiO

2
 layers were assumed to be crystalline and 

placed onto the Si (001) surfaces without any defects  –  that is, the Si/SiO
2
 interfaces are 

geometrically abrupt. To apply the supercell technique, vacuum layers with a sufficient thickness 
are included above and below the structures. We refer to (a) and (b) as the silicon‐on‐insulator 
(SOI) model, and (c) as the H‐terminated model, respectively.

2


