

High-Performance
Computing on Complex

Environments

WILEY SERIES ON PARALLEL
AND DISTRIBUTED COMPUTING

Series Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume.

High-Performance
Computing on Complex

Environments

Emmanuel Jeannot

Inria

Julius Žilinskas
Vilnius University

Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should

be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herin may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profit or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care

Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging in Publication Data:

Jeannot, Emmanuel.

High performance computing on complex environments / Emmanuel Jeannot, Julius Zilinskas.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-71205-4 (cloth)

1. High performance computing. I. Žilinskas, J. (Julius), 1973- II. Title.

QA76.88.J43 2014

004.1′1–dc23

2013048363

High-Performance Computing on Complex Environments / Emmanuel Jeannot and Julius Žilinskas

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com

To our colleague Mark Baker

Contents

Contributors xxiii

Preface xxvii

PART I INTRODUCTION 1

1. Summary of the Open European Network for High-Performance
Computing in Complex Environments 3

Emmanuel Jeannot and Julius Žilinskas

1.1 Introduction and Vision / 4

1.2 Scientific Organization / 6

1.2.1 Scientific Focus / 6

1.2.2 Working Groups / 6

1.3 Activities of the Project / 6

1.3.1 Spring Schools / 6

1.3.2 International Workshops / 7

1.3.3 Working Groups Meetings / 7

1.3.4 Management Committee Meetings / 7

1.3.5 Short-Term Scientific Missions / 7

1.4 Main Outcomes of the Action / 7

1.5 Contents of the Book / 8

Acknowledgment / 10

vii

viii CONTENTS

PART II NUMERICAL ANALYSIS FOR HETEROGENEOUS AND

MULTICORE SYSTEMS 11

2. On the Impact of the Heterogeneous Multicore and Many-Core
Platforms on Iterative Solution Methods and Preconditioning
Techniques 13
Dimitar Lukarski and Maya Neytcheva

2.1 Introduction / 14

2.2 General Description of Iterative Methods and Preconditioning / 16

2.2.1 Basic Iterative Methods / 16

2.2.2 Projection Methods: CG and GMRES / 18

2.3 Preconditioning Techniques / 20

2.4 Defect-Correction Technique / 21

2.5 Multigrid Method / 22

2.6 Parallelization of Iterative Methods / 22

2.7 Heterogeneous Systems / 23

2.7.1 Heterogeneous Computing / 24

2.7.2 Algorithm Characteristics and Resource Utilization / 25

2.7.3 Exposing Parallelism / 26

2.7.4 Heterogeneity in Matrix Computation / 26

2.7.5 Setup of Heterogeneous Iterative Solvers / 27

2.8 Maintenance and Portability / 29

2.9 Conclusion / 30

Acknowledgments / 31

References / 31

3. Efficient Numerical Solution of 2D Diffusion Equation on Multicore
Computers 33
Matjaž Depolli, Gregor Kosec, and Roman Trobec

3.1 Introduction / 34

3.2 Test Case / 35

3.2.1 Governing Equations / 35

3.2.2 Solution Procedure / 36

3.3 Parallel Implementation / 39

3.3.1 Intel PCM Library / 39

3.3.2 OpenMP / 40

CONTENTS ix

3.4 Results / 41

3.4.1 Results of Numerical Integration / 41

3.4.2 Parallel Efficiency / 42

3.5 Discussion / 45

3.6 Conclusion / 47

Acknowledgment / 47

References / 47

4. Parallel Algorithms for Parabolic Problems on Graphs in
Neuroscience 51

Natalija Tumanova and Raimondas Čiegis

4.1 Introduction / 51

4.2 Formulation of the Discrete Model / 53

4.2.1 The 𝜃-Implicit Discrete Scheme / 55

4.2.2 The Predictor–Corrector Algorithm I / 57

4.2.3 The Predictor–Corrector Algorithm II / 58

4.3 Parallel Algorithms / 59

4.3.1 Parallel 𝜃-Implicit Algorithm / 59

4.3.2 Parallel Predictor–Corrector Algorithm I / 62

4.3.3 Parallel Predictor–Corrector Algorithm II / 63

4.4 Computational Results / 63

4.4.1 Experimental Comparison of Predictor–Corrector

Algorithms / 66

4.4.2 Numerical Experiment of Neuron Excitation / 68

4.5 Conclusions / 69

Acknowledgments / 70

References / 70

PART III COMMUNICATION AND STORAGE CONSIDERATIONS

IN HIGH-PERFORMANCE COMPUTING 73

5. An Overview of Topology Mapping Algorithms and Techniques in
High-Performance Computing 75
Torsten Hoefler, Emmanuel Jeannot, and Guillaume Mercier

5.1 Introduction / 76

5.2 General Overview / 76

5.2.1 A Key to Scalability: Data Locality / 77

x CONTENTS

5.2.2 Data Locality Management in Parallel Programming

Models / 77

5.2.3 Virtual Topology: Definition and Characteristics / 78

5.2.4 Understanding the Hardware / 79

5.3 Formalization of the Problem / 79

5.4 Algorithmic Strategies for Topology Mapping / 81

5.4.1 Greedy Algorithm Variants / 81

5.4.2 Graph Partitioning / 82

5.4.3 Schemes Based on Graph Similarity / 82

5.4.4 Schemes Based on Subgraph Isomorphism / 82

5.5 Mapping Enforcement Techniques / 82

5.5.1 Resource Binding / 83

5.5.2 Rank Reordering / 83

5.5.3 Other Techniques / 84

5.6 Survey of Solutions / 85

5.6.1 Algorithmic Solutions / 85

5.6.2 Existing Implementations / 85

5.7 Conclusion and Open Problems / 89

Acknowledgment / 90

References / 90

6. Optimization of Collective Communication for Heterogeneous HPC
Platforms 95
Kiril Dichev and Alexey Lastovetsky

6.1 Introduction / 95

6.2 Overview of Optimized Collectives and Topology-Aware

Collectives / 97

6.3 Optimizations of Collectives on Homogeneous Clusters / 98

6.4 Heterogeneous Networks / 99

6.4.1 Comparison to Homogeneous Clusters / 99

6.5 Topology- and Performance-Aware Collectives / 100

6.6 Topology as Input / 101

6.7 Performance as Input / 102

6.7.1 Homogeneous Performance Models / 103

6.7.2 Heterogeneous Performance Models / 105

CONTENTS xi

6.7.3 Estimation of Parameters of Heterogeneous Performance

Models / 106

6.7.4 Other Performance Models / 106

6.8 Non-MPI Collective Algorithms for Heterogeneous Networks / 106

6.8.1 Optimal Solutions with Multiple Spanning Trees / 107

6.8.2 Adaptive Algorithms for Efficient Large-Message

Transfer / 107

6.8.3 Network Models Inspired by BitTorrent / 108

6.9 Conclusion / 111

Acknowledgments / 111

References / 111

7. Effective Data Access Patterns on Massively Parallel Processors 115
Gabriele Capannini, Ranieri Baraglia, Fabrizio Silvestri, and Franco Maria
Nardini

