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Preface

High-performance computing (HPC) is an important domain of the computer sci-

ence field. For more than 30 years, it has allowed finding solutions to problems and

enhanced progress in many scientific and industrial areas, such as climatology, biol-

ogy, geology, and drug design, as well as automobile and aerospace engineering.

However, new technologies such as multicore chips and accelerators have forced

researchers in the field to rethink most of the advances in the domain, such as algo-

rithms, runtime systems, language, software, and applications.

It is expected that a high-end supercomputer will be able to deliver several hun-

dreds of petaflops (1 petaflop is 1015 floating-point operations per second) in 5 years

from now. However, this will require mastering several challenges, such as energy

efficiency, scalability, and heterogeneity.

Better and efficient parallel computers will enable solving problems at a scale

and within a timeframe that has not been reached so far. These modern hierarchical

and heterogeneous computing infrastructures are hard to program and use efficiently,

particularly for extreme-scale computing. Consequently, none of the state-of-the-art

solutions are able to efficiently use such environments. Providing tools for the whole

software stack will allow programmers and scientists to efficiently write new program

that will use most of the available power of such future complex machines.

COST Action IC0805 “Open European Network for High-Performance Comput-

ing on Complex Environments” (ComplexHPC) was devoted to heterogeneous and

hierarchical systems for HPC, and is aimed at tackling the problem at every level

(from cores to large-scale environments) and providing new integrated solutions for

large-scale computing for future platforms. The duration of ComplexHPC Action was

May 2009–June 2013. The goal of COST Action was to establish a European research

network focused on high-performance heterogeneous computing to address the whole

xxvii
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range of challenges posed by these new platforms, including models, algorithms, pro-

gramming tools, and applications. Indeed, some of the most active research groups

in this area are in Europe. The network has contributed to exchanging information,

identifying synergies, and pursuing common research activities, thereby reinforcing

the strength of these groups and the leadership of Europe in this field. This book

presents the results of COST Action. The chapters are written by expert participants

of the Action.

This book is intended for scientists and researchers working in the field of HPC. It

will provide advanced information for the readers already familiar with the basics of

parallel and distributed computing. It may also be useful for PhD students and early

stage researchers in computer science and engineering. It will also be of help to these

young researchers to get a deep introduction to the related fields.

This book would not have been possible without the efforts of the contributors in

preparing the respective chapters, and we would like to thank them for timely submis-

sions and corrections. We would also like to thank Prof. Albert Zomaya for giving us

the opportunity to publish this book in the “Wiley Series on Parallel and Distributed

Computing.” We would also like to thank Simone Taylor, Director, Editorial Devel-

opment, John Wiley & Sons, Inc., and the editorial team for their patience and guiding

us through the publication of this book. We would also like to thank COST for the

support that enabled the publication.

E. Jeannot and J. ŽilinskasDelft, Netherlands
May, 2013
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Summary of the Open
European Network for

High-Performance
Computing in Complex

Environments
Emmanuel Jeannot

Inria Bordeaux Sud-Ouest, Talence, France

Julius Žilinskas
Vilnius University, Vilnius, Lithuania

In this chapter, we describe the COST Action IC0805 entitled “Open European

Network for High-Performance Computing on Complex Environments.” This Action

had representation from more than 20 countries and lasted from 2009 to 2013. We

outline the scientific focus of this Action, its organization, and its main outcomes.

The chapter concludes by presenting the structure of the book and its different

chapters.

High-Performance Computing on Complex Environments, First Edition.
Edited by Emmanuel Jeannot and Julius Žilinskas.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

3



4 OPEN EUROPEAN NETWORK FOR HPC IN COMPLEX ENVIRONMENTS

1.1 INTRODUCTION AND VISION

In recent years, the evolution and growth of the techniques and platforms commonly

used for high-performance computing (HPC) in the context of different application

domains has been truly astonishing. While parallel computing systems have now

achieved certain maturity thanks to high-level libraries (such as ScaLAPACK)

or runtime libraries (such as MPI), recent advances in these technologies pose

several challenging research issues. Indeed, current HPC-oriented environments

are extremely complex and very difficult to manage, particularly for extreme-scale

application problems.

