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1.1  Introduction

Food products become a microbial ecosystem 
when they are contaminated and colonized 
by  microorganisms. Fresh foods allow rapid 
microbial growth due to a high content of nutri­
ents whereas processed foods correspond to a 
harsher environment for growth, reducing the 
natural microbial population associated with 
raw food. In addition to natural microbiota 
related to its origin and environmental condi­
tions, food may be contaminated from outside 
sources during production, processing, storage, 
transport, and distribution. Hence, growth and 
activities of microorganisms (bacteria, yeasts, 
and molds) are some of the major causes of food 
spoilage. However, few microorganisms are 
pathogens while many are useful in producing 
desirable changes during food fermentation. 
A large number of microorganisms can simul­
taneously grow in food if the abundance of 
nutrients is sufficient. As a consequence, the 
diversity and occurrence of microorganisms 
present depend on the composition of food, the 
extent of microbial contamination, and the treat­
ments applied. Finally, intrinsic and extrinsic 
factors such as temperature, water content, and 
oxygen content have a considerable influence 
on the growth of microorganisms, depending 
on the properties of the microorganisms and on 
the interactions among them.

Microbial ecology of food concerns the 
study of the type of microorganisms present 

(diversity and structure), their rate of occurrence, 
activities (functionality), and interactions with 
each other (microbial communities) and their 
environment. Ecological studies also help to 
understand the transmission and dissemination 
of pathogens and toxins. Microbial ecology is 
intimately connected with microbial physiology 
as ecophysiological parameters determine the 
activities within individual cells and thus the 
responses of microbial populations to environ­
mental influences. These combined effects 
control the type of microorganisms capable of 
growth in a particular food ecosystem (Leistner, 
2000; McMeekin et al., 2010).

Quantitative microbial ecology relies on pre­
dictive microbiology to forecast the quantitative 
evolution of microbial populations over time, 
using models that include the mechanisms 
governing population dynamics and the charac­
teristics of food environments. In this respect, 
the diversity of the microbial community of a 
food ecosystem must be assessed, along with 
the identification of species and their compara­
tive quantification. Traditional microbiological 
techniques (culture‐dependent methods) have 
been used for decades for this purpose. However, 
these methods give a single viewpoint for 
describing a portion of the microbial dynamics 
and estimating microbial diversity. Culture‐
independent techniques based on direct anal­
ysis of genetic materials (DNA or RNA) are 
increasingly being used for characterization of 
microbial diversity structure and function. The 
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development of these molecular methods and 
their applications in the field of microbial 
ecology of food has transformed our under­
standing of the nature and evolution of micro­
bial populations and their metabolic activities 
(Ndoye et al., 2011).

This introductory chapter aims at providing 
some background in order to set the stage for 
further study of predictive microbiology, unit 
operations, processes, and the microbial ecology 
of specific categories of food products in the 
subsequent chapters.

1.2 R ole of food characteristics 
and environment on 
microbial fate

Foods are classified as non‐perishable for those 
that do not need time/temperature control, 
semi‐perishable for those that remain unspoiled 
for a prolonged period and perishable for those 
that need time/temperature control to kill or 
prevent the growth and activities of microor­
ganisms in order to extend their shelf life.

In 1971, Mossel defined four groups of 
ecophysiological parameters that influence 
the survival or growth of the microorganisms 
contaminating a raw or processed food: (i) 
intrinsic factors that are essentially chemical 
but with some important intrinsic factors that 
are physical and structural (e.g., pH, water 
activity, redox potential, available nutrients, 
presence of antimicrobial substances, food 
matrix); (ii) extrinsic factors that include the 
externally applied factors (e.g., temperature, 
relative humidity, etc.); (iii) implicit factors that 
are mostly dependent on the physiological 
properties of the microorganisms and microbial 
interactions; and (iv) processing factors (heat 
destruction, smoke, salts, organic acids, preser­
vatives, and other additives) and conditions 
affecting foods (slicing, mixing, removing, 
washing, shredding,etc.) as well as influencing 
transfer of microorganisms (cross‐contamina­
tion events) (Gould, 1992; ICFMS, 1980; Mossel, 
1971; McMeekin and Ross, 1996).

In the context of quantitative microbial 
ecology, the growth of microorganisms could 
be modeled and then predicted as a function of 
only a few ecophysiological parameters such as 
temperature, pH, and water activity (aw), some­
times with other factors such as the presence of 
preservatives and oxygen. Growth of a specific 
microorganism also depends on the initial 
microbial load, the sources of nitrogen and 
carbon, the processing method used in the food 
production, and the external environment of 
the food during storage, distribution, sale and 
handling. The physicochemical properties of 
foods in association with environmental condi­
tions determine the selection of microorgan­
isms capable of growing and multiplying at the 
expense of other less competitive species. As a 
result, the whole microbial ecology of the food 
system should be considered to accurately pre­
dict food spoilage (Braun and Sutherland, 
2006). Such an integrated microbial model 
must take into consideration all these factors as 
input variables along with modeling parame­
ters representing the processes applied during 
food manufacture and storage (Figure 1.1).

1.2.1 T emperature
The lag period and growth rate of a microor­
ganism are affected by temperature as growth can 
be inhibited by decrease or increase of temperature 
below or above the optimum growth range. 
Indeed, every microorganism has a defined tem­
perature range in which they grow,  with a 
minimum, maximum, and optimum within the 
extended range of –5 to 90 °C (Table  1.1). 
Organisms causing food spoilage can be grouped 
by temperature preference as (i)  mesophiles 
(optimum temperature 30–45 °C, minimum 
growth temperature ranging from 5 to 10 °C and a 
maximum of 50 °C); (ii) psychrophilic organisms 
(optimum growth range temperature of 12 to 
15 °C with a maximum range of 15 to 20 °C); (iii) 
psychrotropes (formerly called psychrotrophs 
with an optimum temperature 25–30 °C with a 
minimum of –0.4 to 5 °C); and (iv) thermophiles 
(optimum temperature 55–75 °C with a maximum 
as high as 90 °C and a minimum of around 40 °C).
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Changes in storage temperature as well as the 
time–temperature relationship have an impact 
on the evolution of these different groups. 
Refrigeration and chill temperatures promote 
growth of psychrophilic microorganisms, of 
which there are few that affect food spoilage, and 
psychrotrophic spoilage organisms such as pseu­
domonas, yeasts, and molds as well as pathogens 
such as Listeria monocytogenes. At high tempera­
tures, spore‐forming bacteria and lactic acid 
bacteria are able to multiply. Thus, temperature 
changes have an influence on the metabolic 
activities of some microorganisms and conse­
quently on the biochemistry of the spoilage pro­
cess. Time has an impact in relation to the storage 
temperature because it is a factor that influences 

the rate of growth of microorganisms: extended 
storage at low temperatures allows the growth of 
some psychrotrophic microorganisms. Further 
discussion on food safety and the role of quantifi­
cation in microbial risk assessment will be given 
in Part IV of this book.

1.2.2  pH and acidity
The pH is a measure of acidity of a food that 
influences microbial growth and survival, as 
every microorganism possesses a minimum, an 
optimum, and a maximum pH for growth. Most 
bacteria exhibit an optimum pH near the 
neutral point (pH 7.0) although acetic and lactic 
acid bacteria are able to survive at reduced pH 
levels. Molds and yeasts are generally more 

Integrative microbial model

Input variables

Physiological
parameters

Growth rate,
respiration rate,
rates of synthesis
and decay of RNA

and proteins,
enzyme activity

pH, water activity,
redox potential,

available nutrients,
presence of

antimicrobial
substances, food

matrix

Relative humidity,
temperature

Competition,
antagonism,
metabiosis,

cell-cell
communication

Processing factors:
heat destruction,

smoke, salts,
organic acids,
preservatives

and other additives

Unit
operations

Transfer
coef­cients

Physical
constants

Physical and
chemical

parameters

Environmental
conditions

Biological
interactions

Model parameters

Figure 1.1  Integrative parameters affecting the development of microbial ecosystems in food.

Table 1.1  Psychrophilic, psychrotropic, mesophilic, and thermophilic microorganisms of importance in food.

Group Temperature (°C) Examples of bacteria (genus name only)

Psychrophiles −5 to 20 Acinetobacter, Bacillus, Clostridium, Flavobacterium, Vibrio
Psychrotropes −5 to 35 Pseudomonas, Enterococcus, Alcaligenes, Shewanella, Brochothrix, 

Corynebacterium, Lactobacillus, Listeria, Micrococcus, Moraxella, 
Pectobacterium, Psychrobacter

Mesophiles 5 to 47 Bacillus, Carnobacterium, Clostridium, Corynebacterium, Escherichia, 
Lactobacillus, Lactococcus, Leuconostoc, Listeria, Hafnia, Pseudomonas, 
Salmonella, Shigella, Staphylococcus, Vibrio, Yersinia

Thermophiles 40 to 90 Bacillus, Paenibacillus, Clostridium, Geobacillus, Alicylobacillus, 
Thermoanaerobacter

Adapted from ICMFS (1980) and Jay (2005).
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acid‐tolerant than bacteria and therefore acidic 
foods are more susceptible to spoilage by these 
types of microorganisms.

Low pH values and associated high acid 
concentrations inhibit microbial growth and 
survival in foods due to the acid‐induced dena­
turation of cell wall proteins. A decrease of pH 
also reduces the heat resistance of microorgan­
isms. Moreover, the pH can interact with water 
activity, redox potential, salt, and preservatives 
to inhibit growth of food‐borne pathogens and 
spoilage microorganisms. The undissociated 
form of weak acids shows antimicrobial activity 
because they pass freely through the cell mem­
brane and then dissociate, as the cytoplasmic 
pH is usually higher than that of the growth 
medium. This leads to the release of protons, 
which in turn results in an acidification of the 
cytoplasm. Bacterial growth can be prevented 
by addition of weak organic acids alone or in 
combination with other preservatives as well as 
by production of lactic and acetic acids by 
fermentation.

Food products can essentially be divided 
into three types according to their pH: (i) low‐
acid foods where pH is greater than 4.6 and less 
than 7.0, (ii) acid foods that have a pH lower 
than 4.6, and (iii) acidified foods obtained by 
addition of acids into low‐acid foods. This 
classification is based on the fact that patho­
genic microorganisms generally cannot grow at 
pH values below 4.6. Low‐acid foods can be fer­
mented (fermented foods) by acid‐producing 
bacteria that reduce the pH below 4.6. Foods 
can also be characterized by their buffering 
capacity, which is defined as the ability to resist 
changes in pH. The pH of foods with a low buff­
ering capacity in the presence of acidic or 
alkaline compounds produced by microorgan­
isms will change quickly, whereas foods with 
a high buffering capacity are more resistant to 
pH changes.

1.2.3  Water activity
Water is a requirement for growth and meta­
bolic activities of microorganisms in a food 
product. However, microbes can only use water 

in an available form. Free water that is not in the 
bound state participates in many chemical and 
biochemical reactions, supports microbial 
growth, and acts as a transporting medium for 
compounds (sugars, salt, organic acids) in the 
food system. Water activity (aw), defined as the 
free or available water in a food, is therefore a 
better indicator for microbial growth than the 
water content. In a food matrix, the require­
ments for moisture by microorganisms are 
expressed in terms of aw (the aw of pure water is 
1.00 and the aw of a completely dehydrated food 
is 0.00) and the lower limit for microbial growth 
in a food product will be determined by the 
aw.  Food products can thus be broadly classi­
fied  by water activity into (i) high aw (>0.92), 
(ii) intermediate aw (0.85 to 0.92), and (iii) low aw 
(<0.85). Fresh foods (meat, vegetables, and 
fruits) generally have aw values higher than 0.97. 
By reducing water activity below 0.7, osmotic 
pressure is increased, thus inhibiting microbial 
growth and maximizing the shelf life of the food 
product. This reduction can be accomplished 
by adding sugars or salt, removing water by 
drying or baking, and binding the water to var­
ious macromolecular components such as 
cellulose, protein, or starch in the food.

Microorganisms exhibit optimum and 
minimum levels of aw for growth, depending 
on  a number of other ecophysiological factors 
(pH,  temperature, oxido‐reduction level, and 
nutrients). Bacteria are more sensitive than 
yeasts and molds, and Gram‐positive bacteria 
are more resistant to lower values of aw than 
Gram‐negative bacteria. The growth of food‐
borne pathogens is inhibited below aw 0.86, 
except that Staphylococcus aureus can grow 
down to a value of 0.83 and produces toxin 
below aw 0.90. Growth of molds will be con­
trolled at aw 0.80 and mycotoxin production 
requires a higher aw than that of growth.

1.2.4  Oxygen and redox potential
Based on their oxygen requirements and 
tolerance, microorganisms are classified into 
the following groups: (i) obligate aerobes are 
microorganisms that require oxygen for growth; 
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(ii) obligate anaerobes are microorganisms that 
do not need or use oxygen, which is toxic for 
them; and (iii) facultative aerobes (or facultative 
anaerobes) are microorganisms that can grow in 
the presence and absence of oxygen, switching 
to aerobic respiration in the presence of oxygen 
but under anaerobic conditions they grow by 
fermentation or anaerobic respiration.

The oxidation–reduction or redox potential 
is an intrinsic factor that influences the growth 
of microorganisms in foods. The redox poten­
tial of the food varies according to the physico­
chemical characteristics, partial pressure of 
oxygen, and the presence of other gases in the 
storage atmosphere (water vapor, nitrogen, 
CO2). The presence of substances that are 
highly hydrogenated, that contain SH radicals, 
reducing sugars, or other compounds such as 
ascorbic acid (vitamin C) and tocopherols 
(vitamin E) in a food creates a reducing environ­
ment. When the redox potential (Eh) is negative 
in terms of millivolts, this means a reduced 
state, while the presence of oxygen at the surface 
or in the bulk has an oxidizing effect (an oxi­
dized state). Aerobic organisms require a food 
environment with a positive redox potential 
(+500 to +300 mV) whereas anaerobes require a 
negative potential (+100 to less than −250 mV) 
and facultative anaerobes tolerate a range in 
potential between +300 and −100 mV.

1.2.5  Nutrient content
The nutritional needs of microorganisms can 
usually be met in foods due to the presence of 
water, carbohydrates (sources of carbon and 
energy), fats, proteins, vitamins, and minerals. 
However, these nutrients must be available in an 
easily digestible form, such as simple sugars and 
amino acids, for many microorganisms. Some 
microorganisms possess specific enzymes that 
allow them to degrade more complex structures 
such as proteins and fibers. Most spoilage 
microorganisms have no fastidious nutritional 
requirements and possess essential metabolic 
activities such as glycolysis and proteolysis. In 
this way, a complex microbial community 
capable of degrading the nutrients present will 

colonize any type of food. Therefore, it is practi­
cally impossible to predict the microbial ecology 
of a food based on its nutrient composition.

1.2.6 P hysical structure 
and microenvironments
The physical barriers to food spoilage by micro­
organisms are: (i) the skin of fish and meats, 
(ii)  the shell of nuts and eggs, (iii) the external 
layers of seeds, and (iv) the outer covering of 
fruits and vegetables such as the husk or rind. 
These protective biological structures are usually 
composed of macromolecules that are relatively 
resistant to penetration or degradation. They con­
stitute hostile microenvironments for the growth 
of microorganisms by having a low water activity, 
a lack of readily available nutrients, and a 
presence of antimicrobial compounds such 
as  short‐chain fatty acids (on animal skin) or 
essential oils (on plant surfaces). During the 
preparation of foods, processes such as cutting, 
grinding, and heating break down the biological 
barriers and change microenvironments, thus 
favoring contamination and proliferation of 
microbes inside the food product. The impact of 
these unit operations on specific microorgan­
isms will be further detailed in Part II of this 
book. Most microorganisms will grow in the 
majority of foods, as individual free‐floating 
(planktonic) cells in the aqueous phase or as an 
association of microbial cells with a solid sub­
strate either through entrapment, constrained 
growth, attachment, or a combination of these 
factors (Skandamis and Nychas, 2012).