7.1 Introduction / 115

7.2 Architectural Details / 116

7.3 K-Model / 117

7.3.1 The Architecture / 117

7.3.2 Cost and Complexity Evaluation / 118

7.3.3 Efficiency Evaluation / 119

7.4 Parallel Prefix Sum / 120

7.4.1 Experiments / 125

7.5 Bitonic Sorting Networks / 126

7.5.1 Experiments / 131

7.6 Final Remarks / 132

Acknowledgments / 133

References / 133

8. Scalable Storage I/O Software for Blue Gene Architectures 135
Florin Isaila, Javier Garcia, and Jesús Carretero

8.1 Introduction / 135

8.2 Blue Gene System Overview / 136

8.2.1 Blue Gene Architecture / 136

8.2.2 Operating System Architecture / 136

xii CONTENTS

8.3 Design and Implementation / 138

8.3.1 The Client Module / 139

8.3.2 The I/O Module / 141

8.4 Conclusions and Future Work / 142

Acknowledgments / 142

References / 142

PART IV EFFICIENT EXPLOITATION OF HETEROGENEOUS

ARCHITECTURES 145

9. Fair Resource Sharing for Dynamic Scheduling of Workflows on
Heterogeneous Systems 147
Hamid Arabnejad, Jorge G. Barbosa, and Frédéric Suter

9.1 Introduction / 148

9.1.1 Application Model / 148

9.1.2 System Model / 151

9.1.3 Performance Metrics / 152

9.2 Concurrent Workflow Scheduling / 153

9.2.1 Offline Scheduling of Concurrent Workflows / 154

9.2.2 Online Scheduling of Concurrent Workflows / 155

9.3 Experimental Results and Discussion / 160

9.3.1 DAG Structure / 160

9.3.2 Simulated Platforms / 160

9.3.3 Results and Discussion / 162

9.4 Conclusions / 165

Acknowledgments / 166

References / 166

10. Systematic Mapping of Reed–Solomon Erasure Codes
on Heterogeneous Multicore Architectures 169
Roman Wyrzykowski, Marcin Wozniak, and Lukasz Kuczynski

10.1 Introduction / 169

10.2 Related Works / 171

10.3 Reed–Solomon Codes and Linear Algebra Algorithms / 172

10.4 Mapping Reed–Solomon Codes on Cell/B.E. Architecture / 173

10.4.1 Cell/B.E. Architecture / 173

CONTENTS xiii

10.4.2 Basic Assumptions for Mapping / 174

10.4.3 Vectorization Algorithm and Increasing its Efficiency / 175

10.4.4 Performance Results / 177

10.5 Mapping Reed–Solomon Codes on Multicore GPU

Architectures / 178

10.5.1 Parallelization of Reed–Solomon Codes on GPU

Architectures / 178

10.5.2 Organization of GPU Threads / 180

10.6 Methods of Increasing the Algorithm Performance on GPUs / 181

10.6.1 Basic Modifications / 181

10.6.2 Stream Processing / 182

10.6.3 Using Shared Memory / 184

10.7 GPU Performance Evaluation / 185

10.7.1 Experimental Results / 185

10.7.2 Performance Analysis using the Roofline Model / 187

10.8 Conclusions and Future Works / 190

Acknowledgments / 191

References / 191

11. Heterogeneous Parallel Computing Platforms and Tools for
Compute-Intensive Algorithms: A Case Study 193
Daniele D’Agostino, Andrea Clematis, and Emanuele Danovaro

11.1 Introduction / 194

11.2 A Low-Cost Heterogeneous Computing Environment / 196

11.2.1 Adopted Computing Environment / 199

11.3 First Case Study: The N-Body Problem / 200

11.3.1 The Sequential N-Body Algorithm / 201

11.3.2 The Parallel N-Body Algorithm for Multicore

Architectures / 203

11.3.3 The Parallel N-Body Algorithm for CUDA

Architectures / 204

11.4 Second Case Study: The Convolution Algorithm / 206

11.4.1 The Sequential Convolver Algorithm / 206

11.4.2 The Parallel Convolver Algorithm for Multicore

Architectures / 207

11.4.3 The Parallel Convolver Algorithm for GPU

Architectures / 208

xiv CONTENTS

11.5 Conclusions / 211

Acknowledgments / 212

References / 212

12. Efficient Application of Hybrid Parallelism in Electromagnetism
Problems 215

Alejandro Álvarez-Melcón, Fernando D. Quesada, Domingo Giménez,
Carlos Pérez-Alcaraz, José-Ginés Picón, and Tomás Ramírez

12.1 Introduction / 215

12.2 Computation of Green’s functions in Hybrid Systems / 216

12.2.1 Computation in a Heterogeneous Cluster / 217

12.2.2 Experiments / 218

12.3 Parallelization in Numa Systems of a Volume Integral Equation

Technique / 222

12.3.1 Experiments / 222

12.4 Autotuning Parallel Codes / 226

12.4.1 Empirical Autotuning / 227

12.4.2 Modeling the Linear Algebra Routines / 229

12.5 Conclusions and Future Research / 230

Acknowledgments / 231

References / 232

PART V CPU + GPU COPROCESSING 235

13. Design and Optimization of Scientific Applications for Highly
Heterogeneous and Hierarchical HPC Platforms Using Functional
Computation Performance Models 237
David Clarke, Aleksandar Ilic, Alexey Lastovetsky, Vladimir Rychkov,
Leonel Sousa, and Ziming Zhong

13.1 Introduction / 238

13.2 Related Work / 241

13.3 Data Partitioning Based on Functional Performance Model / 243

13.4 Example Application: Heterogeneous Parallel Matrix

Multiplication / 245

13.5 Performance Measurement on CPUs/GPUs System / 247

CONTENTS xv

13.6 Functional Performance Models of Multiple Cores and GPUs / 248

13.7 FPM-Based Data Partitioning on CPUs/GPUs System / 250

13.8 Efficient Building of Functional Performance Models / 251

13.9 FPM-Based Data Partitioning on Hierarchical Platforms / 253

13.10 Conclusion / 257

Acknowledgments / 259

References / 259

14. Efficient Multilevel Load Balancing on Heterogeneous CPU + GPU
Systems 261
Aleksandar Ilic and Leonel Sousa

14.1 Introduction: Heterogeneous CPU + GPU Systems / 262

14.1.1 Open Problems and Specific Contributions / 263

14.2 Background and Related Work / 265

14.2.1 Divisible Load Scheduling in Distributed CPU-Only

Systems / 265

14.2.2 Scheduling in Multicore CPU and Multi-GPU

Environments / 268

14.3 Load Balancing Algorithms for Heterogeneous CPU + GPU

Systems / 269

14.3.1 Multilevel Simultaneous Load Balancing Algorithm / 270

14.3.2 Algorithm for Multi-Installment Processing with

Multidistributions / 273

14.4 Experimental Results / 275

14.4.1 MSLBA Evaluation: Dense Matrix Multiplication Case

Study / 275

14.4.2 AMPMD Evaluation: 2D FFT Case Study / 277

14.5 Conclusions / 279

Acknowledgments / 280

References / 280

15. The All-Pair Shortest-Path Problem in Shared-Memory
Heterogeneous Systems 283
Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo
Gonzalez-Escribano

