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1

The Copernicus programme is Europe’s flagship operational Earth Observation pro-
gramme. It is comprised of a number of core services aiming at specific user groups. Many 
policies and international initiatives rely on Earth Observation to deliver information 
services. The downstream development of new satellite applications is a rapidly growing 
global market and creates jobs, economic growth and prosperity for societies.

The Copernicus initiative is delivering many core monitoring services of the oceans, 
the land surface, air quality, climate change and the polar ice sheets. It is a laudable 
programme in its aspiration to provide operational long‐term observations of critical 
parameters from space. However, it has limitations and there is room for developing 
new and improved innovative information services around the existing Copernicus ser-
vice portfolio.

The initial operations of the European Copernicus programme from 2011 to 2014 
have delivered a comprehensive range of satellite applications in support of sustainable 
forestry. The Geoland‐2 project has established the operational Copernicus land moni-
toring core service, which is now implemented with a global, European, local and in‐situ 
component. Global data products to support sustainable agriculture and forestry 
include surface albedo, fractionally absorbed PAR (FAPAR), fraction of PAR absorbed 
by vegetation for photosynthesis processes, Leaf Area Index (LAI), Top of Canopy spec-
tral reflectance, Fractional cover (Fcover), Normalized Difference Vegetation Index 
(NDVI), Vegetation Condition Index (VCI), Vegetation Productivity Indicator (VPI), 
Dry Matter Productivity (DMP), burnt area, active fires, land surface temperature, soil 
moisture, areas of water bodies, water level (lakes and rivers), and vegetation phenology 
at 1 km resolution.

At the European scale, the vector‐based CORINE land cover (reference year 1990) is 
being updated (last produced in 2000 and 2006, and currently being updated to 2012). 
It consists of 44 land cover classes and uses a Minimum Mapping Unit (MMU) of 25 ha 
area, or a minimum width of 100 m for linear landscape structures. Land cover changes 
are mapped with an MMU of 5 ha by visual interpretation of high‐resolution satellite 
imagery. CORINE has a wide range of applications, underpinning the European 

Earth Observation for Land and Emergency Monitoring 
Core Services
Heiko Balzter

National Centre for Earth Observation, University of Leicester, Centre for Landscape and Climate Research, 
Department of Geography, Leicester, UK



Earth Observation for Land and Emergency Monitoring2

Communities policies in the domains of environment, but also agriculture, transport, 
spatial planning etc. The High‐Resolution‐Layers (HRL) at 100 m spatial resolution 
include two forestry data products: tree cover density and forest type. In GIO‐land an 
additional two forest products are being produced for the European Commission’s Joint 
Research Centre (JRC): tree cover presence/absence, and dominant leaf type at 25 m 
spatial resolution. The tree cover density dataset maps the level of tree cover density in 
a range from 0–100%, has no MMU (minimum number of pixels to form a patch) and a 
minimum mapping width of 20 m. The forest type products in their original 20 m reso-
lution version consists of the dominant leaf type (MMU of 0.5 ha, 10% tree cover density 
threshold applied), and a support layer showing trees under agricultural use and in 
urban contexts (derived from CORINE and imperviousness 2009 data). For the final 
100 m product trees under agricultural use and urban context from the support layer 
are removed.

This book introduces the reader to the outcomes from four years of research in sup-
port of the Copernicus Land Monitoring Core Service and the Emergency Monitoring 
Core Service.

The research was funded by the Marie Curie PEOPLE programme in Framework 
Programme 7, as an Initial Training Network. The GIONET project established a 
European Centre of Excellence in Earth Observation Research Training in 2011, when 
Copernicus was called “GMES” (Global Monitoring for Environment and Security), and 
just entered into its GMES Initial Operations phase (GIO).

GIONET trained 14 PhD researchers in academia, industry, and research centres in 
advanced remote sensing skills, accompanied by interpersonal, entrepreneurship and 
management skills. Seven organizations from five European countries employed the 
researchers and were supported by a large group of associated partners.

This book is structured into thematic chapters, covering Forest Monitoring (Part I), 
Land Cover and Land Cover Change Monitoring (Part II), Coastal Zone and Freshwater 
Monitoring (Part III), Land Deformation Mapping and Humanitarian Crisis Response 
Strategies (Part IV) and Earth Observation for Climate Adaptation (Part V). A 
Conclusions chapter summarizes the main findings presented in the book.