1.2.7  Food preservation processes 
(antimicrobials, preservatives)
Food preservation mainly involves a prevention 
or exclusion of microbial activity. This may be 
achieved: (i) by inhibiting the growth or short­
ening the survival of microorganisms, (ii) by 
excluding or removing microorganisms, and 
(iii) by killing the microorganisms. Some plant‐ 
and animal‐based foods contain natural antimi­
crobial compounds such as essential oils and 
lysozyme, respectively, that inhibit the growth 
of spoilage microorganisms. Some chemical 
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food additives such as salts, sugars, and organic 
acids are commonly applied for creating a hos­
tile environment in food products. The presence 
of gases (carbon dioxide, ozone, and oxygen) is 
also able to inhibit the growth and proliferation 
of microorganisms by direct toxic effects and by 
indirect inhibitory effects, by modifying the gas 
composition and thus altering the ecology of the 
microbial environment. Various types of food 
processing such as heating, smoking, and fer­
mentation are also used for the formation of 
antimicrobial substances in food. Part II of this 
book contains more information on specific 
food preservation operations, including fer­
mentation. Food fermentation is one of the 
oldest food processing technologies that can 
suppress the growth and survival of spoilage 
microorganisms in food products. This process 
depends on the biological activity of microor­
ganisms that produce a large range of meta­
bolites (acids, alcohols, and carbon dioxide) 
by  fermentation or oxidation of carbohy­
drates  or derivatives. For example, among 
members of competitive microbiota,  lactic acid 
bacteria (LAB) exhibit unique metabolic activ­
ities and are employed as starters for the 
fermentation of milk, meats, cereals, and vege­
tables and are used as probiotic cultures 
(Champagne et al., 2005). In addition to the 
production of lactic, acetic, and propionic acids 
leading to an acidic environment appropriate 
for controlling the growth and metabolic activity 
of many pathogenic and spoilage microorgan­
isms, these beneficial bacteria are also able to 
produce ethanol, hydrogen peroxide (H2O2), 
diacetyl, and bacteriocins. Bacteriocins are pro­
tein or peptide antimicrobial substances that 
inactivate other bacteria through depolarization 
of the target cell membrane or through inhibi­
tion of cell wall synthesis. In addition, LAB can 
also produce antifungal compounds, including 
reuterin, carboxylic acids, cyclic dipeptides, and 
fatty acids (Crowley et al., 2013).

Antimicrobial substances produced by 
microorganisms provide an additional hurdle 
for keeping the natural population of microor­
ganisms under control. Indeed, traditional food 

preservation has often been achieved by 
the  combination and interactions of pH, aw, 
atmosphere, numerous preservatives, and other 
inhibitory factors, referred to as the “hurdle 
effect”. These preservative factors (hurdles) 
temporarily or permanently disturb the homeo­
stasis of microorganisms, defined as the ten­
dency to uniformity and stability in the internal 
status of an organism; microorganisms remain 
in the lag phase or even die before homeostasis 
is re‐established (Leistner, 2000).

1.3  Understanding microbial 
growth, death, persistence, 
competition, antagonism 
and survival in food

1.3.1 P rinciples of microbial 
growth
In a food environment where nutrients are not 
limiting, microbial cells increase in number in a 
characteristic manner and at a specific rate as 
determined by their genetic traits. It is well 
known by microbiologists that the growth 
curve exhibits four different phases: (i) the lag 
phase in which microorganisms, by a series of 
biochemical activities, acclimate to their envi­
ronment and initiate cell reproduction and 
growth; (ii) the exponential or log phase, 
where cell components are synthesized in order 
to allow cell replication at a logarithmic rate 
determined by their generation time and ability 
to assimilate the substrate; (iii) the stationary 
phase, which begins when a microbial populat­
ion tends to stabilize due to accumulation of 
metabolic end‐products and limitations in 
substrates necessary for growth, leading to 
reduction of the growth rate; and (iv) the decline 
or death phase, when microorganisms die and 
lyse (autolysis) due to nutrient depletion and 
the toxic effects of metabolic end‐products.

1.3.2  Survival
Microbial populations in foods are subjected to 
stressful conditions such as low or high temper­
atures, acidity, low water activity, modified 
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atmospheres, or nutrient deprivation. By a 
variety of strategies, microorganisms attempt to 
resist and adapt to these hostile conditions, con­
stantly switching between growth and merely 
surviving. The stress response, which results in 
a characteristic change in the pattern of gene 
expression, helps to restore cellular homeostasis 
and increase resistance to subsequent stressful 
conditions. Although death is an irreversible 
state, bacterial cells can be sublethally injured or 
enter a dormant state. These cells may repair 
the damage caused by the hostile environment 
and survive, even growing when conditions 
become favorable (Aertsen and Michiels, 2004; 
Wesche et al., 2009). The stress response in 
relation to microbial ecology of food will be 
discussed in Part IV of this book.

1.3.2.1  The viable but non‐culturable 
state
Many stressed organisms may regain the char­
acteristics of normal cells, but some severely 
injured cells remain metabolically active but 
cannot be resuscitated under routine labora­
tory conditions, entering a viable but non‐
culturable (VBNC) state (Wesche et  al., 2009). 
The VBNC state can be a significant means of 
survival if the cells have the ability to increase 
metabolic activity and become culturable once 
resuscitated (Oliver, 2005).

A large number of non‐spore‐forming 
bacteria are capable of entering the VBNC state. 
Although the exact role of this state in bacteria 
is yet to be elucidated, it can be induced by 
stressful conditions such as nutrient starvation, 
temperature, osmotic concentration, oxygen 
concentration, and food preservatives. Hence, 
the VBNC state might be an adaptive strategy 
for long‐term survival of bacteria under unfa­
vorable environmental conditions. In contrast 
to dead cells that have a damaged membrane, 
VBNC cells have an intact membrane retaining 
chromosomal and plasmid DNA and differ from 
“injured” bacteria that are unable to grow on 
selective media. VBNC cells do not grow on any 
medium, even if non‐selective. However, VBNC 
bacteria have higher resistance to physical and 

chemical stresses than culturable cells and 
can resuscitate when environmental conditions 
become favorable (Li et al., 2014; Oliver, 
2005, 2010).

1.3.3  Strategies for persistence
Many microorganisms associated with food 
survive treatments such as heat and disinfec­
tion, so they persist during storage and their 
numbers remain unchanged.

1.3.3.1  Sporulation
Some bacteria can form spores as a defense 
mechanism against unfavorable environmental 
conditions (e.g., Gram‐positive bacteria such as 
Bacillus and Clostridium). Indeed, endospores 
are very resistant structures with no measurable 
metabolism but can confer a great advantage for 
these bacteria to persist for prolonged periods 
of time and endure extreme stress conditions 
(high temperatures and UV irradiation, extreme 
freezing, desiccation, chemical damage by dis­
infectants, and enzymatic destruction). Under 
favorable environmental conditions, the endo­
spore can undergo activation and germination. 
Hence, metabolic activity is restored and the 
cell becomes vegetative.

1.3.3.2  Biofilm formation
Generally, bacteria do not live freely in 
suspension as planktonic cells and biofilms 
protect them from desiccation, bacteriophages, 
and sanitizing agents. Biofilm formation thus 
constitutes one of the survival strategies of 
microorganisms in hostile environments. The 
persistence of food‐borne pathogens and spoil­
age microorganisms on foods and food contact 
surfaces often adversely affects the quality 
and  safety of raw and minimally processed 
foods.

1.3.4  Competition
The composition of the microbial community 
of a food varies according to many ecophysio­
logical factors that have been described so far. 
However, the ecosystem is also altered by the 
interactions among microbes themselves.
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Mixed cultures in food fermentation 
processes represent some of the best examples 
of microbial interactions. Microbe–microbe 
interactions can be classified as positive (+), 
neutral (0), and negative (−). These interac­
tions can be further subdivided into: (i) mutu­
alism (+/+ interaction: both microbes involved 
benefit from the interaction, e.g., synergism or 
protocooperation among yogurt bacteria or 
mutualism between yeast and bacteria during 
sourdough fermentation); (ii) commensalism 
(+/0 interaction: one organism benefits from 
the interaction while the other is not affected, 
e.g., cultivation of propionic bacteria in the 
presence of LAB in Swiss‐type cheese); (iii) 
amensalism (−/0 interaction: interspecies 
interaction in which one organism adversely 
affects the other without being affected itself, 
e.g., bacteriocin production by LAB and ethanol 
production by yeasts); (iv) parasitism (+/− 
interaction: one species benefits at the expense 
of another, e.g., bacteriophages in fermenta­
tions); and (v) competition (−/− interaction: 
two or more species, strains, or subpopula­
tions of microbes compete for energy sources 
and nutrients) (Ivey et  al., 2013; Sieuwerts 
et al., 2008; Smid and Lacroix, 2013).

Microorganisms compete for nutrients, 
adhesion/attachment sites, as well as by their 
ability to alter the environment by producing 
metabolites. Preservation methods combined 
with ecophysiological factors and the genetic 
characteristics of each microorganism (lag 
phase, growth rate, and total cell biomass yield) 
lead to selection of microbial associations of 
a particular food at any given point in time dur­
ing production and storage. For example, psy­
chrotrophic bacteria such as Pseudomonas spp. 
dominate proteinaceous foods (meat, poultry, 
milk, and fish) stored at refrigeration tempera­
tures under aerobic conditions. In meat and fish 
products, a change in the atmosphere (e.g., 
vacuum packaging) promotes LAB at the 
expense of Pseudomonas. Microbial ecology 
of  food provides a comprehensive overview of 
the dominance of an organism based on its 
origin, substrate composition, temperature, 

pH,  aw, and atmosphere, regardless of raw 
material and processing.

In addition to these conditions determining 
the association of microbiota in food, there are 
three aspects of microbial interaction that must 
be taken into consideration according to Gram 
et al. (2002), namely: (i) antagonism, (ii) meta­
biosis, and (iii) cell‐to‐cell communication.

1.3.4.1  Antagonism
In addition to changes in environmental condi­
tions such as lowering pH by acid‐producing 
microorganisms, antagonistic abilities include 
competition for nutrients. Scavenging growth‐
limiting compounds such as iron represents 
one type of nutritional competition. Micro­
organisms with higher metabolic activity may 
selectively consume required nutrients, result­
ing in growth inhibition of other organisms 
with lower activity. The growth rate of 
particular microorganisms may also be affected 
by an overgrowing microbiota in a phenomenon 
described as the “Jameson effect”, which is 
essentially non‐specific nutrient competition 
(Gram et al., 2002).

1.3.4.2  Metabiosis
The microbial profile of a food evolves over 
time because of the changes in environmental 
conditions caused by the action of the com­
munity on the supply of nutrients from limiting 
metabolic compounds. This refers to the term 
“metabiosis”, which describes the interrelation­
ships among microorganisms to produce a 
given environment (Gram et al., 2002).

1.3.4.3  Cell‐to‐cell communication
The role of quorum sensing (QS) or cell‐to‐cell 
communication in food microbial ecology is 
now considered a microbial behavioral pattern 
that is correlated with the density of the micro­
bial population and with the ability to regulate 
gene expression as a function of cell density 
(Gram et al., 2002; Skandamis and Nychas, 
2012). In Part IV of this book, the quantitative 
aspects of quorum sensing will be applied to 
microbial ecology.
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The food matrix is composed of inter­
connected microenvironments where the levels 
of intrinsic ecophysiological factors (oxygen, 
pH, aw, nutrients, preservatives, and anti­
microbial compounds) may change. A large 
variety of microorganisms proliferates as micro­
colonies or biofilms and reaches high densities 
(107–109 cfu/g) in these in situ environments. 
The growth and activity of any one species or 
strain will be determined by the presence of 
other species since we can assume that quorum 
or other sensing molecules are released (in situ 
cell‐to‐cell ecological interactions). Micro­
organisms interact and influence the growth 
of  one another by synthesizing specific low‐
molecular‐weight diffusible signaling molecules 
as a function of population density :(i) Gram‐
negative bacteria produce and utilize N‐acyl 
homoserine lactones (AHLs) or autoinducer‐1 
(AI‐1) for intraspecies communication; (ii) 
autoinducing peptides (AIPs) are produced and 
used by Gram‐positive bacteria for intraspecies 
communication; and (iii) furanosyl borate 
diester derivatives or autoinducer‐2 (AI‐2) are 
produced by both Gram‐positive and Gram‐
negative bacteria and seem to serve as a 
universal language for inter‐ and intraspecies 
communication (Bai and Rai, 2011).

1.4  Methods to study the 
microbial ecology of foods

The aims of microbial ecology studies are to 
determine changes in microbial populations by 
characterizing community structure, diversity, 
activity, and interactions in their natural envi­
ronments. The three basic questions that detec­
tion methods must answer are: (i) “who is 
there?” by identifying the types of microorgan­
isms such as food‐borne pathogens, spoilage 
microorganisms, starter cultures, or potentially 
probiotic and beneficial microorganisms pre­
sent in the specific food environment; (ii) “who 
is doing what?” by assigning functional roles to 
these microorganisms; and (iii) “how do the 
activities of these microorganisms contribute to 

specific ecosystem functions or processes” 
(Ndoye et al., 2011; Ercolini, 2013).

Culture‐independent methods can circum­
vent the limitations of traditional microbio­
logical methods for the analysis of complex 
microbial ecosystems. These methods have 
been used in various types of foods, especially 
for cheese in recent years (Ndoye et al., 2011). 
In contrast to conventional microbiological 
techniques based on cultivation of the microor­
ganisms on media and phenotypic or genotypic 
characterization of a fraction of the com­
munity  (culture‐dependent methods), culture‐
independent techniques are based on direct 
analysis of DNA or RNA for efficient char­
acterization of whole microbial communities, 
evaluation of in situ gene expression and 
determination of metabolic activities of micro­
bial populations present in a particular food 
product. However, both culture‐dependent 
and culture‐independent methods have limita­
tions and should be combined as much as 
possible through polyphasic approaches to 
undertake analysis of both the community and 
activity of natural microbiota and spoilage 
microorganisms (Cocolin et al., 2013; Ercolini, 
2013; Ndoye et al., 2011).

1.4.1  Culture‐independent analysis 
of microbial communities
The application of molecular techniques has 
modified our understanding of the microbial 
ecology of food, allowing significant insights 
into all aspects of microbial populations 
(identification of specific isolates, changes in 
microbial communities, nature of the functional 
groups). These techniques have been classified 
into two major categories: (i) partial community 
analysis approaches and (ii) whole community 
analysis approaches (Rastogi and Sani, 2011).

1.4.1.1  Partial community analysis 
approaches
These approaches are based on the direct 
extraction of total DNA or RNA from the food 
product. Then, the genetic materials extracted 
from food samples, either DNA or cDNA (after 
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reverse transcription of the total RNA), are 
amplified by polymerase chain reaction (PCR)‐
based methods. The application of the various 
molecular culture‐independent tools allows: 
(i) direct identification of members of a 
community and assessment of their abun­
dance; (ii) reliable fingerprinting of complex 
bacterial communities; (iii) analysis of the 
diversity and dynamics of the dominant micro­
bial community; (iv) comparison of spatial and 
temporal changes in bacterial community 
structure; and (v) accurate quantification of 
target species (Ndoye et al., 2011).