15.1 Introduction / 283

xvi CONTENTS

15.2 Algorithmic Overview / 285

15.2.1 Graph Theory Notation / 285

15.2.2 Dijkstra’s Algorithm / 286

15.2.3 Parallel Version of Dijkstra’s Algorithm / 287

15.3 CUDA Overview / 287

15.4 Heterogeneous Systems and Load Balancing / 288

15.5 Parallel Solutions to The APSP / 289

15.5.1 GPU Implementation / 289

15.5.2 Heterogeneous Implementation / 290

15.6 Experimental Setup / 291

15.6.1 Methodology / 291

15.6.2 Target Architectures / 292

15.6.3 Input Set Characteristics / 292

15.6.4 Load-Balancing Techniques Evaluated / 292

15.7 Experimental Results / 293

15.7.1 Complete APSP / 293

15.7.2 512-Source-Node-to-All Shortest Path / 295

15.7.3 Experimental Conclusions / 296

15.8 Conclusions / 297

Acknowledgments / 297

References / 297

PART VI EFFICIENT EXPLOITATION OF DISTRIBUTED

SYSTEMS 301

16. Resource Management for HPC on the Cloud 303
Marc E. Frincu and Dana Petcu

16.1 Introduction / 303

16.2 On the Type of Applications for HPC and HPC2 / 305

16.3 HPC on the Cloud / 306

16.3.1 General PaaS Solutions / 306

16.3.2 On-Demand Platforms for HPC / 310

16.4 Scheduling Algorithms for HPC2 / 311

16.5 Toward an Autonomous Scheduling Framework / 312

16.5.1 Autonomous Framework for RMS / 313

CONTENTS xvii

16.5.2 Self-Management / 315

16.5.3 Use Cases / 317

16.6 Conclusions / 319

Acknowledgment / 320

References / 320

17. Resource Discovery in Large-Scale Grid Systems 323
Konstantinos Karaoglanoglou and Helen Karatza

17.1 Introduction and Background / 323

17.1.1 Introduction / 323

17.1.2 Resource Discovery in Grids / 324

17.1.3 Background / 325

17.2 The Semantic Communities Approach / 325

17.2.1 Grid Resource Discovery Using Semantic Communities / 325

17.2.2 Grid Resource Discovery Based on Semantically Linked

Virtual Organizations / 327

17.3 The P2P Approach / 329

17.3.1 On Fully Decentralized Resource Discovery in Grid

Environments Using a P2P Architecture / 329

17.3.2 P2P Protocols for Resource Discovery in the Grid / 330

17.4 The Grid-Routing Transferring Approach / 333

17.4.1 Resource Discovery Based on Matchmaking Routers / 333

17.4.2 Acquiring Knowledge in a Large-Scale Grid System / 335

17.5 Conclusions / 337

Acknowledgment / 338

References / 338

PART VII ENERGY AWARENESS IN HIGH-PERFORMANCE

COMPUTING 341

18. Energy-Aware Approaches for HPC Systems 343
Robert Basmadjian, Georges Da Costa, Ghislain Landry Tsafack Chetsa,
Laurent Lefevre, Ariel Oleksiak, and Jean-Marc Pierson

18.1 Introduction / 344

18.2 Power Consumption of Servers / 345

18.2.1 Server Modeling / 346

xviii CONTENTS

18.2.2 Power Prediction Models / 347

18.3 Classification and Energy Profiles of HPC Applications / 354

18.3.1 Phase Detection / 356

18.3.2 Phase Identification / 358

18.4 Policies and Leverages / 359

18.5 Conclusion / 360

Acknowledgements / 361

References / 361

19. Strategies for Increased Energy Awareness in Cloud Federations 365
GaborKecskemeti, Attila Kertesz, Attila Cs.Marosi, and Zsolt Nemeth

19.1 Introduction / 365

19.2 Related Work / 367

19.3 Scenarios / 369

19.3.1 Increased Energy Awareness Across Multiple Data Centers

within a Single Administrative Domain / 369

19.3.2 Energy Considerations in Commercial Cloud

Federations / 372

19.3.3 Reduced Energy Footprint of Academic Cloud

Federations / 374

19.4 Energy-Aware Cloud Federations / 374

19.4.1 Availability of Energy-Consumption-Related

Information / 375

19.4.2 Service Call Scheduling at the Meta-Brokering Level of

FCM / 376

19.4.3 Service Call Scheduling and VM Management at the

Cloud-Brokering Level of FCM / 377

19.5 Conclusions / 379

Acknowledgments / 380

References / 380

20. Enabling Network Security in HPC Systems Using Heterogeneous
CMPs 383
Ozcan Ozturk and Suleyman Tosun

20.1 Introduction / 384

20.2 Related Work / 386

CONTENTS xix

20.3 Overview of Our Approach / 387

20.3.1 Heterogeneous CMP Architecture / 387

20.3.2 Network Security Application Behavior / 388

20.3.3 High-Level View / 389

20.4 Heterogeneous CMP Design for Network Security Processors / 390

20.4.1 Task Assignment / 390

20.4.2 ILP Formulation / 391

20.4.3 Discussion / 393

20.5 Experimental Evaluation / 394

20.5.1 Setup / 394

20.5.2 Results / 395

20.6 Concluding Remarks / 397

Acknowledgments / 397

References / 397

PART VIII APPLICATIONS OF HETEROGENEOUS

HIGH-PERFORMANCE COMPUTING 401

21. Toward a High-Performance Distributed CBIR System for Hyperspectral
Remote Sensing Data: A Case Study in Jungle Computing 403
Timo van Kessel, Niels Drost, JasonMaassen, Henri E. Bal, Frank J. Seinstra,
and Antonio J. Plaza

21.1 Introduction / 404

21.2 CBIR For Hyperspectral Imaging Data / 407

21.2.1 Spectral Unmixing / 407

21.2.2 Proposed CBIR System / 409

21.3 Jungle Computing / 410

21.3.1 Jungle Computing: Requirements / 411

21.4 IBIS and Constellation / 412

21.5 System Design and Implementation / 415

21.5.1 Endmember Extraction / 418

21.5.2 Query Execution / 418

21.5.3 Equi-Kernels / 419

21.5.4 Matchmaking / 420

21.6 Evaluation / 420

21.6.1 Performance Evaluation / 421

xx CONTENTS

21.7 Conclusions / 426

Acknowledgments / 426

References / 426

22. Taking Advantage of Heterogeneous Platforms in Image and Video
Processing 429
Sidi A. Mahmoudi, Erencan Ozkan, Pierre Manneback,
and Suleyman Tosun

22.1 Introduction / 430

22.2 Related Work / 431

22.2.1 Image Processing on GPU / 431

22.2.2 Video Processing on GPU / 432

22.2.3 Contribution / 433

22.3 Parallel Image Processing on GPU / 433

22.3.1 Development Scheme for Image Processing on GPU / 433

22.3.2 GPU Optimization / 434

22.3.3 GPU Implementation of Edge and Corner Detection / 434

22.3.4 Performance Analysis and Evaluation / 434

22.4 Image Processing on Heterogeneous Architectures / 437

22.4.1 Development Scheme for Multiple Image Processing / 437

22.4.2 Task Scheduling within Heterogeneous Architectures / 438

22.4.3 Optimization Within Heterogeneous Architectures / 438

22.5 Video Processing on GPU / 438

22.5.1 Development Scheme for Video Processing on GPU / 439

22.5.2 GPU Optimizations / 440

22.5.3 GPU Implementations / 440

22.5.4 GPU-Based Silhouette Extraction / 440

22.5.5 GPU-Based Optical Flow Estimation / 440

22.5.6 Result Analysis / 443

22.6 Experimental Results / 444

22.6.1 Heterogeneous Computing for Vertebra Segmentation / 444

22.6.2 GPU Computing for Motion Detection Using a Moving

Camera / 445

22.7 Conclusion / 447

Acknowledgment / 448

References / 448

CONTENTS xxi

23. Real-Time Tomographic Reconstruction Through CPU + GPU
Coprocessing 451
José Ignacio Agulleiro, Francisco Vazquez, Ester M. Garzon,
and Jose J. Fernandez