The UN initiative “Reducing Emissions from Deforestation and Forest Degradation” 
(REDD+) provides a strong user pull for forest information from space. In Part I on 
forest monitoring a concept for global forest biomass mapping is presented, making 
use  of geographically varying forest allometric models, spaceborne profiling LiDAR 
(ICESAT‐GLAS) and Synthetic Aperture Radar (SAR). Synergies between multi‐ 
temporal and multi‐frequency interferometric radar and optical satellite data for 
 biomass mapping and change detection are discussed and a SAR mapping application 
to the Congo Basin presented.

Conceived in 1985 as the CORINE programme, land cover monitoring is the most 
operational element of the Copernicus programme. The methodology remains 
largely unchanged. Part II on land cover and land cover change monitoring presents 
approaches that go beyond the current implementation of largely optical/near‐ 
infrared based land cover monitoring methods. Classification methods with multi‐
f requency, multi‐temporal SAR data over semi‐arid and forested African landscapes 
are explained and contrasted against the capabilities of optical‐near‐infrared high‐
resolution satellite images. A methodological framework for multi‐scale remote 
 sensing concludes this chapter.
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The European Water Framework Directive requires monitoring of the ecological sta-
tus and water quality of all major water bodies and their habitats. Earth Observation is 
only beginning to influence this application area. In Part III on coastal zone and fresh-
water monitoring, a study of salt marsh habitats in Wales is presented. Salt marshes are 
regarded as effective buffers against sea level rise and can be mapped with multi‐sensor 
data to support Integrated Coastal Zone Management. Freshwater applications focus 
on the ecology of emergent and submerged macrophytes in Lake Balaton, Hungary, 
using airborne hyperspectral and LiDAR remote sensing to map the extent of reed die‐
back syndrome, and satellite remote sensing to map and monitor optically active water 
quality parameters, such as chlorophyll‐a as a proxy for phytoplankton biomass and 
blooms.

The recent past was characterized by many humanitarian crises and natural  disasters. 
Part IV of this book describes the use of radar interferometry for land deformation 
mapping applications and demonstrates the use of machine learning algorithms in 
the context of humanitarian crisis response strategies. After a short review on radar 
 interferometry, a new hybrid method using Differential SAR Interferometry/Persistent 
Scatterer Interferometry for ground‐motion monitoring from spaceborneSAR data 
is  demonstrated and applied to different land cover types. Chapter 12 describes the 
use of spaceborne SAR and ground-based radar interferometry for mapping landslide 
 displacements in the Swiss Alps. New methods for the detection of small‐scale land 
surface feature changes in complex humanitarian crisis situations are demonstrated, 
transferring machine learning algorithms to environmental remote sensing.

With an increasing likelihood that mankind is unable or unwilling to respond effec-
tively to the causes of climate change, there is a widening recognition that we will have 
to adapt to its impacts. In Part V on Earth Observation for climate adaptation, a study 
on remote sensing of wetland dynamics as indicator of water availability in semi‐arid 
Africa is presented, using time series of optical and SAR satellite imagery. Satellite 
observations of drought events and crop stress in Europe conclude this chapter.

The book presents a collection of original research findings interspersed with selected 
review chapter and intends to serve as a compendium on the state‐of‐the‐art in remote 
sensing in support of land and emergency monitoring going beyond the current opera-
tional monitoring services in Copernicus.

I am grateful to the GIONET team for the inspiring and productive work over the past 
four years, in particular to my colleagues at the University of Leicester, UK, Airbus 
Defence and Space (formerly Astrium GEO‐Information Services), UK, Gamma Remote 
Sensing AG, Switzerland, the Institute of Geodesy and Cartography (IGIK) in Warsaw, 
Poland, Friedrich‐Schiller‐University in Jena, Germany, the Hungarian Academy of 
Sciences – Centre for Ecological Research and the German Aerospace Center (DLR), 
and the associated partners in the Joint Research Centre of the European Commission 
in Ispra, Italy, University of Stirling, UK, University of Padova, Italy, the National 
Observatory of Athens, Greece, Chalmers University in Sweden, and the companies 
Trimble, Germany, EXELIS Visual Information Solutions Ltd., UK, SpectoNatura, UK, 
BlackBridge, Germany, DANKO Plant Breeding in Poland, Envirosense, Hungary, and 
Earth Observation Services in Germany.