1.4.1.2  Whole community analysis 
approaches
Next‐generation DNA sequencing (NGS) or 
high‐throughput sequencing is a hundred times 
faster and cheaper than the conventional Sanger 
approach and is already considered as the most 
powerful culture‐independent method for anal­
ysis of all the genetic information present in 
total DNA/RNA extracted from food samples or 
pure cultures. The NGS approach provides a 
more global perspective on food microbial 
communities, including molecular mechanisms 
of metabolically active microorganisms in food 
ecosystems. Metagenomics is defined as the 
investigation of the collective microbial 
genomes retrieved directly from environmental 
samples. When combined with other “omics” 
(functional genomics, transcriptomics, pro­
teomics, and metabolomics), these data provide 
deeper insight into microbial diversity and the 
metabolic potential of microbial communities 
as well as predictive models of the contribu­
tion  of individual microorganisms to the 
development of food quality and safety (Rastogi 
and Sani, 2011; Solieri et al., 2012).

1.5 P erspectives on applying 
food ecosystem modeling

Predictive microbiology, which will be detailed 
in Chapter  2, was originally conceived for 
analyzing the behavior of pure cultures of 

food‐borne pathogens, and then spoilage 
bacteria, in order to develop food processes that 
adequately control microbial growth throughout 
the shelf life of food products. For example, the 
growth boundary models for L. monocytogenes 
erroneously predict the growth of this path­
ogen, as it does not take into account the biofilm 
microbiota interactions (Guillier et al., 2008). In 
addition, pH and aw could not solely account for 
growth arrest in the stationary phase, without 
including non‐specific competition for nutri­
ents (Jameson effect). Considering factors that 
determine enzyme production has revealed 
crucial restraints on litter decomposition rates 
in soil (Allison et al., 2012), so these metabolic 
factors have great potential for application to 
food products as well. Genome‐scale metabolic 
models are becoming useful in analyzing inter­
actions in multispecies microbial systems from 
a metabolic standpoint, requiring the integration 
of the ecological concept of trade‐offs between 
individual and community fitness criteria 
(Zomorroddi et al., 2012).

Advances in our understanding of microbial 
interactions will allow us to envisage more com­
plex predictive models (Figure  1.2). Complex 
system science is a process of integrating a mul­
tiplicity of variables and knowledge from an 
array of disciplines (Perrot et  al., 2011). In the 
case of food, this means joining together the 
skills of mathematicians, physicists, and com­
puter scientists with those of microbiologists to 
complete food science and engineering. First 
used in environmental ecosystem modeling, this 
approach is beginning to be applied in order to 
comprehend the Camembert cheese ripening 
process (Sicard et  al., 2012). Viability theory 
from complex science was employed to define an 
optimal trajectory for Camembert cheese rip­
ening, which was validated through pilot studies 
by manipulating cheese size, relative humidity, 
and temperature controls. As a result, the cheese 
ripening process was shortened by four days 
without significant changes in the microor­
ganism kinetics. The quality target was reached 
and the sensory properties of the cheeses 
produced were similar to those obtained under 
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standard conditions (Sicard et al., 2012). This is 
one example of how microbial community mod­
eling can have a concrete impact on developing 
more efficient and less costly food processes.

Multiple species community modeling is 
still in its early stages and faces many challenges, 
especially applied to food. The next step, micro­
bial community engineering, has even greater 
challenges and potential rewards in ensuring 
food quality. Continual innovation in analytical 
methods will contribute to improve the pros­
pects of microbial community modeling in the 
future.
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2.1  Introduction

Predictive food microbiology is a subdiscipline 
of food microbiology that uses models (i.e., 
mathematical equations) to describe the growth, 
survival, or inactivation of microbes in food 
systems. Mathematical growth and inactivation 
models are increasingly used in the context 
of  the hazard analysis and critical control 
point (HACCP) system for food safety and as a 
means to demonstrate compliance of a product 
with microbiological criteria enforced by food 
safety and hygiene legislation.

Three ideal uses of predictive models are:  
(i) to narrow the choices for processing steps to 
be considered in an HACCP plan as having a 
major impact of final product safety, (ii) to assist 
in choosing the most resistant biological hazards 
(i.e., microorganisms) controlled at a specific 
processing step, and (iii) to define a safe 
operational design space without the need for 
additional data generation (e.g. when a model 
has been appropriately validated in represen­
tative food–model systems and deemed to 
provide ‘fail‐safe’ predictions). When using pre­
dictive models in HACCP plan development the 
intrinsic and extrinsic factors (pH, aw, tempera­
ture, etc.) used as inputs for the model should 
be chosen with care. If the conditions modeled 
suggest that growth could occur or that there is 

limited lethality for the product/process, then 
additional studies, product reformulation, or 
modification of the target shelf life would 
be warranted. If there is less confidence in the 
model, then limited challenge studies may 
be  warranted to verify the prediction from 
the model.

The long roadmap of predictive modeling 
over the last four decades, along with the 
advances towards understanding and quanti­
fying microbial responses down to the single 
cell level, have led to the appointment of pre­
dictive modeling as one of the most promising 
decision–support methodologies for food 
safety assessment by the Food Industry and 
competent authorities. Predictive modeling 
has been greatly benefitted by the technolog­
ical and scientific evolution in both collection 
and processing of data, through the introduc­
tion of –omics, the deployment of advanced 
microscopy techniques (e.g., confocal laser 
microscopy and fluorophores fused in the 
genome), the application of chemometrics, 
data mining, and the emergence of advanced 
data modeling techniques (e.g., artificial 
neural networks). As a next step, the rising 
trend for application of predictive modeling in 
daily practice has intensified the need to 
systematically exploit the vast  number of 
available predictive models so far. Meeting 
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Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition,  
Agricultural University of Athens, Athens, Greece
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this demand is being markedly achieved 
through the development of collective predic­
tive modeling repositories (e.g., ComBase, 
Pathogen Modelling Program, iRisk, Food 
Spoilage and Safety Predictor, Sym’Previus, 
etc.) equipped with search engines for guided 
retrieval of the appropriate food‐specific or 
generic models (i.e., not food‐specific) associ­
ated with particular hazards and built‐in 
fitting or simulation modules, in order to visu­
alize and numerically express the model out­
puts in comprehensive and ready‐to‐use 
formats. Such a variety of predictive model 
and risk assessment/risk ranking software 
tools may indeed help the food producers, 
researchers, and food safety inspectors to 
apply the concepts of predictive modeling in 
quality‐by‐design, identification of safe prod­
uct formulations, and evaluation of product 
compliance with safety standards and micro­
biological criteria. A comprehensive and quite 
extensive review of the available software tools 
can be found in the study by Tenenhaus‐Aziza 
and Ellouze (2014) and thus the underpinning 
principles and validity range of these tools will 
not be further analyzed in the present chapter.

Models alone should be applied with caution 
and with proper disclaimers in the context 
of  decision‐making during HACCP plan 
development. Use of models requires experi­
ence and judgment, both in modeling and food 
microbiology. Therefore, it is of vital impor­
tance to be clearly perceived that the predictive 
models and associated software tools should 
not replace the expert opinion, but rather assist 
the experts (and sometimes even the non‐
experts) to elicit a food safety plan. When 
models alone are used to make a decision, those 
models must be shown to be valid for the food 
in question and should take into consideration 
lot‐to‐lot variation. Validation may be based on 
published or unpublished data for very similar 
or identical foods. Nonetheless, even in cases 
when the available predictions are obtained 
from lab–media‐based models, which may 
potentially overlook some significant food‐
specific impacts on microbial behavior, such 

predictions are still very useful in guiding more 
focused and targeted challenge testing.

Based on microbial responses, expressed 
as a change in numbers and stress tolerance, 
the combinations of intrinsic and extrinsic 
environmental determinants to which micro­
organisms may be exposed are divided into the 
following major domains: the growth era and 
the domain including the combinations that 
allow survival or cause death of microorgan­
isms (Booth, 2002). The conditions that lie 
between these two domains refer to a zone 
where microbial responses are uncertain and 
characterized by the growth/no growth inter­
face (Le Marc et  al., 2005). This zone is 
strongly associated with the so‐called cardinal 
values (T, pH, aw, etc.) for growth and outlines 
the biokinetic range of microbial proliferation. 
Such values are species‐ or even strain‐
dependent and thus introduce significant var­
iability in the assessment of the impact of 
marginal growth conditions on microbial 
growth, an issue commonly encountered in 
quantitative microbial risk assessment. To 
remedy that, models have been proposed that 
embed the theoretical growth‐limiting values 
for critical hurdles, such as temperature, aw, 
pH, %CO2, and preservatives, as biological 
meaningful parameters in the model struc­
ture. Notably, a theoretical interface also exists 
between survival and inactivation separating 
combinations that cause growth cessation but 
not cellular death from those that are lethal 
(McKellar et al., 2002).

Different processes and product formula­
tions determine the dominant phenotype (i.e., 
growth or inactivation) and proper mathematical 
models should be retrieved to accurately (or, 
better to say, realistically) describe microbial 
dynamics. In this chapter, the available classical 
and modern modeling approaches are catego­
rized according to the existing food processes 
and associated microbial responses, starting 
from below the growth boundaries and extend­
ing to the superoptimal growth limits. The 
available model structures are detailed in each 
category.
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2.2 P robability and kinetic 
models for food processing 
and HACCP

The probability of growth models constitutes 
the cornerstone of predicting microbial 
dynamics, acting as the filter of the primary 
microbial response (growth or inactivation) and 
guiding the selection of the subsequent mod­
eling tool, i.e., growth or inactivation model, for 
predicting the change in microbial numbers 
along processing or distribution. Such models 
together with cardinal growth models may be of 
great assistance to HACCP, by offering science‐
based numerical evidence for setting critical 
limits, establishing process or product criteria, 
and assessing the compliance of a given process 
to these limits.

2.2.1 P robability of growth models
Probability models can be used to predict the 
likelihood of the occurrence of a microbial 
response as a function of intrinsic and extrinsic 
factors of foods and processing environment 
(Ross and Dalgaard, 2004). Microbial responses 
that have been modeled using this approach 
include spore germination, toxin formation by 
Clostridium botulinum, growth initiation, and 
survival or death of bacteria as a result of lethal 
pH and organic acid combinations. The logistic 
model was the first to be used for fitting data on 
the probability (%; 0–100) of one of the above 
responses over time at a given set of conditions. 
Common dependent variables that were moni­
tored over time include the fraction of positive 
(turbid) tubes, the probability of a single spore 
to give growth, or the probability of toxigenesis 
(Table  2.1). Parameters of the logistic model, 
such as Pmax, probability rate (time−1; i.e., the 
slope of the tangent through the inflection 
point, commonly symbolized as k), and mid‐
time point τ, were then expressed as a quadratic 
expression of the explanatory variables, such as 
T, pH, organic acid salt, preservatives, and CO2 
concentration (Table  2.1). The evolution of 
these models has led to the non‐linear and ordi­
nary logistic regression models, which describe 

the growth/no growth (G/NG) interface of 
microbial growth or death (McKellar et  al., 
2002) as a function of intrinsic and extrinsic 
factors of foods (Table  2.2). These models are 
fitted to dichotomous (binary) datasets gener­
ated by storage of inoculated media or foods for 
a long period of time, e.g., 60 days. Microbial 
responses are then recorded by visible inspection 
of biomass precipitation and measurement 
of optical density (OD) (in liquid cultures), or by 
comparing the final and the initial counts of the 
microorganism (e.g., in foods). Probability 
values of 1 and 0 are assigned to cases that gave 
growth and no growth, respectively. Logistic 
regression models may assist the Food Industry 
in the establishment of critical limits and prod­
uct criteria, as part of HACCP. Furthermore, 
they may be used as a reliable proof of whether 
a product complies with microbiological cri­
teria and also contributes to the achievement of 
a Food Safety Objective (FSO) (van Schothorst 
et al., 2009).

G/NG models were first developed for 
pathogenic bacteria, such as Escherichia coli 
O157:H7 (Presser et al., 1998; McKellar and Lu, 
2001), pathogenic E. coli (Salter et al., 2000), and 
Listeria monocytogenes (Tienungoon et  al., 
2000), describing the interface of these patho­
gens as a function of pH, T, aw, and organic 
acids. The concept of interface in microbial 
responses has also been extended to fungi, 
spoilage yeasts, and lactic acid bacteria (LAB) in 
shelf‐stable acidified sauces and fruit juices 
(Vermeulen et  al., 2007a, 2008). In the special 
case of mycotoxigenic fungi, the prediction of 
growth initiation eventually represents the risk 
of toxigenesis (Garcia et al., 2011). Similarly, the 
assessment of growth of spoilage molds and 
yeasts or LAB in acetic acid‐based sauces and 
fruit juices characterizes the microbial stability 
of their formulation (Vermeulen et  al., 2007a, 
2008; Dang et  al., 2010; Panagou et  al., 2010). 
Therefore, proper models may be used for opti­
mization of product development, considering 
that once spoilage organisms initiate growth, 
then spoilage is inevitable. For this reason, the 
initial G/NG models for shelf‐stable acidified 
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products predicted not only the probability of 
growth but also the time to growth (TTG) of 
spoilage organisms, such as Zygosaccharomyces 
bailii (Jenkins et al., 2000). The latter response 
resembles that of the time to toxigenesis (also 
incorrectly termed “lag time”) by Cl. botulinum, 
whereas TTG has also been modeled for E. coli 
(Lindblad and Lindqvist, 2010) and Geobacillus 
stearothermophilus (Llaudes et al., 2001).

Given the variety of existing G/NG models 
(Table 2.2), recent reports attempted to validate 
the most commonly used cardinal G/NG 
models against independent data from litera­
ture and international databases, such as 
ComBase. Representative initiatives include the 
validation of G/NG and growth models for 
L.  monocytogenes in mayonnaise‐based salads 
(Vermeulen et al., 2007c) and ready‐to‐eat (RTE) 
meat products and seafood (Mejlholm et  al., 
2010). More specifically, the collective valida­
tion dataset of Mejlholm et al. (2010) consisted 
of 1014 G/NG responses and six different 
models were evaluated. Notably, it was proven 
that the most complex models, which accounted 
for the effect of nine environmental factors, 
performed better than simpler models, suggest­
ing the usefulness of complexity in model 
development, when necessary.

Judging by the overview of the existing G/
NG models in Table  2.2, it is evident that 
ordinary models are the most commonly used. 
This was expected because ordinary logistic 
regression is often a built‐in routine in most 
commercial statistical software, thereby 
requiring no code or advanced mathematical 
skills for their application. Although the high 
number of models published emphasizes their 
importance for food spoilage and safety, the 
marked diversity in strains, experimental condi­
tions and protocols, culture preparations, inoc­
ulation levels, and duration of incubation 
underlines the difficulty in comparison of 
different models. Furthermore, overlapping 
between experimental conditions for the same 
microorganisms by different researchers is also 
evident. Therefore, systematic grouping of 
models and available G/NG responses would 

greatly enhance the application of probability 
models in daily practice. In this regard, the 
Microbial Response Viewer (Koseki, 2009) con­
stitutes an updated Combase database of G/NG 
data for 29 microorganisms in response to tem­
perature, pH, and aw, fitted to ordinary and 
square‐root cardinal models. An important 
advantage of this web‐based application is the 
simultaneous illustration of the G/NG interface 
and the growth rate at growth‐supporting con­
ditions, through colored contour plots.