At the very low level, the latest generation CPUs are made of multicore processors

that can be general-purpose or highly specialized in nature. On the other hand, sev-

eral processors can be assembled into a so-called symmetrical multiprocessor (SMP)

which can also have access to powerful specialized processors, such as graphics

processing units (GPUs), that are now increasingly being used for programmable

computing resulting from their advent in the video-game industry, which has signif-

icantly reduced their cost and availability. Modern HPC-oriented parallel computers

are typically composed of several SMP nodes interconnected by a network. This kind

of infrastructure is hierarchical and represents a first class of heterogeneous system in

which the communication time between two processing units is different, depending

on whether the units are on the same chip, on the same node, or not. Moreover, current

hardware trends anticipate a further increase in the number of cores (in a hierarchi-

cal way) inside the chip, thus increasing the overall heterogeneity, even more toward

building extreme-scale systems.

At a higher level, the emergence of heterogeneous computing now allows groups

of users to benefit from networks of processors that are already available in their

research laboratories. This is a second type of infrastructure where both the net-

work and the processing units are heterogeneous in nature. Specifically, here the goal

is to deal with networks that interconnect a (often high) number of heterogeneous

computers that can significantly differ from one another in terms of their hardware

and software architecture, including different types of CPUs operating at different

clock speeds and under different design paradigms, and also different memory sizes,

caching strategies, and operating systems.

At the high level, computers are increasingly interconnected together through-

out wide area networks to form large-scale distributed systems with high computing

capacity. Furthermore, computers located in different laboratories can collaborate in

the solution of a common problem. Therefore, the current trends of HPC are clearly

oriented toward extreme-scale, complex infrastructures with a great deal of intrinsic

heterogeneity and many different hierarchical levels.

It is important to note that all the heterogeneity levels mentioned above are tightly

linked. First of all, some of the nodes in computational distributed environments may

be multicore SMP clusters. Second, multicore chips will soon be fully heterogeneous

with special-purpose cores (e.g., multimedia, recognition, networking) and not only
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GPUs mixed with general-purpose ones. Third, these different levels share many

common problems such as efficient programming, scalability, and latency manage-

ment. Hence, it is very important to conduct research targeting the heterogeneity at

all presented hardware levels. Moreover, it is also important to take special care of

the scalability issues, which form a key dimension in the complexity of today envi-

ronment. The extreme scale of this environment comes from every level:

1. Low Level: number of CPUs, number of cores per processor;

2. Medium Level: number of nodes (e.g., with memory);

3. High Level: distributed/large-scale (geography dispersion, latency, etc.);

4. Application: extreme-scale problem size (e.g., calculation-intensive or

data-intensive).

In 2008, the knowledge on how to efficiently use program or scale applications

on such infrastructures was still vague. This was one of the main challenges that

researchers wanted to take on. Therefore, at that time, we decided to launch the

COST Action for high-performance and extreme-scale computing in such complex

environments entitled “Open European Network for High-Performance Computing
in Complex Environments.” The main reasons were as follows:

• There was a huge demand in terms of computational power for scientific and

data-intensive applications;

• The architectural advances offered the potential to meet the application require-

ments;

• None of the state-of-the-art solutions in HPC at that time allowed exploitation

to this potential level;

• Most of the research carried out in this area was fragmented and scattered across

different research teams without any coordination.

COST1 was indeed an appropriate framework for the proposed Action. The main

goal of this Action was to overcome the actual research fragmentation on this very

hot topic by gathering the most relevant European research teams involved in all the

scientific areas described above (from the CPU core to the scientific applications) and

coordinate their research.

Summarizing, this project within the COST framework allowed us to expect some

potential benefits such as high-level scientific results in the very important domain

of high-performance and extreme-scale computing in complex environment; strong

coordination between different research teams with significant expertise on this sub-

ject; a better visibility of the European research in this area; and a strong impact on

other scientists and high-performance applications.