It has been a privilege and a pleasure to coordinate the international team of 14 early‐
stage researchers who were working towards their doctoral degrees in this unique inter-
national research environment.
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2

2.1 Forests and Carbon

Earth is undergoing significant global environmental change. The processes linked to 
global change are affecting the whole climate system and impacting human civilization. 
Understanding the effects and causes of these processes will assist human societies in 
devising adaptation and mitigation strategies. The United Nations Framework 
Convention on Climate Change (UNFCCC) and the Kyoto Protocol address the impor-
tance of reducing and monitoring greenhouse gas emissions (GHG), with CO2 being 
the most significant trace gas. Changes in the amount of atmospheric CO2 due to 
anthropogenic activities are altering the biogeochemical cycles that allow the recycling 
and reuse of carbon on Earth (global carbon cycle), and produce changes in weather 
patterns [1].

How the global carbon cycle stores and exchanges carbon within the system is crucial 
to understand interactions and feedbacks with the climate system. The locations where 
the carbon is stored within the global carbon cycle are called carbon pools, and the rates 
of carbon exchanged between pools are known as fluxes, and are classified in sources 
(emission to the atmosphere) and sinks (uptake from the atmosphere). Knowledge of 
both carbon pools and fluxes is essential to understand the global carbon cycle. Terrestrial 
ecosystems play a vital role in the global carbon cycle. The terrestrial carbon pool is 
about three times bigger than the atmospheric pool [1], and removes 30% of anthropo-
genic emissions from fossil fuel combustion from the atmosphere [2]. The primary 
source of terrestrial carbon emissions is from anthropogenic land use change; especially 
deforestation in the tropics, while afforestation, reforestation and growth of existing for-
est is the major contribution to the terrestrial sink term. Terrestrial ecosystems appear to 
act as a net sink [3], but there are significant uncertainties on the carbon fluxes between 
land and atmosphere in comparison with the other fluxes, still making terrestrial carbon 
pools and fluxes one of the major remaining uncertainties in climate science [4–8].

Methodology for Regional to Global Mapping 
of Aboveground Forest Biomass: Integrating Forest 
Allometry, Ground Plots, and Satellite Observations
P. Rodriguez-Veiga1,2, S. Saatchi3, J. Wheeler1, K. Tansey1 and Heiko Balzter1,2

1 University of Leicester, Centre for Landscape and Climate Research, Department of Geography, Leicester, UK
2 National Centre for Earth Observation, University of Leicester, Leicester, UK
3 NASA Jet Propulsion Laboratory, Pasadena, California, USA
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Global Forests play an important role in the global carbon cycle as they cover approxi-
mately 30% of the land surface and store 45% of terrestrial carbon in the form of  biomass 
via photosynthesis, which sequesters large amounts of carbon per year [8]. Forest accu-
mulates carbon primarily in the form of living aboveground biomass of trees (AGB). 
Forest AGB is living organic plant material composed of 50% carbon [9] as well as 
hydrogen and oxygen, and it is usually defined for a given area. When forests are 
degraded, cleared or burned, large amounts of this carbon are released into the atmos-
phere as carbon dioxide and other compounds. Deforestation is the second largest 
anthropogenic source of carbon dioxide to the atmosphere, after fossil fuel combustion 
and the largest source of greenhouse gas emissions in most tropical countries [10]. 
Thus, monitoring AGB stored in the world’s forests is essential for efforts to understand 
the processes related to the global carbon cycle and reducing carbon emissions origi-
nating from deforestation and forest degradation.

Biomass is an Essential Climate Variable (ECV) required by the Global Climate 
Observing System (GCOS) to support the work of the UNFCCC and the 
Intergovernmental Panel on Climate Change (IPCC) in monitoring climate change. 
Accurately monitoring and reporting the biomass or carbon content of forests 
(carbon stocks) is a requirement of different international mechanisms based on 
economic incentives that have been launched by the international community aim-
ing to mitigate climate change, such as “Reducing Emissions from Deforestation 
and forest Degradation” (REDD+). Global estimates of AGB carbon stocks have 
been produced in the past to support the monitoring of CO2 emissions from defor-
estation and land use change. However, the size and spatial distribution of forest 
AGB is still uncertain in most parts of the planet due to the difficulties measuring 
AGB at the ground level [11]. Very few global AGB carbon estimates are spatially 
explicit. Approaches that make full use of remote sensing techniques to estimate 
AGB are therefore needed.