2.2.2  Growth kinetic models
2.2.2.1  Effect of temperature
As nicely detailed by Corkrey et al. (2012, 2014) 
in their seminal meta‐analysis article, in their 
effort to thermodynamically describe the tem­
perature dependence of the growth rate of mul­
tiple species from all three domain of life, 
namely Bacteria, Archaea, and Eukarya: “…tem­
perature governs the rate of chemical reactions 
including those of enzymatic processes 
controlling the development and decline of life 
on earth from individual cells to complex popu­
lations and spanning temperatures from well 
below freezing (e.g., −2 °C) to above the boiling 
point of water, such as at 122 °C, which is the 
highest temperature so far known for biological 
growth”. Commonly, the change of growth rate 
of poikilothermic organisms in the biokinetic 
ranges has a U‐shape characterized by a 
minimum (suboptimal), maximum (superopti­
mal) around the optimal for growth. In their 
work, Corkrey et al. (2012, 2014) concluded that 
the effect of temperature on poikilotherm 
growth rate is exerted through a single rate‐lim­
iting enzyme‐catalyzed reaction, also associated 
with protein denaturation. In this way, the tem­
perature dependence of the growth rate of var­
ious organisms can be described by an 
Arrhenius‐type equation that uses the following 
thermodynamic components in the form of 
non‐linear regression model parameters: (i) the 
enthalpy (ΔH) of activation of the rate‐limiting 
reaction, (ii) the heat capacity change (ΔC), (iii) 
denaturation kinetics (D), and (iv) the critical tem­
perature (Tmes)at which the protein denaturation 
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is minimized (i.e., corresponding to the theo­
retical optimal growth temperature).

Temperature is also known to control the 
shelf life of foods, either by determining the rate 
of microbial spoilage or the rate of microor­
ganism‐independent quality decay reactions, 
e.g., due to enzymes causing texture breakdown 
(e.g., pectinolytic, enzymes acting on myofi­
brillar proteins) and lipid or colour oxidation 
(e.g., polypheloxodases, esterases, etc.) A shelf 
life loss kinetic model is characteristic not only 
for the studied food but equally important to 
the set of environmental conditions of the 
experiment. These conditions can determine 
the reaction rates and have to be defined and 
monitored during kinetic experiments. Since 
most environmental factors do not remain 
constant the next logical step would be to 
expand the models to include them as variables, 
especially the ones that more strongly affect the 
reaction rates and are more prone to variations 
during the life of the food. The practical 
approach is to model the effect into the apparent 
reaction rate constant, i.e., expressing k as a 
function of Ej: k = k(Ej) (Taoukis et al., 1997):

r
d A
dt

k AA
m

	

Secondary models describe the mathematical 
dependence of parameters (e.g., lag time, growth 
rate, time‐to‐certain log increase or reduction) 
estimated by a primary model on the environ­
mental or cultural conditions, such as pH, aw, 
T,  Eh, CO2 concentration in the packaging 
atmosphere, preservatives, etc. Food product 
spoilage is dynamic and in some cases relatively 
small changes in environmental conditions 
cause a complete shift in the microflora respon­
sible for product spoilage (i.e., the ephemeral or 
specific spoilage organisms) or in the non‐
microbial quality decay indices. The modeling 
procedure includes the mathematical descrip­
tion of growth/inactivation kinetics or the 
probability of growth for a microorganism of 
interest, as a function of a specific interpolation 
range of the environmental variables affecting 

these kinetics. In 1982, Hauschild assessed the 
probability of spore germination and the pro­
duction of toxin in vacuum‐packaged bacon and 
liver sausage. Hauschild and other researchers 
(Roberts and Gibson, 1986; Tompkin, 1986) 
also  examined the effects of some variables 
such  as  salt, nitrite, phosphate and sorbate 
concentration, formulation, processing tech­
niques, and pH. The most common secondary 
models are the Arrhenius model, modified 
Arrhenius, polynomial and square root models. 
The Arrhenius is an empirical model, based on 
thermodynamic considerations (Labuza and 
Riboh, 1982):

k k e E RTA
0

/
	

The Arrhenius equation expresses the 
dependence of the rate (k) of chemical reactions 
on the temperature T (in absolute temperature 
kelvin) through the activation energy EA. 
Parameter k0 is the pre‐exponential factor or 
simply the prefactor and R is the gas constant 
(8314 J/K mol). In the above equation, if values 
of k are recorded at different temperatures and 
if ln k is plotted against 1/T, a straight line is 
formed with slope –EA/R (Labuza and Riboh, 
1982; Labuza et al., 1992). If the objective is to 
get a rapid estimation of the expected shelf life 
of the product, then an accelerated shelf life 
test (ASLT) can be used in the range of interest. 
Taking into account the limitations or possible 
deviations from the Arrhenius law, the ASLT 
involves the use of the Arrhenius equation at 
higher testing temperatures in a thorough shelf 
life study and extrapolation of the kinetic results 
to normal, non‐abusive storage conditions. This 
procedure is used to substantially reduce the 
experimental time, through the acceleration of 
the quality deterioration reactions. The succes­
sive steps that outline shelf life determination 
and ASLT methodology are presented in 
Taoukis et  al. (1997). The Arrhenius relation 
developed theoretically for reversible molecular 
chemical reactions has been used to describe 
the effect of temperature on the rate of several 
reactions of quality loss. It should be noted that 
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the Arrhenius equation implies that kA is the 
value of the reaction rate at 0 K, which is of no 
practical interest. Alternatively, the use of a ref­
erence temperature, Tref, is recommended, 
corresponding to a representative value in the 
temperature range of the process/storage of 
study. The Arrhenius equation is then mathe­
matically transformed as follows:

k k E
R T Tref

A

ref

exp 1 1

where kref is the rate constant at the reference 
temperature Tref. The value of EA is, in that case, 
calculated from the linear regression of ln k 
versus (1/T – 1/Tref). Alternatively to isothermal 
kinetic analysis, the study at a single non‐
isothermal temperature profile is proposed, 
where temperature varies with time, following 
a predetermined function of T(t) (Taoukis and 
Giannakourou, 2004). In that case, the above 
equation is modified as follows, assuming a 
first‐order reaction:

A A k E
R T t

dtA

t
A

0
0

1exp exp

where the integral is calculated by numerical 
techniques. This approach requires a very strict 
temperature control and is very sensitive to 
experimental error in concentration measure­
ments. Although the Arrhenius equation may be 
applied in most non‐microbial quality decay 
indices, for the bacterial growth extrapolations 
plots may show non‐linearity. Therefore, it 
cannot fit data well below optimum or above 
minimum temperatures for growth. The plots are 
normally only accurate over a limited tempera­
ture range for microbial growth (Labuza and Fu, 
1993). Fu et  al. (1991) illustrated this accuracy 
with Arrhenius plots for Pseudomonas fragi.

Schoolfield et al. (1981) reparameterized an 
earlier equation (Sharpe and De Michele, 1977) 
into a six‐parameter non‐linear model shown as 
follows:

1

25
298

1
298

1

1 1 1
1

2

K
T H

R T

H
R T T

A

L

L

oC exp

exp exp H
R T T

H

H

1 1
1

2

where T is the absolute temperature, R is the 
universal gas constant, K is the response (e.g., 
generation time), ρ(25) a scaling factor equal to 
the response rate (1/K) at 25 °C, HA is the 
activation energy of the rate‐controlling reac­
tion, HL is the activation energy of denaturation 
of the growth‐rate‐controlling enzyme at low 
temperatures, HH is the activation energy of 
denaturation of the growth‐rate‐controlling 
enzyme at high temperatures, T1/2L is the lower 
temperature at which half of the growth‐rate‐
controlling enzyme is denaturated, and T1/2H is 
the higher temperature at which half of the 
growth‐rate‐controlling enzyme is denaturated.

The Q10 approach in essence introduces 
a  temperature dependence equation of the 
form:

k T k e k k bTbT
0 0or ln ln 	

which implies that if ln k is plotted versus tem­
perature (instead of 1/T of the Arrhenius 
equation) a straight line is obtained. Such plots 
are often called shelf life plots, where b is the 
slope of the shelf life plot and k0 is the intercept. 
The shelf life plots are true straight lines only for 
narrow temperature ranges of 10 to 20 °C 
(Labuza, 1982). For such a narrow interval, data 
from an Arrhenius plot will give a relatively 
straight line in a shelf life plot, i.e., Q10 and b are 
functions of temperature:

lnQ b
E
R T T

A
10 10 10

10 	

The variation of Q10 with temperature for reactions 
of different activation energies is shown in 
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Table 2.3. Similarly to Q10 the term QA is some­
times used. The definition of QA is the same as 
Q10 with 10 °C replaced by A °C:

Q QA
A

10
10/

	

Zwietering et al. (1991) compared the suit­
ability and usefulness of the Schoolfield model 
to five other models using L. plantarum grown 
at various temperatures between 6 and 43 °C. It 
was found that the Schoolfield model described 
data satisfactorily. Davey (1989) used a modified 
Arrhenius‐type model to describe the effects of 
water activity and temperature on microbial 
growth rates:

ln k C
C
T

C
T

C a C aw w0
1 2

2 3 4
2

	

where T is temperature (K), aw is the water 
activity, and C0, C1, C2, C3, C4 are coefficients to 
be determined. Products, such as dried or fer­
mented meats, that have low water activity (e.g., 
aw <0.90) may find this equation applicable (Van 
Gerwen and Zwietering, 1998). However, when 
water activity is non‐limiting the last two terms 
of the equation can be removed (McMeekin 
et al., 1992). In the above equation, all parame­
ters appear linearly and thus estimation can be 
made using multiple linear regression.

Ratkowsky et  al. (1982) introduced the 
Belehradek model for the first time in food 
microbiology. Until then, this model was 
unknown in the field of microbiology, although 
it has been published since 1926 (McMeekin 
et  al., 1993; Ross, 1993). This model, which is 

also known as the “square root model” is shown 
below:

k b T Tmin 	

where k is the growth rate, b is a constant, and T 
is the temperature. The parameter Tmin, a theo­
retical minimum temperature for growth, is the 
intercept between the model and the tempera­
ture axis. Given that Tmin is a model parameter 
(i.e., theoretical), its value can be 5 to 10 °C 
lower than the actual lowest temperature at 
which growth may occur. Ratkowsky tested 50 
sets of growth data and found that this model 
described the microbial growth rate well 
(Ratkowsky et  al., 1982). Moreover, Pooni and 
Mead (1984) compared the results of the square 
root model with other models to data from 14 
published studies on poultry spoilage and found 
that the above equation was the most appro­
priate for predicting spoilage from −2 up to 
15 °C. The square root model was later extended 
in order to include the entire biokinetic temper­
ature range (Ratkowsky et al., 1982), as described 
by the following empirical non‐linear regression 
model:

k b T T c T Tmin maxexp1 	

where b is the regression coefficient of k for 
temperatures T < Topt, c is a parameter allowing 
the model to fit the data over the optimum tem­
perature, T is the temperature, Tmin is the theo­
retical minimum temperature below which no 
growth is likely, and Tmax is the theoretical 

Table 2.3  Q10 dependence on EA and temperature.

EA (kJ/mol) Q10 Reactions in EA range

at 4 °C at 21 °C at 35 °C

  50 2.13 1.96 1.85 Enzymic, hydrolytic
100 4.54 3.84 3.41 Nutrient loss, lipid oxidation
150 9.66 7.52 6.30 Non enzymatic browning
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maximum temperature beyond which growth is 
not possible.

The equation terms Tmin and Tmax can be used 
to classify the microorganisms into psychro­
philes, mesophiles, or thermophiles (Ross, 
1993). Other researchers have also shown that 
this equation is reasonably effective in predict­
ing effects of constant storage temperatures 
on  microbial growth rates (Chandler and 
McMeekin, 1985a, 1985b; Phillips and Griffiths, 
1987). The effects of fluctuating storage tem­
perature has been studied by Blankenship et al. 
(1988) who developed a dynamic model for pre­
dicting growth of Cl. perfringens in cooked meat 
with chilli during chilling using a time‐explicit 
approach.

2.2.2.2  Effects of other environmental 
factors
Moisture content and water activity (aw) are 
also important factors besides temperature that 
affect the rate of food deterioration reactions. 
Water activity describes the degree of bound­
ing of the water contained in the food and its 
availability to act as a solvent and participate in 
chemical reactions or support microbial growth 
(Labuza, 1980). Critical levels of aw can be rec­
ognized above which undesirable deterioration 
of food occurs. Controlling the aw is the basis 
for preservation of dry and intermediate mois­
ture food s (IMF s). Minimum aw values for 
growth can be defined for different microbial 
species. For example, the most tolerant patho­
genic bacterium is Staphylococcus aureus, 
which can grow down to an aw of 0.85−0.86. 
This is often used as the critical level of patho­
genicity in foods. McMeekin et al. (1987) mod­
ified the classical square root model linking 
growth rate to temperature by adding the aw 
variable. The new model accurately predicted 
the effect of temperature and water activity on 
the growth rate of Staphylococcus xylosus and 
Halobacterium spp., respectively, on salted 
dried fish (McMeekin et  al., 1987; Chandler 
and McMeekin, 1989a). However, it was found 
that the effect of variables were additive, sug­
gesting that T and aw act independently 
(Chandler and McMeekin, 1989a):

k b T T a aw wmin min 	

The pH of the food system is another deter­
mining factor. The effect of pH on different 
microbial, enzymatic, and protein reactions has 
been studied in model biochemical or food sys­
tems. Enzymatic and microbial activity exhibits 
an optimum pH range and limits above and 
below which activity ceases, much like the 
response to temperature. The functionality and 
solubility of proteins depend strongly on pH, 
with the solubility usually being at a minimum 
near the isoelectric point, having a direct effect 
on their behavior in reactions. Examples of 
important acid–base catalyzed reactions are 
non‐enzymatic browning and aspartame decom­
position. Non‐enzymatic browning of proteins 
shows a minimum near pH 3–4 and high rates in 
the near neutral–alkaline range. Significant 
progress in elucidating and modeling the 
combined effect to microbial growth of factors 
such as T, pH, aw, or salt concentration has been 
achieved in the field of predictive microbiology 
(Ross and McMeekin, 1994; Rosso et al., 1995).