1European Cooperation in Science and Technology: http://www.cost.eu.

http://www.cost.eu
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1.2 SCIENTIFIC ORGANIZATION

1.2.1 Scientific Focus

The expected scientific impacts of the project were to encourage the specific commu-

nity to focus research on hot topics and applications of interest for the EU, to propa-

gate the collaboration of research groups with the industry, to stimulate the formation

of new groups in new EU countries, and to facilitate the solution of highly compu-

tationally demanding scientific problems as mentioned above. For this, the groups

involved in this Action collaborated with several scientific and industrial groups that

could benefit from the advances made by this Action, and prompted the incorporation

of new groups to the network.

To achieve the research tasks, different leading European research teams partici-

pated in the concrete activities detailed in Section 1.3.

1.2.2 Working Groups

Four working groups were set up to coordinate the scientific research:

• numerical analysis for hierarchical and heterogeneous and multicore systems;

• libraries for the efficient use of complex systems with emphasis on computa-

tional library and communication library;

• algorithms and tools for mapping and executing applications onto distributed

and heterogeneous systems;

• applications of hierarchical-heterogeneous systems.

It is important to note that these working groups targeted vertical aspects of the archi-

tectural structure outlined in the previous section. For instance, the Action’s goal was

to carry out work on numerical analysis at the multicore level, at the heterogeneous

system level, as well as at the large-scale level. The last working group (Applications)

was expected to benefit from research of the other three groups.

1.3 ACTIVITIES OF THE PROJECT

To achieve the goal of this Action, the following concrete activities were proposed.

The main goal was to promote collaboration through science meetings, work-

shops, schools, and internships. This allowed interchange of ideas and mobility of

researchers.

1.3.1 Spring Schools

The goal was to provide young researchers with a good opportunity to share informa-

tion and knowledge and to present their current research. These schools contributed

to the expansion of the computing community and spread of EU knowledge.
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1.3.2 International Workshops

The goal of these meetings was to take the opportunity during international confer-
ences to meet the attendees and other researchers by co-locating workshops.

1.3.3 Working Groups Meetings

The scientific work plan was divided among different working groups. Each working
group had substantial autonomy in terms of research projects. A leader nominated by
the Management Committee led each working group. Members of a given working
group met once or twice a year to discuss and exchange specific scientific issues and

problems.

1.3.4 Management Committee Meetings

These meetings were devoted to the organization of the network and ensured the
scientific quality of the network.

1.3.5 Short-Term Scientific Missions

The goal of short-term scientific missions (STSMs) was to enable visits by early
stage researchers to foreign laboratories and departments. This was mainly targeted
at young researchers to receive cross-disciplinary training and to take advantage of
the existing resources. The goal was to increase the competitiveness and career devel-

opment of those scientists in this rapidly developing field through cutting-edge col-
laborative research on the topic.

1.4 MAIN OUTCOMES OF THE ACTION

We believe that this COST Action was a great success. It gathered 26 European coun-
tries and 2 non-COST countries (Russia and South Africa). We have held 12 meetings
and 2 spring schools. Fifty-two STSMs have been carried out. We have a new FP7
project coming from this Action (HOST). We have edited a book, and more than 100
papers have been published thanks to this Action.

We have set up an application catalog that gathers applications from the Action
members. Its goal is to gather a set of HPC applications that can be used as test cases
or benchmarks for researchers in the HPC field. The applications catalog is available
at https://complexhpc-catalogue.bordeaux.inria.fr.

In total, the Action gathered more than 250 participants over the four years of the
project.

We have sent a survey to the Action members. From this survey, it clearly appears
that one of the greatest successes of the Action is the continuous strengthening of
the network for many of its members both in terms of research teams and research

domains. Many STSMs have been done through new network connections. Spring
schools are seen as a major success, as they helped many young researchers to share

https://complexhpc-catalogue.bordeaux.inria.fr
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and exchange knowledge and gain new connections. Many PhD theses have been

defended during the course of the Action, and some of the management committee

members have been invited on the defense board of some of these PhDs. Moreover,

many presentations given during the meeting are considered very useful and have

opened new research directions for other attendees.

We had four goals in this Action:

1. to train new generations of scientists in high-performance and heterogeneous

computing;

2. to overcome research fragmentation, and foster HPC efforts to increase

Europe’s competitiveness;

3. to tackle the problem at every level (from cores to large-scale environment);

4. vertical integration to provide new integrated solutions for large-scale comput-

ing for future platforms.