This chapter will discuss current efforts to monitor forest and AGB at a global scale 
using traditional methods such as forest inventory ground measurements and more 
advanced methods based on Earth Observation data. Earth Observation is a very pow-
erful tool to measure forest resources worldwide in an objective, efficient, and affordable 
manner. Earth Observation satellites use remote sensors that have different advantages 
and limitations to measure forest biomass. A synergistic use of different datasets and 
sensors is presented in this chapter as the key to extract the full potential from earth 
observation methods.

2.2 Using Earth Observation Imagery to Measure 
Aboveground Biomass

Three broad types of remote sensors are used by Earth Observation platforms: Optical, 
Synthetic Aperture Radar (SAR), and LiDAR. Each type of sensor has different charac-
teristics, which make them suitable for monitoring forest vegetation. Detailed explana-
tion and examples on the use of different earth observation sensors and techniques to 
estimate AGB can be found in Chapter 3 of this book or in other literature [e.g. 12]. The 
following is a brief summary of techniques and sensors available to measure biophysical 
parameters of vegetation.
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Through optical remote sensing, it is possible to estimate a series of different vegetation 
indices such as Leaf Area Index (LAI) and Normalized Difference Vegetation Index 
(NDVI), which are mainly related to the photosynthetic components of the vegetation 
and therefore indirectly to AGB. This relies on an empirical relationship between green 
foliage and total AGB, however. In reality, forest AGB is primarily composed of the 
non‐photosynthetic parts of trees like trunks and branches. Forest AGB can neverthe-
less be indirectly estimated from optical sensors based on the sensitivity of the reflec-
tance to variations in canopy structure. Most optical approaches are based on this 
relationship in which signal retrieval is calibrated with ground measurements to model 
the spatial distribution of AGB across the landscape. Several studies have mapped AGB 
at different scales (medium to coarse resolution) relating ground  measurements to the 
signal retrieved from optical sensors such as Landsat or MODIS [e.g. 13–15].

Optical sensors have great advantages for global vegetation monitoring. Vegetation 
can be easily differentiated from other surfaces due to its strong reflectance in near 
infrared and visible green, as well as absorption in the red and blue sections of the 
visible spectrum [16]. Optical sensors have been operating for a long time and have a 
rich archive that can be used to study vegetation changes. For example, the Landsat 
mission has global coverage of observations over the last 40 years. Another advantage 
of optical sensors is that coarse and medium resolution imagery they produce can 
usually be obtained for free or at a low cost. The main shortcoming of optical imagery 
is cloud cover, as the sensors cannot “see” through clouds. This is not crucial in boreal 
or temperate latitudes, but can be a problem in tropical areas where there are few days 
a year without cloud cover. Moreover, as passive sensors, they can only operate during 
daylight, which reduces the number of potential revisit times in comparison with 
active sensors like SAR or LiDAR. Thus, the chances to obtain a cloud‐free image are 
also diminished. The way to overcome this problem is through the use of radiometri-
cally consistent multi‐temporal datasets, but this is costly, technically demanding, and 
time‐consuming [13,17]. Estimation of AGB by optical sensors also faces the saturation 
of the signal retrieval at low AGB stocks [10] as the signal retrieved from  vegetation 
depends on the absorption of light from the photosynthetic parts of the plants. Optical 
imagery is suitable for forest area mensuration, vegetation health monitoring, and 
 forest classification, but presents limited correlation with AGB after canopy closure.

Radars are active sensors, which generate their own electromagnetic signal. They are 
independent of solar illumination of the target area, being able to obtain day and night 
observations, as well as to penetrate through haze, clouds and smoke. SAR is an  airborne 
or spaceborne side‐looking radar system that uses its relative motion, between the 
antenna and its target region, to provide distinctive long‐term coherent signal variations 
used to generate high‐resolution remote sensing imagery (Figure 2.1).