Adams et al. (1991) modified a square root 
model for the combined effects of pH and tem­
perature using a variety of acidulants and 
showed that the growth rate under varying con­
ditions of suboptimal temperature and pH can 
be predicted using this modified equation, 
which gave good fits for three serotypes of 
Yersinia enterocolitica:

k b T T pH pHmin min 	

McMeekin et  al. (1992) suggested that the 
effects of temperature, aw, and pH on microbial 
growth could be described together with the 
following equation that was subsequently used 
successfully on growth data for Listeria monocy-
togenes by Wijtzes et al. (1993):

k b T T a a pH pHw wmin min min 	

Gas composition also affects certain quality 
loss reactions. Oxygen affects both the rate and 
apparent order of oxidative reactions, based on 
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It has been applied to Listeria monocyto-
genes and Escherichia coli growth rates. It was 
presented in its most complete form in Ross 
et al. (2003); c,d, and g are fitted parameters, 
[LAC] is the lactic acid concentration (mM), 
Umin is the minimum concentration (mM) of 
undissociated lactic acid that prevents growth 
when all other factors are optimal, Dmin is the 
minimum concentration (mM) of dissociated 
lactic acid that prevents growth when all other 
factors are optimal, and pKa is the pH for 
which concentrations of undissociated and 
dissociated lactic acid are equal. The gamma 
(γ) concept, or concept of dimensionless 
growth factors, was introduced by Zwietering 
et  al. (1992). Later, minor changes and new 

developments were added (Wijtzes et  al., 
1998, 2001; Zwietering, 1999; Zwietering 
et al., 1996). The gamma (γ) concept relies on 
the following factors:

i.	 The observation is made that many factors 
that affect microbial growth rate act inde­
pendently and that the effect of each mea­
surable factor on the growth rate can be 
represented by a discrete term that is multi­
plied by terms for the effect of all other 
growth rates affecting factors, i.e.:

f f fT a pH f
f f

w organic acid
other factor other1   factor

raise other factorn

2

f

its presence in limiting or excess amounts. 
Exclusion or limitation of O2 by nitrogen flushing 
or vacuum packaging reduces the redox potential 
and slows down undesirable reactions. Further, 
the presence and relative amount of other gases, 
especially carbon dioxide and secondly ethylene 
and CO, strongly affects biological and microbial 
reactions in fresh meat, fruit, and vegetables. The 
mode of action of CO2 is partly connected to sur­
face acidification but additional mechanisms, not 
clearly established, are in action. Different sys­
tems require different O2:CO2:N2 ratios to achieve 
maximum shelf life extension and, often, excess 
CO2 can be detrimental. Alternatively, hypobaric 
storage, whereby total pressure is reduced, has 
been studied. Modified atmosphere packaging is 
commonly used with many fresh meats. Recently, 
Devlieghere et al. (1998) replaced the pH terms 
in the square root model with terms to describe 
for dissolved CO2 in modified atmosphere 
cooked meats. The following equation was pro­
posed for modeling the effect of carbon dioxide‐
enriched (%CO2) atmospheres on growth of the 

specific spoilage organism Photobacterium phos-
phoreum on fish (Dalgaard, 1995; Dalgaard et al., 
1997):

k b T T
CO CO

COmin
max

max

% %
%

2 2

2 	

Later, similar but square‐root‐transformed 
terms were used to model the effect of CO2 and 
sodium lactate (NaL) on the growth of 
Lactobacillus sake and Listeria monocytogenes 
at a given pH (Devlieghere et al., 1998, 2000a, 
2000b):

k b T T a a CO CO

NaL NaL

w wmin min max

max

2 2

A more comprehensive square‐root‐type model 
that includes the effects of temperature, pH, 
water activity, and lactic acid has been sug­
gested in a series of publications (Presser et al., 
1997; Ross, 1993; Salter et al., 1998):
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ii.	 The effect on growth rate of any factor can 
be expressed as a fraction of the maximum 
growth rate (i.e., the rate when that environ­
mental factor is at the optimum level). 
Under the gamma concept approach, the 
cumulative effect of many factors poised at 
suboptimal levels can be estimated from the 
product of the relative inhibition of the 
growth rate due to each factor:

max T a pHw

opt

, , ,

max

In the gamma model approach, the reference 
growth rate is μmax, so that reference levels of 
temperature, water activity, etc., are those that 
are the optimum for growth rate, usually repre­
sented as Topt, awopt, pHopt, etc. The relative inhib­
itory effect of a specific environmental variable 
is described by a growth factor “gamma” (γ), a 
dimensionless measure that has a value between 
0 and 1:

T T T
T Topt

min

min

2

	

pH
pH pH pH pH

pH pH pH pHopt opt

min max

min max 	

a
a a

aw
w w

w

,min

,min1 	

The relative inhibitory effect can be deter­
mined from the “distance” between the optimal 
levels of the factor and the minimum (or 
maximum) level that completely inhibits growth 
by recourse to a predictive model. The combined 
effect of several environmental factors is then 
determined by multiplication of their respec­
tive γ factors:

max wT pH amax opt

The effect of environmental parameters like 
carbon dioxide, sodium lactate, and nitrite has 

also been included in square‐root‐type models. 
The absence of these inhibitory substances is 
optimal for growth. Therefore the calculation of 
γ factors requires information only about the 
lowest concentration of each substance that 
prevents growth. Cardinal parameter models 
(CPMs) were introduced to predictive microbi­
ology in 1993 and have become an important 
group of empirical secondary models (Augustin 
and Carlier, 2000; Le Marc et al., 2002; Messins 
et  al., 2002; Pouillot et  al., 2003; Rosso, 1999; 
Rosso et  al., 1993, 1995; Rosso and Robinson, 
2001). The basic idea behind CPMs is to use 
model parameters that have a biological or 
graphical interpretation. When models are fit­
ted to experimental data by non‐linear regres­
sion, this has the obvious advantage that 
appropriate starting values are easy to deter­
mine. In addition, the models may be easily 
adjusted to account for different pathogen–food 
combinations by introducing the cardinal values 
and the maximum specific growth rate at 
optimum conditions (μopt) of the organisms in 
the target (e.g., new) food. General CPMs rely 
on the assumption that the inhibitory effect of 
environmental factors is multiplicative. CPMs 
consist of a discrete term for each environ­
mental factor, with each term expressed as the 
growth rate relative to that when that factor is 
optimal. At optimal growth conditions all terms 
have a value of 1 and thus μmax is equal to μopt.

Augustin et al. (2005) proposed a new, mech­
anistically based, CP model. This model includes 
the effect of six fundamental variables (tempera­
ture, aw, pH, phenol concentration, nitrites, and 
CO2) and the interactions between these envi­
ronmental parameters (Mejlholm et al., 2010):

max Topt wCM CM pH SR a SR nit
SR phe SR CO

2 1

2

where aw is the water activity, nit is the 
concentration (mM) of undissociated sodium 
nitrite, phe is the concentration (ppm) of smoke 
components (phenol), CO2 is the CO2 proportion, 
and ξ is the effect of interactions between 
the  environmental parameters, especially at 
combinations near the growth boundaries. 
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Abbreviations CMn and SR were included as 
used by Augustin et al. (2005). With this model, 
both the growth rates and probability of growth 
of Listeria monocytogenes could be predicted 
accurately in dairy, meat, and seafood products 

in a single model output. Augustin et al. (2005) 
estimated optimal specific growth rates for each 
of the product categories by fitting their model 
to growth data obtained from dairy (n = 340), 
meat (n = 324) and seafood (n = 80) products:

where X is the temperature or pH; Xmin, Xopt, and 
Xmax are the theoretical minimal, optimal, and 
maximal values of X for growth of Listeria 
monocytogenes;

SR a

a a
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where aw min, aw opt and aw max are the theoretical 
minimal, optimal, and maximum aw values 
allowing growth of L. monocytogenes;

SR c
c

MIC
c MIC

c MIC

1

0

,

,

where MIC is the minimum inhibitory 
concentration of undissociated sodium nitrite 
(mM), phenol (ppm), or CO2 (proportion) against 
L. monocytogenes and c is the concentration 
of  undissociated sodium nitrite (mM), the 
concentration of phenol (ppm), or the proportion 
of CO2. The modeling of the interactions bet­
ween the environmental parameters (ξ) is based 
on the approach of Le Marc et al. (2002):

1 0 5
2 1 0 5 1
0 1

, .
, .

,

The ψ‐value is determined from sets of envi­
ronmental parameters and describes how far 
specific combinations of product characteristics 
and storage conditions are from the predicted 
growth boundary (corresponding to a value of ψ 
equal to 1.0) (LeMarc et al., 2002):
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The Augustin model has been expanded by 
introduction of the effect of different organic 
acids and their interactions, leading to the CPM 
of Zuliani et  al. (2007). The new parameters 
added are acetic acid and lactic acid. The 
maximum growth rate is expressed by

max Topt wCM CM pH SR a SR OA2 1 1
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where OA represents the concentration (mM) 
of undissociated acetic or lactic acid. Zuliani 
et  al. (2007) suggested that the antimicrobial 

effect of acetic and lactic acid should be mod­
eled as the effect of the dominating undissoci­
ated acid alone:

where [AACU] and[LACU] are the concentra­
tions (mM) of undissociated acetic acid and 
lactic acid, respectively, and [MICU acetic acid] 
and[MICU lactic acid] are the MICs (mM) of 
acetic acid and lactic acid, respectively, that pre­
vent growth of Listeria monocytogenes.

2.3 T hermal inactivation

Thermal processing is today one of the most 
important preservation methods in a wide 
variety of foods. Quantification of the microbial 
destruction during thermal treatment of a food 
product is one of the main issues tackled by 
predictive microbiology. Throughout the years, 
different mathematical models have been devel­
oped to describe microbial inactivation based 
either on empirical or biological insights to 
ensure food safety and quality. These models 
could further contribute to the microbiological 
aspect of HACCP by identifying certain micro­
organisms that could be potential hazards in the 
process and define steps at which critical con­
trol can be achieved (Valdramidis et al., 2005). 
The efficacy of thermal processes has been cal­
culated based on the assumption that microbial 
inactivation is a process following first‐order 
kinetics (Stumbo, 1973). This model is based on 
the assumption that the inactivation of micro­
bial cells takes place at a constant proportion in 
each successive time (Li et al., 2007), and it has 
been proved effective for the last 90 years in the 

canning industry for high‐temperature treat­
ments at sterilization level to control Clostridium 
botulinum. It was stipulated that for a given 
microorganism a thermal process should be 
expressed in terms of the number of log reduc­
tions that the process is expected to deliver 
(Heldman and Newsome, 2003). In most cases, 
6D is the target for pasteurization and 12D for 
commercial sterility (ICMSF, 2005). First‐order 
kinetic models with the derived D and z values 
have been extensively employed due to sim­
plicity in the interpretation of kinetic parame­
ters by the industry for a variety of pathogens 
(Van Asselt and Zwietering, 2006) including 
Listeria monocytogenes in chicken meats 
(Huang, 2013), traditional sausages (Felício 
et  al., 2011), kiwifruit puree (Benlloch‐Tinoco 
et  al., 2014), Salmonella spp. in chicken 
shawirma (gyro) (Osaili et  al., 2013), peanut 
butter (Li et  al., 2014), catfish and tilapia 
(Rajkowski, 2012), Yersinia enterocolitica in 
liquid egg products (Favier et  al., 2008), 
Escherichia coli in buffalo Mozzarella curd 
(Trevisani et  al., 2014), and fish (Rajkowski, 
2012). However, the concept of D value becomes 
ineffective in the case where deviation from lin­
earity occurs. This deviation from first‐order 
kinetics was tackled in various ways, the most 
important being to ignore the curvature of the 
survival curve and take into account only the 
linear segment, although such as approach 
would lead to over‐ or underestimation of the 
thermal treatment and could jeopardize the 
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safety of the product (Peleg and Penchina, 2000). 
From a practical point of view, microbial inacti­
vation is often non‐linear and a shoulder phase 
has been observed before initiation of a decline 
phase occurs, whereas in many cases a pro­
longed survival of a low population of the 
organism is observed (tailing), especially in the 
case of mild heat treatment. In an extensive 
survey for over 120 inactivation curves of non‐
spore‐forming bacteria, it was demonstrated 
that only 5% of them followed a log‐linear 
pattern (van Boekel, 2002). In view of these 
observations, a number of non‐linear models 
has been developed, as detailed by other authors 
(Corradini and Peleg, 2007; Smelt and Brul, 
2014). Among them, the most popular were the 
biphasic model (Cerf, 1977), modified Gompertz 
(Bhaduri et  al., 1991), log‐logistic (Cole et  al., 
1993), Whiting and Buchanan (1993), and 
Baranyi (Baranyi and Roberts, 1994). The mod­
ified Gompertz equation was one of the first 
models employed for the inactivation of Listeria 
monocytogenes during heat treatment and 
showed better performance than first‐order 
kinetic models (Bhaduri et al., 1991). However, 
Geeraerd et  al. (2000) demonstrated that this 
model was not appropriate to model accurately 
the linear inactivation phase due to structural 
limitations and similar conclusions were 
reported for Bacillus cereus spores during heat 
treatment of sous vide foods (Li et  al., 2014). 
The variety of non‐linear models in thermal 
inactivation of microorganisms has been exten­
sively reviewed in the past (Xiong et al., 1999; Li 
et al., 2007) whereas GInaFiT, an Excel add‐in 
software, has been developed to include nine 
different model types covering eight different 
shapes of inactivation curves (Geeraerd et  al., 
2005) in an attempt to facilitate curve fitting. All 
the above models are based on the assumption 
that survival curves can be treated in kinetic 
terms. Recently, a new category of inactivation 
models has been developed based on the 
alternative hypothesis that microbial inactiva­
tion is a cumulative form of a temporal distribu­
tion of lethal events that represent the spectrum 
of resistances of the treated microbial population 

to the lethal agent (Peleg and Penchina, 2000). 
The Weibull model can be described by the 
following equation (Mafart et al., 2002):

log
N
N

tt
p

0

in which N0 and Nt are the population of the 
microorganism at time 0 and t, respectively, t is 
the heating time, and δ, p are the scale and shape 
parameters; a concave upward survival curve is 
related to p < 1, concave downward for p > 1, and 
linear if p = 1. The shape of the curve could pro­
vide biologically meaningful information not 
only as a reflection of the properties of an 
underlying distribution of lethal events but 
also as an indication of the cumulative effect of 
the lethal agent on the surviving microbial 
population, thus providing a link with 
physiological effects (van Boekel, 2002). Thus, a 
concave upward curve (p < 1) indicates that as 
the sensitive members of the population are 
destroyed, the remaining cells have the ability to 
adapt to the applied lethal agent and become 
more resistant. On the contrary, for concave 
downward curves (p > 1) the remaining cells 
become increasingly damaged by the lethal 
agent and it takes a shorter time to destroy them 
(Chen and Hoover, 2004). The majority of 
thermal inactivation models has been devel­
oped in buffer systems under controlled labora­
tory conditions that may be inappropriate when 
extrapolated to real food situations. The trend 
in the last few years is to design experiments on 
model systems or directly on foods that give 
reliable information on bacterial behavior. Thus, 
van Lieverloo et  al. (2013) investigated the 
thermal inactivation of Listeria monocytogenes 
in liquid food products by means of multiple 
regression models, taking into account 51 dif­
ferent strains of the pathogen and 6 cocktails of 
strains. The food products assayed were dairy 
(milk, cream, butter), fruit and vegetable juices, 
liquid eggs, and meat gravy. The purpose of the 
work was to develop a model that could predict 
thermal inactivation of the pathogen while 
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accounting for effects of food composition (pH, 
sodium chloride, sugar) and processing condi­
tions (storage temperature, heat shock). The 
authors demonstrated that multiple regression 
modeling can be used effectively to predict the 
inactivation of the pathogen with a probability 
of survival of less than 1 in a billion liters with a 
limited and realistic uncertainty level while 
retaining the variability of heat resistance due to 
the high number of strains assayed. Silva and 
Gibbs (2004) published a study for the design of 
pasteurization processes for high‐acid shelf‐
stable fruit products using first‐order kinetics 
modeling and reported the D and z values for 
a  wide variety of spoilage microorganisms 
including ascospores of heat‐resistant fungi and 
bacterial spores. Typical z values ranged from 
7.7 to 12.9 °C depending on the fruit product 
and spore strain. The authors concluded that 
the target microorganism in the design of the 
pasteurization process should be Alicyclobacillus 
acidoterrestris, a high heat‐resistant bacterium 
that causes spoilage to fruit juices, despite the 
common assumption that microbial spores that 
can be found in pasteurized fruit products 
(pH < 4.6) do not grow because of the acidity of 
the product. The inactivation of Salmonella 
spp. in various food matrices under thermal and 
emerging treatments has been recently reviewed 
(Bermúdez‐Aguirre and Corradini, 2012). It was 
reported that Salmonella inactivation does not 
follow first‐order kinetics, emphasizing the 
need for models that adequately describe the 
survival curves and have predictive ability. 
Survival of the pathogen was explored with 
Weibullian and non‐Weibullian models report­
ing the potential and limitations to characterize 
the survival curves. It was demonstrated that 
departure from linearity is frequently observed 
during thermal inactivation and thus model 
selection should be based on goodness of fit and 
simplicity rather than preselected kinetics. The 
thermal pasteurization requirements for 
Salmonella inactivation has also been reported 
in a variety of meat products (Silva and Gibbs, 
2012) and minimum process times at various 
temperatures for 7D inactivation of the pathogen 

have been indicated. Deviation from linearity 
was also confirmed and the authors proposed 
the application of an additional 1 or 2D inacti­
vation in Salmonella numbers to overcome 
deviations from linearity and thus avoid under­
estimation of survivor numbers. Inactivation 
model fitting has been facilitated in the last 
few  years by the development of specialized 
software tools such as Combase, GroPin, NIZO 
Premia, GInaFit, PMM‐Lab, Sym’Previus, and 
FILTREX (Tenenhaus‐Aziza and Ellouse, 
2014) that estimate inactivation parameters 
on the user specific experimental data. 
Normally, the user can upload the dataset, 
choose the linear or non‐linear model, select 
the temperature of treatment together with 
other parameters (e.g., pH, NaCl, etc.), and get 
the fitting estimates. It is expected that the 
wide use and acceptability of these tools by the 
industry will help in the design and optimiza­
tion of thermal processes.