23.1 Introduction / 452

23.2 Tomographic Reconstruction / 453

23.3 Optimization of Tomographic Reconstruction for CPUs and for

GPUs / 455

23.4 Hybrid CPU + GPU Tomographic Reconstruction / 457

23.5 Results / 459

23.6 Discussion and Conclusion / 461

Acknowledgments / 463

References / 463

Index 467

Contributors

Alejandro Álvarez-Melcón, Technical University of Cartagena, Cartagena,
Spain

Hamid Arabnejad, Universidade do Porto, Porto, Portugal
Henri E. Bal, VU University, Amsterdam, The Netherlands
Ranieri Baraglia, National Research Council of Italy, Pisa, Italy
Jorge G. Barbosa, Universidade do Porto, Porto, Portugal
Robert Basmadjian, Passau University, Passau, Germany
Gabriele Capannini, D&IT Chalmers, Göteborg, Sweden
Jesús Carretero, Universidad Carlos III of Madrid, Madrid, Spain
Raimondas Čiegis, Vilnius Gediminas Technical University, Vilnius, Lithuania
David Clarke, University College Dublin, Dublin, Ireland
Andrea Clematis, IMATI CNR, Genoa, Italy
Georges Da Costa, Toulouse University, Toulouse, France
Daniele D’Agostino, IMATI CNR, Genoa, Italy
Emanuele Danovaro, IMATI CNR, Genoa, Italy
Matjaž Depolli, Jožef Stefan Institute, Ljubljana, Slovenia
Kiril Dichev, University College Dublin, Dublin, Ireland
Niels Drost, Netherlands eScience Center, Amsterdam, The Netherlands
Jose J. Fernandez, National Centre for Biotechnology, National Research

Council (CNB-CSIC), Madrid, Spain
Marc E. Frincu, West University of Timisoara, Timisoara, Romania
Javier Garcia, Universidad Carlos III of Madrid, Madrid, Spain
Ester M. Garzon, University of Almería, Almería, Spain
Domingo Giménez, University of Murcia, Murcia, Spain
Arturo Gonzalez-Escribano, Universidad de Valladolid, Valladolid, Spain
Torsten Hoefler, ETH Zürich, Zürich, Switzerland

xxiii

xxiv CONTRIBUTORS

José Ignacio Agulleiro, University of Almería, Almería, Spain

Aleksandar Ilic, Technical University of Lisbon, Lisbon, Portugal

Florin Isaila, Universidad Carlos III of Madrid, Madrid, Spain

Emmanuel Jeannot, Inria Bordeaux Sud-Ouest, Talence, France

Konstantinos Karaoglanoglou, Aristotle University of Thessaloniki, Thessa-

loniki, Greece

Helen Karatza, Aristotle University of Thessaloniki, Thessaloniki, Greece

Gabor Kecskemeti, University of Innsbruck, Innsbruck, Austria

Attila Kertesz, MTA SZTAKI Computer and Automation Research Institute,

Budapest, Hungary

Timo van Kessel, VU University, Amsterdam, The Netherlands

Gregor Kosec, Jožef Stefan Institute, Ljubljana, Slovenia

Lukasz Kuczynski, Czestochowa University of Technology, Czestochowa,

Poland

Alexey Lastovetsky, University College Dublin, Dublin, Ireland

Laurent Lefevre, INRIA, LIP Laboratory, Ecole Normale Superieure of Lyon,

Lyon, France

Diego R. Llanos, Universidad de Valladolid, Valladolid, Spain

Dimitar Lukarski, Uppsala University, Uppsala, Sweden

Jason Maassen, Netherlands eScience Center, Amsterdam, The Netherlands

Sidi A. Mahmoudi, University of Mons, Mons, Belgium

Pierre Manneback, University of Mons, Mons, Belgium

Attila Cs. Marosi, MTA SZTAKI Computer and Automation Research Institute,

Budapest, Hungary

Guillaume Mercier, Bordeaux Polytechnic Institute, Talence, France; Inria

Bordeaux Sud-Ouest, Talence, France

Franco Maria Nardini, National Research Council of Italy, Pisa, Italy

Zsolt Nemeth, MTA SZTAKI Computer and Automation Research Institute,

Budapest, Hungary

Maya Neytcheva, Uppsala University, Uppsala, Sweden

Ariel Oleksiak, Poznan Supercomputing and Networking Center, Poznan, Poland

Hector Ortega-Arranz, Universidad de Valladolid, Valladolid, Spain

Erencan Ozkan, Ankara University, Ankara, Turkey

Ozcan Ozturk, Bilkent University, Ankara, Turkey

Carlos Pérez-Alcaraz, University of Murcia, Murcia, Spain

Dana Petcu, West University of Timisoara, Timisoara, Romania

José-Ginés Picón, University of Murcia, Murcia, Spain

Jean-Marc Pierson, Toulouse University, Toulouse, France

Fernando D. Quesada, Technical University of Cartagena, Cartagena, Spain

Antonio J. Plaza, University of Extremadura, Caceres, Spain

Tomás Ramírez, University of Murcia, Murcia, Spain

Vladimir Rychkov, University College Dublin, Dublin, Ireland

Frank J. Seinstra, Netherlands eScience Center, Amsterdam, The Netherlands

Fabrizio Silvestri, National Research Council of Italy, Pisa, Italy

Leonel Sousa, Technical University of Lisbon, Lisbon, Portugal

CONTRIBUTORS xxv

Frédéric Suter, IN2P3 Computing Center, CNRS, IN2P3, Lyon-Villeurbanne,

France

Yuri Torres, Universidad de Valladolid, Valladolid, Spain

Suleyman Tosun, Ankara University, Ankara, Turkey

Roman Trobec, Jožef Stefan Institute, Ljubljana, Slovenia

Ghislain Landry Tsafack Chetsa, INRIA, LIP Laboratory, Ecole Normale

Superieure of Lyon, Lyon, France

Natalija Tumanova, Vilnius Gediminas Technical University, Vilnius, Lithuania

Francisco Vazquez, University of Almería, Almería, Spain

Marcin Wozniak, Czestochowa University of Technology, Czestochowa, Poland

Roman Wyrzykowski, Czestochowa University of Technology, Czestochowa,

Poland

Ziming Zhong, University College Dublin, Dublin, Ireland

Julius Žilinskas, Vilnius University, Vilnius, Lithuania

Preface

High-performance computing (HPC) is an important domain of the computer sci-

ence field. For more than 30 years, it has allowed finding solutions to problems and

enhanced progress in many scientific and industrial areas, such as climatology, biol-

ogy, geology, and drug design, as well as automobile and aerospace engineering.

However, new technologies such as multicore chips and accelerators have forced

researchers in the field to rethink most of the advances in the domain, such as algo-

rithms, runtime systems, language, software, and applications.

It is expected that a high-end supercomputer will be able to deliver several hun-

dreds of petaflops (1 petaflop is 1015 floating-point operations per second) in 5 years

from now. However, this will require mastering several challenges, such as energy

efficiency, scalability, and heterogeneity.

Better and efficient parallel computers will enable solving problems at a scale

and within a timeframe that has not been reached so far. These modern hierarchical

and heterogeneous computing infrastructures are hard to program and use efficiently,

particularly for extreme-scale computing. Consequently, none of the state-of-the-art

solutions are able to efficiently use such environments. Providing tools for the whole

software stack will allow programmers and scientists to efficiently write new program

that will use most of the available power of such future complex machines.