Goal 1 has exceeded our expectations. The spring schools have been a great suc-

cess. We had many STSMs, and the number of early stage researchers attending the

meeting was always very high. We had great response from young researchers.

Goal 2 has also been achieved satisfactorily. Thanks to the Action, many joint

researches have been carried out, and we have created a nice network of researchers

within our Action. Moreover, many top-level publications have been made thanks to

the Action.

Goal 3 has also been achieved. We have scientific results that cover the core level

and the distributed infrastructure, as well as results that cover the intermediate layers.

This is due to the fact that the consortium was made of researchers from different

areas. This was very fruitful.

Goal 4 has not been achieved. The main reason is the fact that providing integrated

solutions requires more research and development than a COST Action can provide.

It goes far beyond the networking activities of COST Action.

1.5 CONTENTS OF THE BOOK

This book presents some of themain results, in terms of research, of the COST Action

presented in this chapter. We are very proud to share this with the interested reader.

We have structured the book according to the following parts in order to have a good

balance between each part:

1. Numerical Analysis for Heterogeneous and Multicore Systems (Chapters 2, 3,

and 4);

2. Communication and Storage Considerations in High-Performance Comput-

ing (Chapters 5, 6, 7, and 8);

3. Efficient Exploitation of Heterogeneous Architectures (Chapters 9, 10, 11,

and 12);

4. CPU + GPU coprocessing (Chapters 13, 14, and 15);
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5. Efficient Exploitation of Distributed Systems (Chapters 16 and 17);

6. Energy Awareness in High-Performance Computing (Chapters 18, 19, and 20);

7. Applications of Heterogeneous High-Performance Computing (Chapters 21,
22, and 23).

Chapter 2 discusses the redesign of the iterative solution algorithm in order to
efficiently execute them on heterogeneous architectures. Chapter 3 studies the perfor-
mance of ameshless numerical partial differential equation (PDE) solver, parallelized
with OpenMP. The results depend on the way the computations are distributed and the
way the cache is used. Chapter 4 presents the development of three parallel numeri-
cal algorithms for the solution of parabolic problems on graphs with a theoretical and
experimental study of their scalability.

Chapter 5 surveys different techniques for mapping processes to computing units
in order to optimize communication cost and reduce execution time. Chapter 6 offers
a comprehensive overview of how to implement topology- and performance-aware
collective communications. Chapter 7 analyzes the many-core architecture using
a new model (K-model) in order to estimate the complexity of a given algorithm
designed for such an architecture. Chapter 8 presents a scalable I/O storage system
for the hierarchical architecture of Blue Gene computers featuring buffering and
asynchronous I/O.

Chapter 9 describes algorithmic techniques for offline scheduling of independent
workflows in order to satisfy user’s quality of service. Chapter 10 investigates the
advantage of using modern heterogeneous architecture for the efficient implementa-
tion of the Reed–Solomon erasure code. Chapter 11 analyzes the factors that enable
the development of efficient parallel programs on modern many-core parallel archi-
tecture. Chapter 12 studies efficient solutions for electromagnetism applications in
clusters of CPU + GPU nodes.

Chapter 13 describes how the functional performance model can be used to opti-
mize the performance of scientific applications for heterogeneous and hierarchical
platform. Chapter 14 presents algorithms for multilevel load-balancing on multicore
and multi-GPU environments. Chapter 15 faces the all-pair shortest path problem
for sparse graph. Different scheduling strategies are studied to efficiently solve such
problems on heterogeneous systems.

Chapter 16 surveys different resource management systems and scheduling algo-
rithms for HPC for clouds. Chapter 17 discusses different approaches for performing
resource discovery in large-scale distributed systems.

Chapter 18 focuses on how to optimize and adapt software solution to improve
energy efficiency in the context of HPC application. Chapter 19 studies energy-aware
scheduling policies for three scenarios of federated cloud dealing with energy aware-
ness. Chapter 20 explores the use of heterogeneous chip multiprocessors for network
security and strategy to improve energy consumption in such contexts.