2.4  Non‐thermal inactivation 
and modeling stress‐
adaptation strategies

Non‐thermal inactivation is usually the result of 
the single or combined effect of low pH (<4.5) or 
aw (<0.90) and moisture (<60%) at refrigeration 
or ambient temperatures in the presence or not 
of preservative agents close to their minimum 
inhibitory concentration (MIC). Although the 
lethality is attributed to heat‐independent 
factors, temperature values within the bioki­
netic range of growth from the minimum (sub­
optimal, 0–5 °C) to the maximum (superoptimal: 
45–47 °C) value for growth remain the factor 
governing the non‐thermal inactivation rate of 
bacteria (Shadbolt et al., 1999; Ross et al., 2008; 
McQuestin et al., 2009; Zhang et al., 2010). The 
latter studies sufficiently demonstrated this 
concept for non‐thermal inactivation of E. coli 
and L. monocytogenes at pH (3.5 to 5.1) and aw 
(0.76 to 0.94) combinations commonly applying 
to various dry and fermented meats. This con­
cept has been known for a long time as the basis 
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for inactivation of Salmonella, Clostridium 
perfringens and Staph. aureus in homemade 
mayonnaise and related products (Radford and 
Board, 1993).

It needs to be noted that non‐thermal inacti­
vation may also be achieved by non‐thermal 
pasteurization treatments, such as ultra‐high 
pressure, cold atmospheric plasma, intense light 
pulses and pulsed‐electric fields (Rajkovic et al., 
2010). However, the challenge in modeling these 
processes is rather associated with the potential 
shape of inactivation curves and less with the 
modeling principle behind that. Such technol­
ogies may alter the classical log‐linear inactiva­
tion curves to concave downward curves in 
which the linear death is delayed (preceded) by 
an initial survival (shoulder) period, or concave 
upward curves with “tailing” due to the emer­
gence of resistant subpopulations that either 
pre‐existed or were induced by the treatment 
itself. In cases like that, the following non‐linear 
Weibull‐ or logistic‐based models accounting 
for the distinct inactivation of two subpopula­
tions, one sensitive and one resistant, may be 
used (Whiting, 1993; Mafart et al., 2002):
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where δ and p1, p2 are as in the classical Weibull 
model, and
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where k1, k2 are the inactivation rates for the 
sensitive (f) and resistant (1–f) fraction of the 
population, after an initial shoulder period rep­
resented by tlag.

The non‐thermal inactivation is a response 
worth modeling due to the demands of the con­
sumers for more natural and nutritious foods, 
which have forced the food industry to confront 
the challenge of designing minimally processed 
foods with less preservatives, but without com­
promising their safety. Practically, this challenge 

involves formulating foods at conditions 
approaching the microbial growth/no‐growth 
boundaries, where either microbial inactivation 
or (slow) growth could occur. Therefore, it is 
of  the utmost importance to understand and 
quantify the interaction effects of different 
hurdle technologies (Leistner, 2000) on micro­
bial dynamics instead of empirically adopting 
the multiple hurdle technology. Few combined 
models describing changes in a microbial 
population subjected to conditions that vary 
from growth to inactivation have been reported 
(Corradini and Peleg, 2006; Ross et al., 2005; Pin 
et al., 2011). The work of Coroller et al. (2012) 
presents a modeling approach for non‐thermal 
inactivation based on the Gamma hypothesis 
that predicts the global behaviour of L. monocy-
togenes in various media. The proposed model 
postulates that only two microbial responses 
can be observed: growth or inactivation. When 
the maximum growth rate (as estimated from 
the Gamma concept) is greater than zero, 
microbial growth is predicted. When the 
maximum growth rate is equal to zero, then the 
bacterial population is inactivated. The under­
lying principle is that growth, survival, or inacti­
vation of microorganisms are time‐dependent 
and it can be reasonably postulated that if the 
microbial behavior was observed in static con­
ditions for an infinite time period, only growth 
or inactivation would be observed. Microbial 
survival would therefore be characterized by 
either slow growth or slow inactivation and the 
concept of infinite lag would have no meaning 
in this context. The environmental factors of 
interest are commonly temperature, pH, sodium 
chloride salt, aw, and commonly encountered 
organic acids such as sorbic acid, lactic acid, and 
acetic acid. For further application in an 
industrial setup, the modeling approach of 
Coroller et al. (2012) had to meet the following 
requirements: (i) the biological parameters that 
are used in the model should be easily found in 
publications, or elicited by an expert, and (ii) the 
model should allow the prediction of change 
in  the number of microbial populations (i.e., 
log  increase or decrease) as a result of food 
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formulation and storage conditions and vice 
versa. More specifically, it should suggest 
specific food properties based on the targeted 
bacterial behavior or it should provide the 
storage condition for a given food formulation 
that leads to the targeted bacterial behavior 
(Coroller et al., 2012).

A similar approach has been proposed by 
Pin et al. (2011) for various Salmonella serovars, 
based on literature reports that have been 
uploaded in the ComBase database. Three dis­
crete models, namely a growth, a probabilistic, 
and an inactivation model, the first two having 
cardinal parameters, were fitted with non‐linear 
regression to three corresponding datasets of 
707 growth or inactivation rates of Salmonella, 
extracted from ComBase in response to 
temperature, pH, and aw. Growth and inactiva­
tion responses were also translated into a 
consolidated binary dataset assigning values of 
0 and 1 to no growth and growth responses, 
respectively, in order to fit the probabilistic 
(growth/no growth) logistic regression model 
for Salmonella. The aforementioned models 
were combined into a three‐component unified 
model, which works as follows: the T, pH, and aw 
for consecutive short time intervals (dt) are 
introduced into the probabilistic model and 
if  the probability of growth corresponding to 
the momentary combination of the three 
independent variables is predicted as ≥ 0.5 then 
the change in numbers of Salmonella is pre­
dicted by the growth model, whereas if the 
expected growth probability is <0.5 then the 
population of Salmonella is predicted by the 
inactivation model.

Apart from the potential risk by insufficient 
control of microbial growth, mild processing, 
including the contemporary non‐thermal pres­
ervation technologies, may also increase the 
risk of emerging stress‐hardened pathogens, as 
a result of the repeated exposure of microbial 
cells to sublethal conditions, which impart 
tolerance to lethal stresses (Rajkovic et  al., 
2009). Therefore, there is an imperative need 
to encompass the microbial adaptive responses 
in  the existing models predicting microbial 

dynamics below, above, and across the growth 
boundaries. The next paragraphs provide a 
detailed overview of current advances in 
this area.

2.4.1  Modeling the adaptive 
responses of pathogens 
to inimical factors
Bacterial “stress‐hardening” is a response result­
ing from exposure of cells to sublethal stresses 
for short (shock) or long (habituation) periods 
of time. Exposure to one stress induces resis­
tance to the same (homologous) or different 
(heterologous) stress, the latter also termed 
cross‐protection. The microbial response may 
be perceived either as increased survival against 
lethality treatments or as minimization of lag 
time and faster growth upon shift to growth‐
permitting conditions. Although numerous 
studies have investigated the adaptive response 
of pathogens to various stresses, especially low 
pH, few have systematically modeled this pro­
cess by mathematically describing the shape of 
survival curves and estimating the inactivation 
kinetics of adapted pathogens (Greenacre et al., 
2003). By modeling the dependence of inactiva­
tion rate as a function of exposure to sublethal 
acidity, it was concluded that the acid tolerance 
response (ATR) is strongly dependent on the 
duration of previous exposure (e.g., 2–3 h) to 
sublethal acidity (e.g., pH 5–5.5) by different 
acids (e.g., HCl, lactic or acetic acid) before 
challenge against lethal pH (i.e., <3.5; Greenacre 
et al., 2003; Shadbolt et al., 2001).

Another paradigm of active microbial 
adaptation strategy associated with self‐adjust­
ment (reduction) of the growth rate in order to 
combat stress is the “stringent response” and the 
emergence of persister cells within a population 
(McMeekin et al., 2013; Lewis, 2007). A strin­
gent response is the transition of cellular metab­
olism from the relaxed (growth oriented) state 
to the survival state, in response to nutrient 
(e.g., carbon, amino acid, and iron) starvation. 
It  is usually perceived as entrance of cells into 
the viable but non‐culturable (VBNC) state 
and  is induced by the sudden accumulation of 
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intracellular signaling compounds, called alar­
mones, such as guanosine tetra‐ or pentaphos­
phate (ppG[p]pp). Persistence is the result of 
phenotypic switching between fast and slow 
growing cells, with the latter being less metabol­
ically active and thus less susceptible to stresses, 
especially antibiotics (Lewis, 2007). Contrary to 
antibiotic resistance, which is commonly con­
trolled by a genetic factor, persister cells are 
genetically identical to non‐persisters and 
emerge, as a dormant subpopulation, from the 
same population forming a distinct stress‐resis­
tant phenotype (Ayrapetyan et  al., 2014). 
Fractionation of growth rates within homoge­
neous populations may resemble the persis­
tence and enable modeling the spread of stress 
resistance within microcolonies, such as those 
of a biofilm on inert (e.g., stainless steel) or 
living (e.g., vegetable) surfaces (Nguyen et  al., 
2011).

As far as growth modeling is concerned, 
bacterial adaptation to a new environment is 
manifested by the lag phase, representing the 
period during which the effect of the previous 
environment on microbial growth is gradually 
diminished and cells are prepared (in an “adjust­
ment” process) to enter a new log phase. The 
original definition of a population lag time was 
“geometrical” and equaled the time when the 
tangent of the population growth curve with 
the maximum slope crosses the initial level of the 
population. Nowadays, mechanistic approaches 
have also been introduced, considering that: 
(i)  lag time is dependent on the physiological 
state of cells (commonly represented by the 
parameter q0 or p0) and the work needed (h0) for 
growth initiation, carried out at a constant rate 
(h0 = lag × μmax), or (ii) at a certain time‐point, a 
bacterial population consists of a subpopulation 
in the exponential phase and a no‐growing 
fraction of cells in the lag phase either preparing 
for growth or incapable of initiating growth 
because the prevailing conditions are below 
their growth boundaries (Baranyi and Pin, 2004; 
Koutsoumanis, 2008; McKellar and Knight, 
2000; McKellar, 2001; Robinson et  al., 1998; 
Standaert et al., 2007).

In a dynamic environment, for example, 
under fluctuating temperatures, it is assumed 
that the growth rate of cells is instantaneously 
adapted to momentary temperature changes, 
whereas there is contrasting evidence for 
induction of short lag times before growth is 
resumed (Alavi et al., 1999; Mitchell et al., 1994, 
1995). Following the initial lag phase, changes of 
environmental factors may induce a so‐called 
“intermediate” lag phase (Swinnen et al., 2005), 
the duration of which depends on the magni­
tude and direction of the environmental shift 
(Belessi et  al., 2011b; Le Marc et  al., 2010; 
Muñoz‐Cuevas et  al., 2010). Quantification of 
the effect of temperature shifts on the lag time 
of bacteria has received more attention 
(Augustin et  al., 2000a, 2000b; Mellefont and 
Ross, 2003; Swinnen et al., 2005, 2006; Whiting 
and Bagi, 2002; Zwietering et al., 1994) than the 
corresponding effect of osmotic shifts (Mellefont 
et  al., 2003, 2004, 2005; Mellefont and Ross, 
2003).

The most widely used approach for quanti­
fying the effect of sudden changes in the envi­
ronment on bacterial lag time is based on the 
amount of work that cells need to undertake 
and the rate at which this work is accomplished 
(work to be done, h0; Mellefont et  al., 2003, 
Robinson et  al., 1998). The adaptation rate 
follows the environmental fluctuations, whereas 
the adaptation work may be reduced or 
increased if microorganisms adapt faster or 
become injured, respectively (Belessi et  al., 
2011b; Le Marc et  al., 2010; Muñoz‐Cuevas 
et al., 2010). From a mathematical standpoint, if 
changes in the environment do not pose addi­
tional adaptation work, then the inverse of lag 
time (the so‐called “lag rate”; Mellefont and 
Ross, 2003) and growth rate should follow the 
same trend as a function of the shift and they 
should be linearly correlated. This may be true 
for shifts of low magnitude (e.g., 3−5 °C) that are 
far from the growth boundaries. However, line­
arity is lost when the intensity of the stress 
imposed is so high that the bacteria cannot 
adapt to the new conditions and require addi­
tional effort to overcome the imposed stress. 
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This is the case with osmotic or acid shifts, 
which are considered more severe stresses than 
temperature (Robinson et  al., 1998; Shabala 
et al., 2008) and are known to induce adaptation 
work (Mellefont and Ross, 2003; Mellefont 
et al., 2003, 2004, 2005) or with shifts close to 
the growth boundaries. Mitchell et  al. (1995) 
stressed that extended exposure to tempera­
tures that do not support growth of Salmonella 
may affect subsequent growth of the bacterium 
at growth permitting temperatures. Existing 
reports also suggest that preincubation of 
Listeria monocytogenes at 4 °C results in a faster 
growth rate at 7 °C than the preculture at 7 °C 
(Membré et al., 1998). More recent papers have 
shown that the adaptation work and the 
physiological state parameter of cells under 
fluctuating conditions can be effectively mod­
eled as a function of both the magnitude and the 
direction of the environmental changes. Such 
methodology may then be coupled with the 
differential form of primary models, such as 
the Baranyi model, and allow for simulation of 
the growth of pathogens in response to up‐ or 
down‐shifts in pH, aw, temperature, etc.

Following the classical viable count‐based 
modeling, the state‐of‐the‐art in adaptation 
modeling is the development of pure mecha­
nistic models relating the effect of “cell history” 
on the potential of the pathogen to survive 
food‐processing challenges and eventually 
cause illness. Detailed insights into the uncer­
tainty of microbial responses from farm to fork 
can be provided by adopting systems biology 
principles and functional genomics (Brul and 
Westerhoff, 2007). These models are based on 
the hypothesis that the environment signifi­
cantly influences the dynamic expression and 
assembly of all components encoded in the 
genome of an organism into functional 
biological networks. The ultimate goal is to 
integrate top‐down approaches, which use 
“‐omics” induction to identify underlying mech­
anisms, and bottom‐up approaches, which 
explain or predict the overall cellular behavior 
(including “omics”) beginning with the molec­
ular level (Bruggeman and Westerhoff, 2007). 

This may be implemented through the 
development of an environmental and gene 
regulatory influence model (Mensonides et al., 
2002, 2005) for different stages of the food 
chain. Use of microarray data coupled with bio­
informatic approaches may enable modeling of 
the global gene expression in response to envi­
ronmental challenges and predict the lag time 
or even the virulence of pathogens based on 
their “history” (King et al., 2014).

2.5  Fermentation: a dynamic 
environment for microbial 
growth and pathogen 
inactivation

Fermentation is one of the oldest food‐
processing technologies based on the biological 
activity of specific microbial groups that can 
produce a range of metabolic compounds that 
suppress the growth and survival of pathogenic 
and spoilage microbiota, thus ensuring the 
microbiological stability and extending the shelf 
life of foodstuffs (Caplice and Fitzgerald, 1999; 
Ross et al., 2002; Bourdichon et al., 2012). From 
the biochemical point of view, the main impact 
of fermentation is focused on food preservation 
through the development of inhibitory meta­
bolic compounds (e.g., organic acids, ethanol, 
bacteriocins), often in combination with a 
decrease in water activity through drying or 
salting (Lee, 2004; Gaggia et  al., 2011; Peres 
et al., 2012). The formation of these compounds 
results in the inhibition of food‐borne patho­
gens, thus improving food safety (Adams and 
Nikolaides, 2008; Grounta et al., 2013), and also 
in the improvement of the nutritional value and 
sensory attributes of the final product (van 
Boekel et al., 2010; Lanza, 2013).