COST Action IC0805 “Open European Network for High-Performance Comput-

ing on Complex Environments” (ComplexHPC) was devoted to heterogeneous and

hierarchical systems for HPC, and is aimed at tackling the problem at every level

(from cores to large-scale environments) and providing new integrated solutions for

large-scale computing for future platforms. The duration of ComplexHPC Action was

May 2009–June 2013. The goal of COST Action was to establish a European research

network focused on high-performance heterogeneous computing to address the whole

xxvii

xxviii PREFACE

range of challenges posed by these new platforms, including models, algorithms, pro-

gramming tools, and applications. Indeed, some of the most active research groups

in this area are in Europe. The network has contributed to exchanging information,

identifying synergies, and pursuing common research activities, thereby reinforcing

the strength of these groups and the leadership of Europe in this field. This book

presents the results of COST Action. The chapters are written by expert participants

of the Action.

This book is intended for scientists and researchers working in the field of HPC. It

will provide advanced information for the readers already familiar with the basics of

parallel and distributed computing. It may also be useful for PhD students and early

stage researchers in computer science and engineering. It will also be of help to these

young researchers to get a deep introduction to the related fields.

This book would not have been possible without the efforts of the contributors in

preparing the respective chapters, and we would like to thank them for timely submis-

sions and corrections. We would also like to thank Prof. Albert Zomaya for giving us

the opportunity to publish this book in the “Wiley Series on Parallel and Distributed

Computing.” We would also like to thank Simone Taylor, Director, Editorial Devel-

opment, John Wiley & Sons, Inc., and the editorial team for their patience and guiding

us through the publication of this book. We would also like to thank COST for the

support that enabled the publication.

E. Jeannot and J. ŽilinskasDelft, Netherlands
May, 2013

ESF provides the COST Office through an EC contract

COST is supported by the EU RTD Framework programme

COST–the acronym for European Cooperation in Science and Technology–is the
oldest and widest European intergovernmental network for cooperation in research.
Established by the Ministerial Conference in November 1971, COST is presently
used by the scientific communities of 36 European countries to cooperate in common
research projects supported by national funds.

The funds provided by COST–less than 1% of the total value of the
projects–support the COST cooperation networks (COST Actions) through
which, with EUR 30 million per year, more than 30 000 European scientists are
involved in research having a total value which exceeds EUR 2 billion per year. This
is the financial worth of the European added value which COST achieves.

A “bottom up approach” (the initiative of launching a COST Action comes from
the European scientists themselves), “à la carte participation” (only countries inter-
ested in the Action participate), “equality of access” (participation is open also to the
scientific communities of countries not belonging to the European Union) and “flexi-
ble structure” (easy implementation and light management of the research initiatives)
are the main characteristics of COST.

As precursor of advanced multidisciplinary research COST has a very important
role for the realisation of the European Research Area (ERA) anticipating and
complementing the activities of the Framework Programmes, constituting a “bridge”
towards the scientific communities of emerging countries, increasing the mobility
of researchers across Europe and fostering the establishment of “Networks of
Excellence” in many key scientific domains such as: Biomedicine and Molecular
Biosciences; Food and Agriculture; Forests, their Products and Services; Materials,
Physical and Nanosciences; Chemistry and Molecular Sciences and Technologies;
Earth System Science and Environmental Management; Information and Commu-
nication Technologies; Transport and Urban Development; Individuals, Societies,
Cultures and Health. It covers basic and more applied research and also addresses
issues of pre-normative nature or of societal importance.

Web: http://www.cost.eu
Neither the COST Office nor any person acting on its behalf is responsible for the

use which might be made of the information contained in this publication. The COST
Office is not responsible for the external websites referred to in this publication.

xxix

http://www.cost.eu

PART I

Introduction

1
Summary of the Open
European Network for

High-Performance
Computing in Complex

Environments
Emmanuel Jeannot

Inria Bordeaux Sud-Ouest, Talence, France

Julius Žilinskas
Vilnius University, Vilnius, Lithuania

In this chapter, we describe the COST Action IC0805 entitled “Open European

Network for High-Performance Computing on Complex Environments.” This Action

had representation from more than 20 countries and lasted from 2009 to 2013. We

outline the scientific focus of this Action, its organization, and its main outcomes.

The chapter concludes by presenting the structure of the book and its different

chapters.

High-Performance Computing on Complex Environments, First Edition.
Edited by Emmanuel Jeannot and Julius Žilinskas.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

3

4 OPEN EUROPEAN NETWORK FOR HPC IN COMPLEX ENVIRONMENTS

1.1 INTRODUCTION AND VISION

In recent years, the evolution and growth of the techniques and platforms commonly

used for high-performance computing (HPC) in the context of different application

domains has been truly astonishing. While parallel computing systems have now

achieved certain maturity thanks to high-level libraries (such as ScaLAPACK)

or runtime libraries (such as MPI), recent advances in these technologies pose

several challenging research issues. Indeed, current HPC-oriented environments

are extremely complex and very difficult to manage, particularly for extreme-scale

application problems.

At the very low level, the latest generation CPUs are made of multicore processors

that can be general-purpose or highly specialized in nature. On the other hand, sev-

eral processors can be assembled into a so-called symmetrical multiprocessor (SMP)

which can also have access to powerful specialized processors, such as graphics

processing units (GPUs), that are now increasingly being used for programmable

computing resulting from their advent in the video-game industry, which has signif-

icantly reduced their cost and availability. Modern HPC-oriented parallel computers

are typically composed of several SMP nodes interconnected by a network. This kind

of infrastructure is hierarchical and represents a first class of heterogeneous system in

which the communication time between two processing units is different, depending

on whether the units are on the same chip, on the same node, or not. Moreover, current

hardware trends anticipate a further increase in the number of cores (in a hierarchi-

cal way) inside the chip, thus increasing the overall heterogeneity, even more toward

building extreme-scale systems.

At a higher level, the emergence of heterogeneous computing now allows groups

of users to benefit from networks of processors that are already available in their

research laboratories. This is a second type of infrastructure where both the net-

work and the processing units are heterogeneous in nature. Specifically, here the goal

is to deal with networks that interconnect a (often high) number of heterogeneous

computers that can significantly differ from one another in terms of their hardware

and software architecture, including different types of CPUs operating at different

clock speeds and under different design paradigms, and also different memory sizes,

caching strategies, and operating systems.

At the high level, computers are increasingly interconnected together through-

out wide area networks to form large-scale distributed systems with high computing

capacity. Furthermore, computers located in different laboratories can collaborate in

the solution of a common problem. Therefore, the current trends of HPC are clearly

oriented toward extreme-scale, complex infrastructures with a great deal of intrinsic

heterogeneity and many different hierarchical levels.

It is important to note that all the heterogeneity levels mentioned above are tightly

linked. First of all, some of the nodes in computational distributed environments may

be multicore SMP clusters. Second, multicore chips will soon be fully heterogeneous

with special-purpose cores (e.g., multimedia, recognition, networking) and not only

INTRODUCTION AND VISION 5

GPUs mixed with general-purpose ones. Third, these different levels share many

common problems such as efficient programming, scalability, and latency manage-

ment. Hence, it is very important to conduct research targeting the heterogeneity at

all presented hardware levels. Moreover, it is also important to take special care of

the scalability issues, which form a key dimension in the complexity of today envi-

ronment. The extreme scale of this environment comes from every level:

1. Low Level: number of CPUs, number of cores per processor;

2. Medium Level: number of nodes (e.g., with memory);

3. High Level: distributed/large-scale (geography dispersion, latency, etc.);

4. Application: extreme-scale problem size (e.g., calculation-intensive or

data-intensive).