Chapter 21 describes the “jungle computing paradigm,” which consists in gath-
ering a complex hierarchical collection of heterogeneous computing hardware with
an application to hyperspectral remote sensing. Chapter 22 presents a new model for
image and video processing based on parallel and heterogeneous platforms in order
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to improve the performance of the application when dealing with high-definition

images. Chapter 23 applies load-balancing techniques to efficiently execute tomo-

graphic reconstruction using hybrid GPU + CPU systems.

As you can see, this covers a large spectrum of results and topics on HPC and

heterogeneous systems.

We wish you a fruitful and enjoyable time with this book.
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PART II

Numerical Analysis for
Heterogeneous and
Multicore Systems





2
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Heterogeneous Multicore
and Many-Core Platforms
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Methods and

Preconditioning Techniques
Dimitar Lukarski and Maya Neytcheva
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Computer simulations are now broadly recognized as a third branch of research,

complementing theory and experimental work. The significant increase of available

computing power has enabled tackling very large scale, challenging, real-life prob-

lems and opening new possibilities for revolutionary breakthrough results in science

and engineering. At the same time, the complexity of the computer architecture has

risen to levels where it is possible to achieve its full computing power only after

careful redesigning of existing algorithms and developing novel computational and

High-Performance Computing on Complex Environments, First Edition.
Edited by Emmanuel Jeannot and Julius Žilinskas.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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communication strategies. In this chapter, we discuss this issue for a class ofmethods,

broadly used in scientific computations—the iterative solution methods.

2.1 INTRODUCTION

For many years, the potential of available, serial as well as parallel, computer

resources has been growing hand in hand with the need to numerically solve

increasingly larger models of real-life problems. During the past decades, it has

been recognized that, together with theoretical development and laboratory or

field experiments, computation has become a third branch of research. Scientific

computing is today’s driving force behind the progress in the most challenging

and demanding problems we attempt to solve. As examples, we mention turbulent

combustion with complex chemistry, atmospheric dynamics, laser fusion, medical

imaging, detailed modeling of the human heart, and artificial brain simulation with

over a million neurons, to name a few.

In recent years, we have been witnessing a change in the means to increase the

computational power which has a strong impact on how that power should be utilized

via the algorithms used in scientific computations. Therefore, we briefly describe

the phases in performing numerical simulations. Consider a complex physical

phenomenon, described as a set of, usually coupled, processes that develop in space

and time, which we want to study, analyze, and predict. It is assumed that the

simulation requires a large amount of computer resources in terms of memory and

computation.

The process of performing the numerical simulations can be split into the follow-

ing steps:

I Mathematical model: Describes the phenomenon continuously in time and

space in terms of mathematical relations, most often as coupled ordinary or

partial differential equations. These equations depend on various problem

parameters, such as thermal conductivity, capacitance, material properties,

and so on.

II Discrete model: Because of the high complexity of the continuous model, ana-

lytical solutions are in general not available. Therefore, we pose the task to

compute the solution in a number of discrete points in time and space, thus

discretizing the mathematical model. This can be accomplished using vari-

ous techniques. Space discretization can be done using finite differences, finite

elements, finite volumes, boundary elements, and so on. Similarly, in time, var-

ious explicit or implicit time-stepping procedures can be utilized. In addition

to the model parameters, here additional discretization parameters are intro-

duced, usually denoted as h in space and 𝜏 in time. The discrete model is

expressed in terms of linear or nonlinear algebraic systems of equations which

have to be solved. Depending on the problem, but also on the discretization

techniques, the matrices associated with the algebraic systems can be dense or

sparse, symmetric or nonsymmetric, and so on. As nonlinear systems are most
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often solved via linearization, we consider from now on only linear systems

that are also large and sparse.

III The linear systems arising in Step II have to be solved by a proper solution

method—direct or iterative. Because of the targeted large-sized problems

and the lesser demands on computer resources, we consider iterative solvers

only. The iterative methods may introduce yet other method parameters which

increase further the dimension of the parameter space.

IV Computer implementation: To enable computer simulations, the numerical

methods have to be implemented on some computer platform.

V Visualization and verification: This step is also of importance, but it is not

considered here any further.

When performing numerical simulations, we deal with two major concerns. The

first concern is robustness with respect to model, discretization, and method param-

eters. Robustness is understood in the sense that the numerical efficiency of the iter-

ative method chosen in Step III should not depend on changes in the parameters.