The use of mathematical models to describe 
the growth, survival, or death kinetics of bacteria 
has been extensively employed in a wide variety 
of food products and processes and the princi­
ples of predictive microbiology have been well 
established and elucidated in a series of articles 
(Buchanan, 1993; Ross and McMeekin, 1994; 
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Baranyi and Roberts, 1995; Whiting, 1995; 
McDonald and Sun, 1999). The most common 
approach to describe microbial growth and 
death under given ecological conditions is by 
means of a sigmoidal curve that approximates 
quite accurately the changes in bacteria cell 
population over time. However, on a real food 
matrix, bacteria do not grow independently 
from their environment but are influenced by 
the background microbiota (Malakar et  al., 
2003) and the structure of the matrix (oxygen 
availability, water distribution, organic acids, 
food preservatives, etc.) (Noriega et al., 2010). It 
is worth noting that single species growth can 
be differentiated in terms of a lag phase, an 
exponential phase, and stationary phase, a dis­
tinction that is not very clear for multiple 
species growth. Moreover, different kinds of 
interactions can be encountered on a food 
system, among which antagonistic interactions 
are most important from the food safety per­
spective, and, consequently, special models 
must be employed to describe the complex 
nature of interspecies interactions. Thus, 
dynamic models have been developed to 
describe the bacterial kinetics of two or more 
competitive species (Vereecken et  al., 2000; 
Pommier et al., 2005; Mejlholm and Dalgaard, 
2007a, 2007b) while other models take also into 
consideration substrate consumption and prod­
uct inhibition of each culture (Sodini et  al., 
2000).

Table olive fermentation is one of the most 
dynamic environments for microbial growth, 
where diverse microbial groups from the 
indigenous microbiota of olives compete for 
nutrients with a variety of contaminating 
microorganisms from fermentation vessels, 
pipelines, and pumps in contact with olives 
and brine. Those microorganisms best adapted 
to the food substrate and process parameters 
during fermentation dominate the process. It 
has been reported that in olive fermentation, 
despite the relatively low initial population 
of  lactic acid bacteria and yeasts compared 
to  Gram‐negative bacteria, they eventually 
become the dominant groups driving fermen­

tation (Sánchez Gómez et al., 2006). The effect 
of environmental factors driving the fermenta­
tion process on the microbial association and 
the survival of pathogenic bacteria has been 
modeled through a variety of kinetic and prob­
abilistic models, whereas other approaches 
include the application of artificial neural net­
work s (ANNs) and susceptibility models for 
the determination of MIC and NIC values of 
antimicrobial compounds (for a review see 
Arroyo‐López et  al., 2010). However, these 
models do not take into consideration the 
dynamic interactions prevailing in the process 
environment. In a recent work (Skandamis and 
Nychas, 2003), a dynamic model was devel­
oped based on six differential equations to 
describe the evolution of the fermenting 
microbiota and the survival of the pathogenic 
bacterium Escherichia coli O157:H7 during the 
inoculated fermentation of green olives with 
Lactobacillus plantarum in brines supple­
mented with different amounts of fermenting 
substrates. The dynamics of the fermentation 
process is described by the following equations:

For lactic acid bacteria: 
in

dN
dt

r N Y
Ysmax

1

where N is the population of L. plantarum in 
the brine (cfu/ml), rsmax is the maximum specific 
growth rate (days−1) for the starter culture, Y is 
the population of yeasts (cfu/ml), and Yin is the 
minimum population of yeasts (cfu/ml) that 
inhibits the growth of L. plantarum.

For yeasts: y
max

dY
dt

r N Y
Y

Y
max

1

where rymax is the maximum specific growth 
rate for yeasts (day−1) and Ymax the maximum 
cell population of yeasts (cfu/ml). Apart from 
the above equations that describe the changes 
in microbial dynamics, two more equations 
were taken into consideration for ferment­
able substrate consumption and lactic acid 
formation.
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For fermentable
:  substrates dS

dt
m N

Y
dY
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/

where S is the residual concentration (%) of 
fermentable substrate in the brine during the 
process, YY/S is the yeast yield coefficient (cfu/ml 
per mM of assimilated fermentable substrate), 
and ms is the maintenance coefficients for 
L. plantarum.

For lactic acid formation: HA
HA S

d
dt

Y dS
dt/

In the above equation, lactic acid (in proton­
ated form) is directly related to the consump­
tion rate of fermentable substrates (dS/dt), with 
YHA/S being a yield coefficient representing the 
conversion of fermentable material to lactic 
acid. Finally, as fermentation is a dynamic pro­
cess and the value of pH changes over time, the 
changes in proton concentration were modeled 
as a function of HA as follows:

For proton concentration: HAdP
dt

a P
P

1
max

where a is a coefficient, P is the concentration of 
protons, and Pmax is the maximum predicted 
concentration of protons corresponding to the 
predicted minimum value of pH in the fermen­
tation process. Apart from the evolution of the 
indigenous microbiota in the process, it would 
be of great importance to investigate the fate 
and behavior of pathogenic bacteria in the case 
of contamination. It should be noticed that table 
olives are considered as a ready‐to‐eat food, 
thus making contamination with pathogens a 
potential public health concern, although no 
serious outbreaks have been reported so far due 
to the fact that the brine environment does not 
support the growth and survival of pathogenic 
bacteria (Medina et al., 2013). To investigate the 
dynamics of pathogenic bacteria in the fermen­
tation process, the brine was inoculated at the 
onset of fermentation with E. coli O157:H7 and 

the changes in cell population were modeled by 
the following equation:

dN
dt

k dP
dt

N f HA
S

Ne
e e

where Ne is the population of the pathogen (cfu/
ml) and k, f are coefficients. This equation is 
based on the assumption that the survival of the 
pathogen is directly proportional to the produc­
tion rate of protons (P) and lactic acid (HA), and 
inversely proportional to the concentration of 
fermentable substrates. Yeasts were potential 
competitors of L. plantarum despite the fact 
that the latter species dominated the process 
(Figure 2.1). The growth of yeasts retarded the 
growth of the starter but not its metabolic 
activity, as evidenced by the increasing levels of 
lactic acid produced throughout the process. 
Finally, a progressive reduction in the population 
of the starter was observed at the end of fermen­
tation that could be attributed to the reduction 
of available fermentable substrate due to antag­
onism by yeasts. Concerning the behavior of 
E.  coli O157:H7, its inactivation pattern could 
be discriminated into three distinct stages. 
Specifically, the pathogen presented a rapid 
decrease within the first five days of the process, 
which coincides with a rapid drop in pH values 
in the same period. A short survival period was 
observed afterwards between 5 and 10 days, 
when the pH of the process reached a plateau 
and was close to the pKa value of lactic acid, with 
the undissociated fraction of the acid to be 
apparently below lethal concentrations. Finally, 
a second death phase was observed from day 20 
onwards due to the increased concentration of 
undissociated lactic acid, with a concurrent 
reduction in fermentable substrates. The results 
of the developed model proved the effectiveness 
of the modeling approach to describe quite 
accurately the fermentation process as a whole, 
taking into account the different biochemical 
mechanisms such as the production of micro­
bial metabolites, consumption of fermentable 
substrates, as well as microbial effected changes 
in pH. Since fermentation remains one of the 
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basic processes in food production, similar 
approaches could be extended to the survival of 
any food‐borne pathogen on other fermented 
foods such as vegetables, meats, and dairy 
products.

2.6  Colonial versus planktonic 
type of growth: modes of 
microbial existence on 
surfaces and in liquid,  
semi‐liquid, and solid foods

2.6.1  Biofilm formation on biotic 
and abiotic surfaces
During processing of contaminated raw mate­
rials and food preparation, microorganisms 
entrapped into the food residues may be trans­
ferred to the equipment surfaces (abiotic or 
inert surfaces) or cross‐contaminate other foods 
(biotic surfaces). In the context of good hygienic 
and good manufacturing practice, processing 
plant surfaces are cleaned and disinfected after 
their use, in order to remove food soil and 
eliminate the transferred microorganisms. 
Inadequate disinfection may give rise to biofilm 

formation. In addition, depending on the bacte­
rial growth rate, the surrounding nutrient 
status, the attachment ability of the microor­
ganisms, and the adaptive responses triggered 
by exposure to sublethal inimical factors, there 
may be an increase in microbial resistance to 
sanitizers and the establishment of persistent 
strains. Settlement of bacterial cells on solid 
surfaces leads to biofilm formation activity. 
Biofilms are referred to in the literature as bio­
logically active matrices of cells and extracel­
lular substances in association with a solid 
surface (Kumar and Anand, 1998). Placed in the 
solid–liquid interface, bacterial cells, irrevers­
ibly attached to the food surface, are organized 
in multistructural communities, embedded 
into  a glykocalyx (Kumar and Anand, 1998). 
Capillary water channels are part of that porous 
structure of biofilms, and distribute water and 
nutrients to the included microorganisms 
(Poulsen, 1999). Three critical steps are the 
content of the biofilm formation activity:  
(i) attachment, (ii) microcolony and EPS pro­
duction, and (iii) maturation (Davey and O’Toole, 
2000; Chmielewski and Frank, 2003). Bacterial 
cells may actively or passively adhere to the 
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Figure 2.1  Changes in population of lactic acid bacteria (●), yeasts (▲), E. coli O157:H7 (■), pH (□), glucose concentration 
(∆), and undissociated lactic acid (○) during the inoculated fermentation of green olives with Lactobacillus plantarum.
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surfaces, which depends on the bacterial cells 
surface properties, and the attachment can be 
reversible or irreversible. The attachment and 
biofilm‐forming capabilities of bacteria depend 
on the interaction of multiple factors, including 
the surface characteristics and cell–surface 
interactions, the presence of other bacteria, the 
temperature, the availability of nutrients and 
pH, the production of extracellular polysaccha­
rides, and cell‐to‐cell communication (Chmielewski 
and Frank, 2003; Van Houdt and Michiels, 2010).

2.6.2  Growth rate 
of microorganisms in different 
forms of growth
Microbial growth in foods occurs in the 
aqueous  phase. The structural characteristics 
(also called  “microarchitecture”) of this phase, 
in combination with the total concentration and 
dispersion of water compared to the fat phase, 
determine the form and rate of growth, i.e., the 
spatiotemporal microbial dynamics. Food may 
be characterized as liquid (e.g., juices, milk), 
gelled (e.g., jellies, cottage, marmalades), oil‐in‐
water emulsions (e.g., mayonnaise) or water‐in‐
oil emulsions (e.g., butter and margarine), and 
the composite form of gelled emulsions (i.e., an 
immobilized oil‐in‐water emulsion). Apparently, 
the type of emulsion determines the distribu­
tion of available water. The growth rate of 
microorganisms in response to food structure, 
for a given set of intrinsic and extrinsic parame­
ters, is dependent on the motility of cells in 
the  aqueous phase, the extent of resulting 
(micro‐)colony immobilization, and the diffu­
sion kinetics of nutrient, oxygen, and metabo­
lites. Growth of microorganisms in a liquid 
aqueous phase typically is planktonic and the 
motility of microorganisms may enable access 
to certain nutrient‐rich sites of the food (Wilson 
et  al., 2002). Access of cells to nutrients and 
transfer of metabolites away from cells con­
tribute to the formation of a temporarily 
uniform environment, until the resources are 
depleted or the microbial metabolites are accu­
mulated at self‐toxic levels. If aqueous phase is 
structured, e.g., due to addition of thickeners or 

gelling (structure‐inducing) agents, such as gel­
atin, pectins, starch, gums, etc., microorgan­
isms are immobilized in the gelled regions and 
constrained to grow as colonies, with their 
growth rates tending to be lower than that of 
planktonically growing cells (Theys et al., 2008; 
Aspridou et al., 2014; Wilson et al., 2002; Boons 
et al., 2013a, 2013b, 2014). This can be further 
enhanced by increasing the fat concentration 
on  the expense of the water phase, thereby 
increasing the size of oil droplets with a con­
comitant trend of reversal of the oil‐in‐water 
emulsion. At low fat concentrations, the water 
phase is enough to allow cell motility that 
resembles planktonic growth. As the fat 
concentration increases and compresses water, 
growth is constrained and becomes colonial 
(actually spherical). A similar effect can be 
obtained by adding a structure‐inducing agent, 
such as gelatin. On the surface of foods, such as 
meat and vegetables, growth is also colonial ini­
tially in two dimensions (mono‐layer), whereas 
the center of the colony gradually develops 
in  the third dimension, most likely upward, 
depending on aeration and nutrient availability. 
Replenishment of nutrients takes place only 
from the bottom or the perimeter of the colony 
and soon cells in the center of the colony experi­
ence starvation and self‐toxication. This places 
growth constraints on the colony as a whole and 
causes suppression of the growth rate as com­
pared to immobilized growth in the food matrix 
or planktonic growth. Thus, the growth rate of 
the aforementioned different forms of growth is 
known to follow the order: planktonic ≥ immo­
bilized > surface (Wilson et  al., 2002; Theys 
et al., 2008).

These observations have also been explored 
in relation to the stochastic behavior of individual 
cells growing in liquid media or immobilized 
inside or on the surface of solid media. Starting 
from the single cell level and simulating the 
formation of a colony or the proliferation to high 
numbers in the planktonic state may assist in 
drawing useful conclusions on the expected 
behavior of large populations. These aspects are 
further discussed in the following paragraphs.
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2.6.2.1  Individual‐based modeling 
of floating or immobilized cells
The growth of a microbial population depends 
on the cumulative behavior of individual cells. It 
is well known that a great variability exists in the 
growth responses, i.e., lag time, generation time, 
and probability of growth among individual 
cells. This biological variability (also termed 
“biovariability”; Billon et  al., 1997) markedly 
impacts the dynamics, e.g., geometrical lag, ger­
mination time, and time to reach detectable 
levels of low populations, such as 1–50 cells and 
increases with the intensity of environmental 
stresses (Billon et  al., 1997; Dupont and 
Augustin, 2009; Francois et  al., 2005, 2006a; 
Guillier et al., 2005; Guillier and Augustin, 2006; 
Smelt et al., 2002, 2008). For instance, the distri­
bution of germination times (lag) of individual 
Cl. botulinum spores became less peaky (i.e., 
with a lower kyrtosis coefficient) and less posi­
tively skewed (i.e., a skewness factor close to 1) 
as the incubation temperature decreased from 
37 to 20 °C, suggesting that the variance in ger­
mination times increased with the intensity of 
temperature stress (Billon et al., 1997). However, 
the variable behavior of single cells is masked by 
the massive behavior of large populations, e.g., 
>500 cells, or it is almost eliminated at optimal 
conditions (Llaudes et  al., 2001; Métris et  al., 
2006; Smelt et al., 2002). Most of the available 
predictive models quantify the response of high 
microbial populations at a given set of condi­
tions, which may be constant or varying with 
time. In order to model the variability of single 
cells (or single spores), stochastic modelling 
may be applied, which is also the common 
approach in quantitative microbial risk 
assessment. Therefore, deterministic models 
apply to the population level, whereas stochastic 
models may describe the population dynamics 
taking into account the variability in the 
responses (e.g., lag time and generation time) of 
individual cells.