In 2008, the knowledge on how to efficiently use program or scale applications

on such infrastructures was still vague. This was one of the main challenges that

researchers wanted to take on. Therefore, at that time, we decided to launch the

COST Action for high-performance and extreme-scale computing in such complex

environments entitled “Open European Network for High-Performance Computing
in Complex Environments.” The main reasons were as follows:

• There was a huge demand in terms of computational power for scientific and

data-intensive applications;

• The architectural advances offered the potential to meet the application require-

ments;

• None of the state-of-the-art solutions in HPC at that time allowed exploitation

to this potential level;

• Most of the research carried out in this area was fragmented and scattered across

different research teams without any coordination.

COST1 was indeed an appropriate framework for the proposed Action. The main

goal of this Action was to overcome the actual research fragmentation on this very

hot topic by gathering the most relevant European research teams involved in all the

scientific areas described above (from the CPU core to the scientific applications) and

coordinate their research.

Summarizing, this project within the COST framework allowed us to expect some

potential benefits such as high-level scientific results in the very important domain

of high-performance and extreme-scale computing in complex environment; strong

coordination between different research teams with significant expertise on this sub-

ject; a better visibility of the European research in this area; and a strong impact on

other scientists and high-performance applications.

1European Cooperation in Science and Technology: http://www.cost.eu.

http://www.cost.eu

6 OPEN EUROPEAN NETWORK FOR HPC IN COMPLEX ENVIRONMENTS

1.2 SCIENTIFIC ORGANIZATION

1.2.1 Scientific Focus

The expected scientific impacts of the project were to encourage the specific commu-

nity to focus research on hot topics and applications of interest for the EU, to propa-

gate the collaboration of research groups with the industry, to stimulate the formation

of new groups in new EU countries, and to facilitate the solution of highly compu-

tationally demanding scientific problems as mentioned above. For this, the groups

involved in this Action collaborated with several scientific and industrial groups that

could benefit from the advances made by this Action, and prompted the incorporation

of new groups to the network.

To achieve the research tasks, different leading European research teams partici-

pated in the concrete activities detailed in Section 1.3.

1.2.2 Working Groups

Four working groups were set up to coordinate the scientific research:

• numerical analysis for hierarchical and heterogeneous and multicore systems;

• libraries for the efficient use of complex systems with emphasis on computa-

tional library and communication library;

• algorithms and tools for mapping and executing applications onto distributed

and heterogeneous systems;

• applications of hierarchical-heterogeneous systems.

It is important to note that these working groups targeted vertical aspects of the archi-

tectural structure outlined in the previous section. For instance, the Action’s goal was

to carry out work on numerical analysis at the multicore level, at the heterogeneous

system level, as well as at the large-scale level. The last working group (Applications)

was expected to benefit from research of the other three groups.

1.3 ACTIVITIES OF THE PROJECT

To achieve the goal of this Action, the following concrete activities were proposed.

The main goal was to promote collaboration through science meetings, work-

shops, schools, and internships. This allowed interchange of ideas and mobility of

researchers.

1.3.1 Spring Schools

The goal was to provide young researchers with a good opportunity to share informa-

tion and knowledge and to present their current research. These schools contributed

to the expansion of the computing community and spread of EU knowledge.

MAIN OUTCOMES OF THE ACTION 7

1.3.2 International Workshops

The goal of these meetings was to take the opportunity during international confer-
ences to meet the attendees and other researchers by co-locating workshops.

1.3.3 Working Groups Meetings

The scientific work plan was divided among different working groups. Each working
group had substantial autonomy in terms of research projects. A leader nominated by
the Management Committee led each working group. Members of a given working
group met once or twice a year to discuss and exchange specific scientific issues and

problems.

1.3.4 Management Committee Meetings

These meetings were devoted to the organization of the network and ensured the
scientific quality of the network.

1.3.5 Short-Term Scientific Missions

The goal of short-term scientific missions (STSMs) was to enable visits by early
stage researchers to foreign laboratories and departments. This was mainly targeted
at young researchers to receive cross-disciplinary training and to take advantage of
the existing resources. The goal was to increase the competitiveness and career devel-

opment of those scientists in this rapidly developing field through cutting-edge col-
laborative research on the topic.

1.4 MAIN OUTCOMES OF THE ACTION

We believe that this COST Action was a great success. It gathered 26 European coun-
tries and 2 non-COST countries (Russia and South Africa). We have held 12 meetings
and 2 spring schools. Fifty-two STSMs have been carried out. We have a new FP7
project coming from this Action (HOST). We have edited a book, and more than 100
papers have been published thanks to this Action.

We have set up an application catalog that gathers applications from the Action
members. Its goal is to gather a set of HPC applications that can be used as test cases
or benchmarks for researchers in the HPC field. The applications catalog is available
at https://complexhpc-catalogue.bordeaux.inria.fr.

In total, the Action gathered more than 250 participants over the four years of the
project.

We have sent a survey to the Action members. From this survey, it clearly appears
that one of the greatest successes of the Action is the continuous strengthening of
the network for many of its members both in terms of research teams and research

domains. Many STSMs have been done through new network connections. Spring
schools are seen as a major success, as they helped many young researchers to share

https://complexhpc-catalogue.bordeaux.inria.fr

8 OPEN EUROPEAN NETWORK FOR HPC IN COMPLEX ENVIRONMENTS

and exchange knowledge and gain new connections. Many PhD theses have been

defended during the course of the Action, and some of the management committee

members have been invited on the defense board of some of these PhDs. Moreover,

many presentations given during the meeting are considered very useful and have

opened new research directions for other attendees.

We had four goals in this Action:

1. to train new generations of scientists in high-performance and heterogeneous

computing;

2. to overcome research fragmentation, and foster HPC efforts to increase

Europe’s competitiveness;

3. to tackle the problem at every level (from cores to large-scale environment);

4. vertical integration to provide new integrated solutions for large-scale comput-

ing for future platforms.

Goal 1 has exceeded our expectations. The spring schools have been a great suc-

cess. We had many STSMs, and the number of early stage researchers attending the

meeting was always very high. We had great response from young researchers.

Goal 2 has also been achieved satisfactorily. Thanks to the Action, many joint

researches have been carried out, and we have created a nice network of researchers

within our Action. Moreover, many top-level publications have been made thanks to

the Action.

Goal 3 has also been achieved. We have scientific results that cover the core level

and the distributed infrastructure, as well as results that cover the intermediate layers.

This is due to the fact that the consortium was made of researchers from different

areas. This was very fruitful.

Goal 4 has not been achieved. The main reason is the fact that providing integrated

solutions requires more research and development than a COST Action can provide.

It goes far beyond the networking activities of COST Action.

1.5 CONTENTS OF THE BOOK

This book presents some of themain results, in terms of research, of the COST Action

presented in this chapter. We are very proud to share this with the interested reader.

We have structured the book according to the following parts in order to have a good

balance between each part:

1. Numerical Analysis for Heterogeneous and Multicore Systems (Chapters 2, 3,

and 4);

2. Communication and Storage Considerations in High-Performance Comput-

ing (Chapters 5, 6, 7, and 8);

3. Efficient Exploitation of Heterogeneous Architectures (Chapters 9, 10, 11,

and 12);

4. CPU + GPU coprocessing (Chapters 13, 14, and 15);

CONTENTS OF THE BOOK 9

5. Efficient Exploitation of Distributed Systems (Chapters 16 and 17);

6. Energy Awareness in High-Performance Computing (Chapters 18, 19, and 20);

7. Applications of Heterogeneous High-Performance Computing (Chapters 21,
22, and 23).

Chapter 2 discusses the redesign of the iterative solution algorithm in order to
efficiently execute them on heterogeneous architectures. Chapter 3 studies the perfor-
mance of ameshless numerical partial differential equation (PDE) solver, parallelized
with OpenMP. The results depend on the way the computations are distributed and the
way the cache is used. Chapter 4 presents the development of three parallel numeri-
cal algorithms for the solution of parabolic problems on graphs with a theoretical and
experimental study of their scalability.