For example, the number of iterations should not increase uncontrollably when h
decreases. The numerical efficiency, related to fast convergence rate, can be seen also

as an element of the robustness of the method. The second concern is the efficiency of
the implementation in Step IV. It is based on a programming model (such as shared

or distributed memory model), programming language, and a particular computer

platform.

It has been recognized that, in order to achieve fast, accurate, and reliable results

from computer simulations, sufficient knowledge is required for all the above steps,

in particular Steps II, III, and IV, and awareness of the interplay among them. By

choosing one or another discretization method, we may influence the structure and

the properties of the arising matrices; by choosing a particular solution method we

may ensure robustnesswith respect to the various problem, discretization, andmethod

parameters; but wemay sacrifice the amount of internal parallelism. Knowledge about

the computer architecture on which the simulations are to be run may influence the

choice of the solutionmethod, which in turn has to be combined with the requirements

of accuracy and robustness.

With the ongoing radical shift in the computer architecture toward multicore and

many-core computational units, the importance of the above arguments becomes even

stronger. The new technology based on multicore and many-core devices provides

higher performance capabilities both in terms of computational power (GFlop/s) and

memory bandwidth (GB/s). The available and easily accessible power enables scien-

tists to tackle larger problems with higher resolution, providing in this way a better

understanding of the world.

The radical shift is clearly seen when we compare the supercomputers available

10 years ago with the personal computers of today. All supercomputers in 2003

contained less than 10,000 cores1. By the end of 2004, the situation was still the

1Top500 http://www.top500.org/statistics/efficiency-power-cores/.

http://www.top500.org/statistics/efficiency-power-cores
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same, with two exceptions. At present, the computer landscape is very different. Not
only the Top500 leaders have over 500,000 cores. Currently, NVIDIA delivers GPU
(graphical processing unit) cards with more than 2500 cores per device (see GPU
NVIDIA K20X2). With an improved power supply, four of these cards can be installed
in a standard personal computer and thus one can obtain a system with more than
10,000 cores, which is a commodity at our desktop.

In order to achieve fast and reliable performance of the iterative methods, it
becomes crucial to reconsider and redesign the implementation of well-known
algorithms as well as to gain a deeper insight into what the expected performance
is of the most common solution techniques on multicore heterogeneous computer
platforms.

The focus of this chapter is to show how iterative methods can be performed effi-
ciently on highly parallel, heterogeneous platforms. We present various methods and
examples to show how this can be done, which includes mathematical description, as
well as hardware-specific aspects.

2.2 GENERAL DESCRIPTION OF ITERATIVE METHODS

AND PRECONDITIONING

We briefly discuss basic iterative techniques as well as two of the most often used
projection-based methods—the conjugate gradient (CG) method [1], the generalized
minimal residual (GMRES) method [2], and the multigrid (MG) method [3]. We also
describe the defect-correction technique [4] as an illustration of an approach partic-
ularly suitable for solving linear systems on heterogeneous computers.

2.2.1 Basic Iterative Methods

Consider the solution of the linear system

Ax = b, (2.1)

where A ∈ ℝn×n is a nonsingular matrix, so Equation (2.1) has a unique solution. The
matrix A is large and sparse, and therefore the number of nonzero elements, nnz(A),
is proportional to the size of the matrix, n; that is, nnz(A) = O(n).

Finding the solution to Equation (2.1) is equivalent to finding the root of the
equation

b − Ax = 0. (2.2)

One straightforward way to introduce simple iterative methods is to rewrite (2.2) as
a fixed-point iteration, namely

for some given x(0), iterate

x(k+1) = x(k) + (b − Ax(k)), k = 0, 1, … until convergence. (2.3)

2NVIDIA K20 specification http://www.nvidia.com/object/tesla-servers.html

http://www.nvidia.com/object/tesla-servers.html
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The computational procedure (2.3) defines a basic stationary iterative method. The
computation cost per iteration involves onematrix–vectormultiplication and two vec-

tor updates, and is clearly O(n). Such a method, however, usually exhibits too slow a

convergence, which manifests itself in unacceptably many iterations. In some cases,

convergence may not even be achieved.