Although deterministic models average the 
behavior of individual cells, the characteristics 
of the latter cannot be deduced from population 
measurements (Kutalik et al., 2005). Indeed, the 

growth of a population may be simulated by 
superimposing the evolution of independent 
subpopulations derived from single cells, each 
receiving a lag time value, also termed 
“physiological lag” (Baranyi et al., 2009; differ­
ent from the geometrical population lag), from a 
specific probability distribution. The evolution 
of a microbial population can be modeled as a 
Poisson birth process with the constant birth 
intensity parameter μ (Baranyi, 1998; Baranyi 
and Pin, 2001). A cell is divided after an initial 
delay, which consists of the physiological lag 
and the generation time of the cell. Then each 
cell produces a subpopulation, which consists of 
cells growing independently in the same habitat 
with a constant growth rate (Baranyi, 1998; 
McKellar, 2001). To model this process, it is 
assumed that (Baranyi, 2002; Métris et  al., 
2003): (i) after the first division of each cell, the 
daughter cells enter directly the exponential 
phase and (ii) daughter cells do not interact by 
any means, e.g., competition or quorum sens­
ing. Both assumptions were reasonable when 
the experimental method used to describe the 
variability in lag times was the time to detect 
visible changes in the optical density of the 
liquid medium containing a single cell derived 
by a series of two‐ or tenfold dilutions of a stan­
dard concentrated microbial suspension, or 
even by sorting with flow cytometry (Baranyi 
et  al., 2009; Francois et  al., 2003; Smelt et  al., 
2002, 2008; Standaert et  al., 2005). Individual 
lag times commonly follow Weibull, Gamma, 
exponential or normal distributions (Kutalik 
et al., 2005; Francois, 2005, 2006a, 2007; Métris 
et  al., 2006; Standaert et  al., 2007). The 
development of sophisticated image analysis 
systems for real‐time monitoring of single cell 
division (or spore germination) under the 
microscope, during continuous exposure of 
attached cells to flowing liquid media, allowed 
further insight into the variability assessment of 
single cells (Billon et  al., 1997; Elfwing et  al., 
2004). By targeting specific cells, it was observed 
that the generation time of daughter cells, which 
were removed after division, are not the same 
for all cells but they follow a distribution, the 
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variance of which decreases with the number of 
consecutive divisions (Pin and Baranyi, 2006; 
Métris et al., 2005, 2006; Kutalik et al., 2005).

Exposure of bacterial populations to suble­
thal stresses, such as chlorine, heat shock, pH, 
osmotic stresses, as well as suboptimal condi­
tions in a new environment, shift the distribu­
tion of the time to the first division to higher 
levels (i.e., right) and the increase in its variance 
(Dupont and Augustin, 2009; Francois et  al., 
2005, 2006a; Guillier et  al., 2005; Guillier and 
Augustin, 2006). Furthermore, stress may 
decrease the probability of a single cell to ini­
tiate growth and increase the number of cells 
needed for growth initiation (Dupont and 
Augustin, 2009; Koutsoumanis, 2008). As a 
result, both the extension of individual lag times 
and the reduction in single cell growth proba­
bility may lead to false negative detection, due 
to insufficient growth above the threshold level 
of enrichment or no growth at all during enrich­
ment (Dupont and Augustin, 2009). Given that 
stress increases the biological variability, inter­
actions between cells within colonies (e.g., due 
to competition for nutrients or the release of 
inhibitory metabolic products) may be an addi­
tional indigenous stress factor, which possibly 
increases cell lag variation, while retarding the 
growth of the total population (Guillier et  al., 
2006).

Even though the variability of planktonic 
cells has been extensively characterized with 
OD or microscopic measurements, the vari­
ability in colonial growth associated with intra­
colony cell‐to‐cell interactions cannot be 
quantified in liquid cultures, nor by direct 
imaging of cells, when the daughter cell is 
removed after division. Alternatively, direct 
time‐lapse imaging of microbial populations 
growing on agar surfaces of different intrinsic 
properties has enabled the characterization of 
population heterogeneity taking into account 
the interactions between adjacent cells (Guillier 
et  al., 2006; Koutsoumanis and Lianou, 2013). 
Experimental protocols for direct imaging of 
surface‐growing cells include the gel‐cassette 
system (Brocklehurst et al., 1997), the systems 

introduced by Billon et al. (1997), Guillier and 
Augustin (2006), and later on adopted by 
Koutsoumanis and Lianou (2013), consisting of 
an agar layer on top of a microscope slide, 
covered by a cover slip, sealed with paraffin 
wax, and placed under the microscope, and, 
more recently, the anopore strips (Ingham et al., 
2005). Applications of these methods at single 
cell or colony level may be found for E. coli 
O157:H7, for which a comparison between 
growth rates estimated from viable count data 
and changes in colony area (in pixels) is made 
(Skandamis et  al., 2007a), Bacillus cereus in 
response to salinity (den Besten et  al., 2007, 
2010), and Salmonella showing the distribution 
of living and dead cells during the evolution 
of  colonies in time and space (Theys et  al., 
2009). These techniques may also allow for 
identification of injured or even dead subpopu­
lations within bacterial microcolonies as a result 
of exposure to stresses or entrance into the 
stationary phase of growth. This is achievable 
through the use of well‐established fluoro­
phores, such as SYTO 9, which stains living 
cells, and propidium iodide, which stains dead 
cells or cells with impaired membranes. 
Experimental protocols involving microscopic 
observations have also been used to monitor 
the kinetics of single fungal spores, in response 
to temperature, aw, pH, and ethanol stress 
(Dantigny et  al., 2005; Judet et  al., 2008; 
Gougouli and Koutsoumanis, 2013). Fungal 
spore kinetics include the germination time, 
which is the time until the length of the germ 
tube equals the diameter of the spore, the 
growth rate of the germination tube, and the 
percentage of germinated spores. Such data may 
serve as a basis in stochastic modeling for pre­
dicting the time until spoilage occurs, in the 
form of visible mycellium. Indeed, the variability 
in the germination time and rate of single fungal 
spores has been reflected on the lag time (i.e., 
the time to visible detection), the radial increase 
of Aspergillus, and Fusarium mycelia grown on 
corn solid media (Samapundo et  al., 2007). 
Advances in individual‐based modelling (IbM) 
have suggested that, apart from the population 
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measurements, the complete characterization 
of lag time also requires the evolution of total 
biomass and thus the geometrical definition of 
lag time is not quite reliable (Prats et al., 2008). 
Furthermore, since geometrical lag depends on 
the time required by the total viable population 
to exceed the detection limit of the enumeration 
method, a part of geometrical lag does not have 
practically biological meaning (also termed 
“pseudo‐lag”; Koutsoumanis, 2008), because 
growth initiation of a fast‐growing subpopula­
tion, which will eventually give the detection 
signal, might have started quite earlier.

2.6.2.2  Individual‐based modeling 
in foods
The well‐established variability of single cells in 
laboratory media is expected to be even more 
pronounced in natural food ecosystems. This 
may be attributable to the combination of mul­
tiple stress factors in foods, such as limitations 
in nutrient diffusion, competition with natural 
flora, accumulation of inhibitory metabolic 
products, structural constraints, etc. Despite 
the low number of studies dealing with single 
cell variability in foods, a common conclusion is 
that the behavior of low inocula (e.g., <10 cfu/g) 
cannot be accurately approximated by models 
based on the responses of higher inocula on the 
same food nor by broth‐based models (Manios 
et al., 2013). For instance, the time that L. mono-
cytogenes required for a hundredfold increase 
on vacuum packaged frankfurters stored at 
4  and 8 °C, starting from 0.007−0.1 cfu/g, was 
markedly higher than that expected based on 
the responses of 10–20 cfu/g on the safe food 
(Pal et al., 2009). Likewise, the simulated vari­
ability in log‐numbers of L. monocytogenes cells 
in liver pâté at 7 °C or lettuce and cabbage fresh‐
cut salads, based on broth data, differed from 
the observed number (Francois et  al., 2006b; 
Manios et al., 2013). Notably, Monte Carlo sim­
ulation based on stochastic description of lag 
times of individual L. monocytogenes cells from 
broth data slightly overpredicted the growth of 
single cells of L. monocytogenes after 12 days on 
lettuce. For instance, the model predicted that 

there is a 60% likelihood for a single cell of the 
pathogen to reach 1.5 log cfu/g, while the 
observed growth under the same probability 
was 1 log cfu/g (Manios et al., 2013). In contrast, 
remarked underestimation of the observed 
growth in cabbage was recorded, as the predic­
tions showed that 60% of the individual cells 
could grow at 0.5 log cfu/g, whereas the 
observed growth was 2.6 log cfu/g. This 
deviation of the broth‐based predictions from 
the observed growth suggests poor transfer­
ability of broth‐based data to foods, because 
such models do not adequately encompass the 
effect of the epiphytic flora, the microstructure, 
or the scattered availability of nutrients. Thus, 
extrapolating broth‐based predictions of micro­
bial growth from single cells to foods may lead 
to either fail‐safe or fail‐dangerous predictions. 
As shown in Figure 2.2, the presence of antimi­
crobials and the competitive growth of indige­
nous microflora of ham slices increased the 
variability in a log‐increase of L. monocytogenes 
single cells per slice at 10 °C, as compared to 
higher initial populations, e.g., 100 cfu/slice. 
Furthermore, even competition among strains 
at the single cell level may inhibit growth initia­
tion of each strain in the composite, especially 
when antimicrobials are added in the product 
formulation (Figure  2.3). In this case, a higher 
number of cells is needed so that one cell capable 
of overcoming strain competition and initiate 
growth is present in the population (Figure 2.3). 
Therefore, it is imperative that the evaluation of 
the response of single cells in foods should 
receive more focus in parallel to the optimiza­
tion of laboratory media assays, which provide 
further theoretical aspects under controlled 
conditions.

2.7  Modeling microbial 
transfer between processing 
equipment and foods

The recent deeper insight into bacterial transfer 
phenomena, along with the pronounced 
necessity of incorporating them in risk 
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assessment studies, has implemented predictive 
microbiology with a new type of model: bacte­
rial transfer models. Modeling bacterial transfer 
can be considered as a challenge for predictive 
microbiologists. The significance of choosing 
the right model to describe a microbiological 
process is well known and the choice of the 
appropriate parameters as model inputs is deci­
sive for the outcome of the prediction. This fact 
makes construction of bacterial transfer models 
a complex task. As Pérez‐Rodríguez et al. (2008) 
state, not only do unknown factors govern 

bacterial transfer but also the known factors 
(contact time, bacterial strain properties, 
pressure, etc.) that are involved in cross‐con­
tamination events cannot be easily controlled. 
The challenge in modeling bacterial transfer in 
food‐processing environments, such as the 
common house‐kitchen or a food industry, is 
the dynamic conditions that dominate those 
environments. At the very same time, a recipient 
surface can become the donor surface, in terms 
of contamination. Furthermore, this event 
can  take place at every possible location. The 
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Figure 2.2  Growth of L. monocytogenes single cells (a), or 100 cells/slice (b), and the natural mesophilic flora (c, d) on the 
corresponding slices of ham formulated without antimicrobials, packaged under vacuum and stored at 10 °C (Skandamis 
and Sofos 2010; unpublished data).
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contamination status changes constantly and 
each new generated pathway becomes the new 
starting point for more transfer scenarios.

As aforementioned, the first step to mod­
eling transfer is the calculation of the transfer 
rates as the percentage of cells transferred from 
the source to the destination of contamination. It 
has also been mentioned that the multitude of 
factors that govern the bacterial transfer lead to 
a high variability regarding this phenomenon 
and subsequently regarding the data obtained 
from relevant studies. Therefore, this variability, 

which is reflected in estimated transfer rates, 
can be depicted through probability distributions. 
For many authors, probability distributions can 
be constructed based on the log‐transformed 
transfer rates instead of the transfer rates. In 
fact, normal distribution is considered as the 
most suitable to best fit the log‐transformed 
transfer rates. Hoelzer et  al. (2012) used avail­
able scientific data to produce probability 
distributions and models in order to describe the 
transfer of L. monocytogenes between foods and 
surfaces or during slicing, as well as the impact 
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Figure 2.3  Growth of L. monocytogenes single cells/slice (a, c) or 100 cells/slice (b, d) as single strain (a, b) or in a mixture of 
three strains (c, d) on slices of ham formulated with antimicrobials, packaged under vacuum and stored at 10 °C (Skandamis 
and Sofos 2010; unpublished data).
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of sanitation methods on subsequent cross‐
contamination events. Normal distributions 
were also chosen to fit the log‐transformed 
transfer data. In a similar study carried out by 
Chen et al. (2001) to determine transfer rates of 
E. aerogenes between food and surfaces used for 
food preparation, normal distribution was 
chosen as the most suitable and statistically 
convenient way to represent the data. Similarly, 
Kusumaningrum et  al. (2004) used the 
Anderson–Darling criteria and decided that the 
normal distribution gives the best fit to the log‐
transformed transfer rates. Alternatively, logistic 
distributions were ranked first, when normal 
ones did not give the best results.

Research advances include attempts to con­
struct models that mathematically describe 
cross‐contamination scenarios. Usually, the 
models are empirical due to the lack of concrete 
knowledge on bacterial transfer phenomena. 
The interest has mainly been focused on path­
ogen transfer that takes place between cutting, 
shredding, or slicing equipment and foods. The 
particular interest in those processes is appar­
ently attributed to the employed equipment 
(e.g., knife or slicer blades) or the type of foods 
involved (e.g., sliced RTE meat products, fresh‐
cut salads, and salmon) and consequently the 
risk implied. The models developed to describe 
those experimental data represent transfer as a 
function of the cut/slice number or inoculation 
level. In respect to this, both Pérez‐Rodríguez 
et  al. (2007) and Vorst et  al. (2006) agreed 
that,  when different transfer scenarios were 
investigated, the logarithmic decrease that was 
observed in the numbers of the microorganisms 
under study could be efficiently described by 
the log‐linear model. The goodness of the log‐
linear model to fit the experimental data was 
only comparable to that of the Weibull model as 
reported by Pérez‐Rodríguez et al. (2007).

The empirical models used so far have been 
proven sufficiently accurate and promising for 
risk assessment studies (Aarnisalo et al., 2007; 
Sheen, 2008; Sheen and Hwang, 2010). A more 
mechanistic approach was introduced by Møller 
et  al. (2012) to treat their experimental data. 

They developed a model simulating the transfer 
of S. Typhimurium during the grinding of pork. 
The proposed model was an improved version 
of the model presented by Nauta et al. (2005), 
taking into account the tailing phenomenon 
that is observed after sequential slices during a 
grinding process. The authors claim that this 
type of model, though similar to empirical 
models such as that of Sheen and Hwang (2010), 
can more efficiently describe all the events that 
take place in a grinder. It also introduces the 
idea of the two environments existing in the 
grinder that are responsible for two different 
transfer rates occurring during the process. 
This was successfully applied by Zilelidou et al. 
(2014) in modeling the transfer of Salmonella 
Typhimurium and L. monocytogenes between 
lettuce and knives and vice versa in a simulated 
process of fresh‐cut salad preparation in the 
domestic or catering environment, which 
involved 50 consecutive cuts with a knife that 
was first contaminated by cutting a contami­
nated batch of lettuce leaves. Finally, a mecha­
nistic approach was also chosen by Aziza et al. 
(2006) to explain cross‐contamination during 
cheese‐smearing industrial operations. In this 
study, a binomial distribution was applied and 
the constructed model reflected the potential 
risk associated with this type of cheese 
manufacturing.

The approach of Aziza et  al. (2006) was 
based on certain assumptions, e.g., even 
bacterial distribution throughout the food 
matrix. Several authors (Hoelzer et  al., 2012; 
Kusumaningrum et al., 2004; van Asselt et al., 
2008) have made some of the following 
assumptions for the setup of the experiment 
and the subsequent buildup of the model; no 
bacteria are lost during processes, no cleaning 
of the equipment takes place in between the 
use, no new contamination is introduced in 
the processing equipment for a certain number 
of operations, and the time after which the 
transfer event will take place does not have 
any impact on the event. Such assumptions 
seem to be necessary for the development of 
bacterial transfer models since the complexity 