Chapter 5 surveys different techniques for mapping processes to computing units
in order to optimize communication cost and reduce execution time. Chapter 6 offers
a comprehensive overview of how to implement topology- and performance-aware
collective communications. Chapter 7 analyzes the many-core architecture using
a new model (K-model) in order to estimate the complexity of a given algorithm
designed for such an architecture. Chapter 8 presents a scalable I/O storage system
for the hierarchical architecture of Blue Gene computers featuring buffering and
asynchronous I/O.

Chapter 9 describes algorithmic techniques for offline scheduling of independent
workflows in order to satisfy user’s quality of service. Chapter 10 investigates the
advantage of using modern heterogeneous architecture for the efficient implementa-
tion of the Reed–Solomon erasure code. Chapter 11 analyzes the factors that enable
the development of efficient parallel programs on modern many-core parallel archi-
tecture. Chapter 12 studies efficient solutions for electromagnetism applications in
clusters of CPU + GPU nodes.

Chapter 13 describes how the functional performance model can be used to opti-
mize the performance of scientific applications for heterogeneous and hierarchical
platform. Chapter 14 presents algorithms for multilevel load-balancing on multicore
and multi-GPU environments. Chapter 15 faces the all-pair shortest path problem
for sparse graph. Different scheduling strategies are studied to efficiently solve such
problems on heterogeneous systems.

Chapter 16 surveys different resource management systems and scheduling algo-
rithms for HPC for clouds. Chapter 17 discusses different approaches for performing
resource discovery in large-scale distributed systems.

Chapter 18 focuses on how to optimize and adapt software solution to improve
energy efficiency in the context of HPC application. Chapter 19 studies energy-aware
scheduling policies for three scenarios of federated cloud dealing with energy aware-
ness. Chapter 20 explores the use of heterogeneous chip multiprocessors for network
security and strategy to improve energy consumption in such contexts.

Chapter 21 describes the “jungle computing paradigm,” which consists in gath-
ering a complex hierarchical collection of heterogeneous computing hardware with
an application to hyperspectral remote sensing. Chapter 22 presents a new model for
image and video processing based on parallel and heterogeneous platforms in order

10 OPEN EUROPEAN NETWORK FOR HPC IN COMPLEX ENVIRONMENTS

to improve the performance of the application when dealing with high-definition

images. Chapter 23 applies load-balancing techniques to efficiently execute tomo-

graphic reconstruction using hybrid GPU + CPU systems.

As you can see, this covers a large spectrum of results and topics on HPC and

heterogeneous systems.

We wish you a fruitful and enjoyable time with this book.

ACKNOWLEDGMENT

This publication is supported by COST.

PART II

Numerical Analysis for
Heterogeneous and
Multicore Systems

2
On the Impact of the

Heterogeneous Multicore
and Many-Core Platforms

on Iterative Solution
Methods and

Preconditioning Techniques
Dimitar Lukarski and Maya Neytcheva

Uppsala University, Uppsala, Sweden

Computer simulations are now broadly recognized as a third branch of research,

complementing theory and experimental work. The significant increase of available

computing power has enabled tackling very large scale, challenging, real-life prob-

lems and opening new possibilities for revolutionary breakthrough results in science

and engineering. At the same time, the complexity of the computer architecture has

risen to levels where it is possible to achieve its full computing power only after

careful redesigning of existing algorithms and developing novel computational and

High-Performance Computing on Complex Environments, First Edition.
Edited by Emmanuel Jeannot and Julius Žilinskas.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

13

14 ITERATIVE METHODS ON HETEROGENEOUS PLATFORMS

communication strategies. In this chapter, we discuss this issue for a class ofmethods,

broadly used in scientific computations—the iterative solution methods.

2.1 INTRODUCTION

For many years, the potential of available, serial as well as parallel, computer

resources has been growing hand in hand with the need to numerically solve

increasingly larger models of real-life problems. During the past decades, it has

been recognized that, together with theoretical development and laboratory or

field experiments, computation has become a third branch of research. Scientific

computing is today’s driving force behind the progress in the most challenging

and demanding problems we attempt to solve. As examples, we mention turbulent

combustion with complex chemistry, atmospheric dynamics, laser fusion, medical

imaging, detailed modeling of the human heart, and artificial brain simulation with

over a million neurons, to name a few.

In recent years, we have been witnessing a change in the means to increase the

computational power which has a strong impact on how that power should be utilized

via the algorithms used in scientific computations. Therefore, we briefly describe

the phases in performing numerical simulations. Consider a complex physical

phenomenon, described as a set of, usually coupled, processes that develop in space

and time, which we want to study, analyze, and predict. It is assumed that the

simulation requires a large amount of computer resources in terms of memory and

computation.

The process of performing the numerical simulations can be split into the follow-

ing steps:

I Mathematical model: Describes the phenomenon continuously in time and

space in terms of mathematical relations, most often as coupled ordinary or

partial differential equations. These equations depend on various problem

parameters, such as thermal conductivity, capacitance, material properties,

and so on.

II Discrete model: Because of the high complexity of the continuous model, ana-

lytical solutions are in general not available. Therefore, we pose the task to

compute the solution in a number of discrete points in time and space, thus

discretizing the mathematical model. This can be accomplished using vari-

ous techniques. Space discretization can be done using finite differences, finite

elements, finite volumes, boundary elements, and so on. Similarly, in time, var-

ious explicit or implicit time-stepping procedures can be utilized. In addition

to the model parameters, here additional discretization parameters are intro-

duced, usually denoted as h in space and 𝜏 in time. The discrete model is

expressed in terms of linear or nonlinear algebraic systems of equations which

have to be solved. Depending on the problem, but also on the discretization

techniques, the matrices associated with the algebraic systems can be dense or

sparse, symmetric or nonsymmetric, and so on. As nonlinear systems are most

INTRODUCTION 15

often solved via linearization, we consider from now on only linear systems

that are also large and sparse.

III The linear systems arising in Step II have to be solved by a proper solution

method—direct or iterative. Because of the targeted large-sized problems

and the lesser demands on computer resources, we consider iterative solvers

only. The iterative methods may introduce yet other method parameters which

increase further the dimension of the parameter space.

IV Computer implementation: To enable computer simulations, the numerical

methods have to be implemented on some computer platform.

V Visualization and verification: This step is also of importance, but it is not

considered here any further.

When performing numerical simulations, we deal with two major concerns. The

first concern is robustness with respect to model, discretization, and method param-

eters. Robustness is understood in the sense that the numerical efficiency of the iter-

ative method chosen in Step III should not depend on changes in the parameters.

For example, the number of iterations should not increase uncontrollably when h
decreases. The numerical efficiency, related to fast convergence rate, can be seen also

as an element of the robustness of the method. The second concern is the efficiency of
the implementation in Step IV. It is based on a programming model (such as shared

or distributed memory model), programming language, and a particular computer

platform.

It has been recognized that, in order to achieve fast, accurate, and reliable results

from computer simulations, sufficient knowledge is required for all the above steps,

in particular Steps II, III, and IV, and awareness of the interplay among them. By

choosing one or another discretization method, we may influence the structure and

the properties of the arising matrices; by choosing a particular solution method we

may ensure robustnesswith respect to the various problem, discretization, andmethod

parameters; but wemay sacrifice the amount of internal parallelism. Knowledge about

the computer architecture on which the simulations are to be run may influence the

choice of the solutionmethod, which in turn has to be combined with the requirements

of accuracy and robustness.