Aiming at accelerating the convergence of the iterative process has led to the idea

to involve some method parameter, replacing the simple iteration (2.3) by

x(k+1) = x(k) + 𝜏r(k), or x(k+1) = x(k) + 𝜏kr(k), (2.4)

where r(k) = b − Ax(k) is the residual at the kth iteration and 𝜏 or 𝜏k are some prop-
erly chosen method parameters. In Equation (2.4), the method parameters to tune are

scalars. Of course, nothing prevents us from replacing them with a properly chosen

matrix, referred to in the sequel as P; thus we consider

x(k+1) = x(k) + P−1r(k), k = 0, 1, … untill convergence. (2.5)

As will be discussed later, P can also vary during the iterative process. For simplicity,

now we consider that it is some explicitly given nonsingular matrix.
It is easy to see that Equation (2.5) is obtained by replacing the original system

Ax = b by the transformed system

P−1Ax = P−1b,

and applying the fixed-point scheme to it. In this case, the iterative scheme becomes||||||||
r(k) = b − Ax(k),
Pd(k) = r(k),
x(k+1) = x(k) + d(k).

(2.6)

The scheme (2.6) has a higher computational complexity than that of Equation (2.4),

since a solution of a system with the matrix P is required at each iteration. Clearly,

the achieved decrease in the number of iterations must be significant enough to com-

pensate for the extra cost per iteration.

We see from Equation (2.6) that the choice P = A would lead to a procedure that
converges within one iteration. However, the computational cost would be unaccept-

ably high, similar to that of a direct solution method. Clearly, P should satisfy some

conditions so that we can achieve faster convergence, keeping at the same time the

overall computational costs of the whole iterative method as low as possible.

The matrix P is referred to as a preconditioner to A. We consider next some

well-known choices of P, leading to a family of classical iterative methods which

are based on the so-called matrix splitting technique.
Intuitively, P has to be related to A. Consider the following splitting of A,

A = P − R,
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where P is nonsingular and R can be seen as an error matrix. Then,

P−1A = P−1(P − R) = I − P−1R,

where I is the identity matrix of proper order.

The matrix B = P−1R is referred to as the iteration matrix and is used in theoretical

derivations to show the convergence of the corresponding iterative method, as well as

to estimate its rate of convergence (see [5] for details). Using the splitting, we rewrite

Equation (2.5) as follows:

x(k+1) = x(k) + P−1(b − Ax(k)) = P−1b + P−1Rx(k)

or

Px(k+1) = Rx(k) + b.

Let A be represented in the following way, A = D − L − U where D, L, and U are

the diagonal, the strictly lower triangular, and the strictly upper triangular part of A,

respectively. Table 2.1 shows some classical iterative schemes, based on the latter

splitting of A.

For more details on the convergence of these methods, refer to [5].

The common characteristic of these methods is the simplicity of their implemen-

tation. Here, P is a diagonal or a triangular matrix, and the degree of parallelism is

related to the sparsity structure of the underlying matrices.

The bottleneck of these methods is their slow convergence. Their importance has

not been lost, however. Today, they are mostly used as subsolvers in more advanced

iterative techniques described in Sections 2.2.2 and 2.5. Because of their low arith-

metic cost and ease of implementation, they are important ingredients in the so-called

projection methods.

2.2.2 Projection Methods: CG and GMRES

The idea behind the projection methods is that the original problem of huge dimen-

sion (easily of tens or even hundreds of millions of degrees of freedom) is projected

over a subspace of much smaller dimension. An approximate solution is sought in

that smaller subspace and then projected back to the original large space. When the

TABLE 2.1 Classical Iterative Schemes Based on Matrix Splitting

Method P R Scheme

Jacobi iteration D L + U Dx(k+1) = (L + U)x(k) + b

Gauss–Seidel backward D − U L (D − U)x(k+1) = Lx(k) + b

Gauss–Seidel forward D − L U (D − L)x(k+1) = Ux(k) + b

SOR D − 𝜔L 𝜔U + (1 − 𝜔)D (D − 𝜔L)x(k+1) =
(𝜔U + (1 − 𝜔)D)x(k) + b