With the ongoing radical shift in the computer architecture toward multicore and

many-core computational units, the importance of the above arguments becomes even

stronger. The new technology based on multicore and many-core devices provides

higher performance capabilities both in terms of computational power (GFlop/s) and

memory bandwidth (GB/s). The available and easily accessible power enables scien-

tists to tackle larger problems with higher resolution, providing in this way a better

understanding of the world.

The radical shift is clearly seen when we compare the supercomputers available

10 years ago with the personal computers of today. All supercomputers in 2003

contained less than 10,000 cores1. By the end of 2004, the situation was still the

1Top500 http://www.top500.org/statistics/efficiency-power-cores/.

http://www.top500.org/statistics/efficiency-power-cores

16 ITERATIVE METHODS ON HETEROGENEOUS PLATFORMS

same, with two exceptions. At present, the computer landscape is very different. Not
only the Top500 leaders have over 500,000 cores. Currently, NVIDIA delivers GPU
(graphical processing unit) cards with more than 2500 cores per device (see GPU
NVIDIA K20X2). With an improved power supply, four of these cards can be installed
in a standard personal computer and thus one can obtain a system with more than
10,000 cores, which is a commodity at our desktop.

In order to achieve fast and reliable performance of the iterative methods, it
becomes crucial to reconsider and redesign the implementation of well-known
algorithms as well as to gain a deeper insight into what the expected performance
is of the most common solution techniques on multicore heterogeneous computer
platforms.

The focus of this chapter is to show how iterative methods can be performed effi-
ciently on highly parallel, heterogeneous platforms. We present various methods and
examples to show how this can be done, which includes mathematical description, as
well as hardware-specific aspects.

2.2 GENERAL DESCRIPTION OF ITERATIVE METHODS

AND PRECONDITIONING

We briefly discuss basic iterative techniques as well as two of the most often used
projection-based methods—the conjugate gradient (CG) method [1], the generalized
minimal residual (GMRES) method [2], and the multigrid (MG) method [3]. We also
describe the defect-correction technique [4] as an illustration of an approach partic-
ularly suitable for solving linear systems on heterogeneous computers.

2.2.1 Basic Iterative Methods

Consider the solution of the linear system

Ax = b, (2.1)

where A ∈ ℝn×n is a nonsingular matrix, so Equation (2.1) has a unique solution. The
matrix A is large and sparse, and therefore the number of nonzero elements, nnz(A),
is proportional to the size of the matrix, n; that is, nnz(A) = O(n).

Finding the solution to Equation (2.1) is equivalent to finding the root of the
equation

b − Ax = 0. (2.2)

One straightforward way to introduce simple iterative methods is to rewrite (2.2) as
a fixed-point iteration, namely

for some given x(0), iterate

x(k+1) = x(k) + (b − Ax(k)), k = 0, 1, … until convergence. (2.3)

2NVIDIA K20 specification http://www.nvidia.com/object/tesla-servers.html

http://www.nvidia.com/object/tesla-servers.html

GENERAL DESCRIPTION OF ITERATIVE METHODS AND PRECONDITIONING 17

The computational procedure (2.3) defines a basic stationary iterative method. The
computation cost per iteration involves onematrix–vectormultiplication and two vec-

tor updates, and is clearly O(n). Such a method, however, usually exhibits too slow a

convergence, which manifests itself in unacceptably many iterations. In some cases,

convergence may not even be achieved.

Aiming at accelerating the convergence of the iterative process has led to the idea

to involve some method parameter, replacing the simple iteration (2.3) by

x(k+1) = x(k) + 𝜏r(k), or x(k+1) = x(k) + 𝜏kr(k), (2.4)

where r(k) = b − Ax(k) is the residual at the kth iteration and 𝜏 or 𝜏k are some prop-
erly chosen method parameters. In Equation (2.4), the method parameters to tune are

scalars. Of course, nothing prevents us from replacing them with a properly chosen

matrix, referred to in the sequel as P; thus we consider

x(k+1) = x(k) + P−1r(k), k = 0, 1, … untill convergence. (2.5)

As will be discussed later, P can also vary during the iterative process. For simplicity,

now we consider that it is some explicitly given nonsingular matrix.
It is easy to see that Equation (2.5) is obtained by replacing the original system

Ax = b by the transformed system

P−1Ax = P−1b,

and applying the fixed-point scheme to it. In this case, the iterative scheme becomes||||||||
r(k) = b − Ax(k),
Pd(k) = r(k),
x(k+1) = x(k) + d(k).

(2.6)

The scheme (2.6) has a higher computational complexity than that of Equation (2.4),

since a solution of a system with the matrix P is required at each iteration. Clearly,

the achieved decrease in the number of iterations must be significant enough to com-

pensate for the extra cost per iteration.

We see from Equation (2.6) that the choice P = A would lead to a procedure that
converges within one iteration. However, the computational cost would be unaccept-

ably high, similar to that of a direct solution method. Clearly, P should satisfy some

conditions so that we can achieve faster convergence, keeping at the same time the

overall computational costs of the whole iterative method as low as possible.

The matrix P is referred to as a preconditioner to A. We consider next some

well-known choices of P, leading to a family of classical iterative methods which

are based on the so-called matrix splitting technique.
Intuitively, P has to be related to A. Consider the following splitting of A,

A = P − R,

18 ITERATIVE METHODS ON HETEROGENEOUS PLATFORMS

where P is nonsingular and R can be seen as an error matrix. Then,

P−1A = P−1(P − R) = I − P−1R,

where I is the identity matrix of proper order.

The matrix B = P−1R is referred to as the iteration matrix and is used in theoretical

derivations to show the convergence of the corresponding iterative method, as well as

to estimate its rate of convergence (see [5] for details). Using the splitting, we rewrite

Equation (2.5) as follows:

x(k+1) = x(k) + P−1(b − Ax(k)) = P−1b + P−1Rx(k)

or

Px(k+1) = Rx(k) + b.

Let A be represented in the following way, A = D − L − U where D, L, and U are

the diagonal, the strictly lower triangular, and the strictly upper triangular part of A,

respectively. Table 2.1 shows some classical iterative schemes, based on the latter

splitting of A.

For more details on the convergence of these methods, refer to [5].

The common characteristic of these methods is the simplicity of their implemen-

tation. Here, P is a diagonal or a triangular matrix, and the degree of parallelism is

related to the sparsity structure of the underlying matrices.

The bottleneck of these methods is their slow convergence. Their importance has

not been lost, however. Today, they are mostly used as subsolvers in more advanced

iterative techniques described in Sections 2.2.2 and 2.5. Because of their low arith-

metic cost and ease of implementation, they are important ingredients in the so-called

projection methods.

2.2.2 Projection Methods: CG and GMRES

The idea behind the projection methods is that the original problem of huge dimen-

sion (easily of tens or even hundreds of millions of degrees of freedom) is projected

over a subspace of much smaller dimension. An approximate solution is sought in

that smaller subspace and then projected back to the original large space. When the

TABLE 2.1 Classical Iterative Schemes Based on Matrix Splitting

Method P R Scheme

Jacobi iteration D L + U Dx(k+1) = (L + U)x(k) + b

Gauss–Seidel backward D − U L (D − U)x(k+1) = Lx(k) + b

Gauss–Seidel forward D − L U (D − L)x(k+1) = Ux(k) + b

SOR D − 𝜔L 𝜔U + (1 − 𝜔)D (D − 𝜔L)x(k+1) =
(𝜔U + (1 − 𝜔)D)x(k) + b