Each SAR satellite works within a specific radar frequency bandwidth (with corre-
sponding wavelength), which is used to classify them in increasing wavelength size as  
X‐, C‐, S‐, L‐ or P‐band sensors. Several SAR satellites are currently operating (in orbit), 
including the new L‐band ALOS‐2 PALSAR, which was launched in May 2014 (Table 2.1).

The radar backscatter (the amount of scattered microwave radiation received by the 
sensor) is related to AGB as the electromagnetic waves interact with tree scattering 
elements like leaves, branches and stems, but their sensitivity to AGB depends on the 
radar wavelength [18]. Shorter wavelengths are sensitive to smaller canopy elements 
(X‐ and C‐band), while longer wavelengths (L‐ and P‐band) are sensitive to branches 
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Figure 2.1 Illustration of Synthetic Aperture Radar Satellite basic terminology.

Table 2.1 Operating or planned satellites used for forest monitoring.

Sensor Wavelength *AGB saturation Operating satellites Planned satellites

LIDAR Visible/near‐
infrared (532 & 
1064 nm)

No limit ICESat 2, GEDI 
(sensor attached to 
ISS)

SAR P Band 
(30–100 cm)

100–200 t ha–1 BIOMASS

L band 
(15–30 cm)

40–150 t ha–1 ALOS‐2 PALSAR SAOCOM 1A, 1B
NISAR

S band 
(7.5–15 cm)

Not reported Huanjing 1C NovaSAR‐S NISAR

C band 
(3.8–7.5 cm)

20–50 t ha–1 Radarsat 1
Radarsat 2
Sentinel 1

RADARSAT 
Constellation

X band 
(2.4–3.8 cm)

<20 t ha–1 TerraSAR X
Cosmo/SkyMed
Tandem X

Paz

OPTICAL Visible/near‐
infrared 
(380 nm–1 mm)

15–70 t ha–1 High Resolution satellites, 
Terra/Aqua MODIS, Terra 
ASTER, SPOT 6 & 7, 
Landsat 7 & 8, EO‐I, DMC 
constellation, Sentinel 2 & 3, 
PROBA V, and others

High Resolution 
satellites, Landsat 9, 
Ingenio, Amazonia, 
CBERS 4 & 4B, and 
others

* Range of AGB saturation thresholds found in the literature [21,22,25–28].
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and stems [19]. Longer wavelengths are theoretically more suitable for estimation of 
AGB as tree branches and stems comprise the highest percentage of AGB in forests. 
SAR backscatter sensitivity using L‐band usually saturates at around 100–150 t ha–1 
[20,21]. However, other authors have found higher saturation values of more than 
250 t ha–1 for L‐band [22], and even more than 300 t ha–1 when combined with other 
SAR datasets such as X‐band [23]. Nevertheless, there is no current satellite sensor in 
orbit (neither optical nor radar) that can offer a reasonable relationship between the 
observations and the high values of AGB often found in tropical areas (>400 t ha–1). 
Even though a P‐band sensor is very promising [24], at the moment there is only one 
planned satellite, the ESA Earth Explorer 8 BIOMASS mission [11], which will not be 
launched before 2021. The future P‐Band BIOMASS mission by ESA has the following 
accuracy requirements at pixel level (200 m × 200 m): an RMSE of ±10 t ha–1 for AGB 
below 50 t ha–1, and a relative error of ±20% for AGB above 50 t ha–1.

LiDAR technology consists of optical active sensors transmitting laser pulses to 
measure the distance to the target. LiDAR remote sensing systems can be classified 
according to:

 ● platforms: spaceborne, airborne, or ground‐based
 ● returned signals: discrete return or wave form
 ● scanning pattern: profiling or scanning
 ● footprint1 size: small footprint: (<1 m diameter), medium footprint (10–30 m diameter), 

and large footprint (>50 m diameter).

Airborne imaging LiDAR provides direct and very accurate measurements of canopy 
height. LiDAR sensors do not suffer from signal saturation, as optical and radar sensors 
do, because the signal can penetrate the canopy. Nevertheless, the vertical extent of 
each waveform increases as a function of terrain slope and footprint size, making this 
information insufficient over sloped terrain to estimate canopy height [29]. However, 
the use of airborne and ground platforms would be too costly and impractical at 
national, continental or global level [10].

The only spaceborne profiling LiDAR sensor was the Geoscience Laser Altimeter 
System (GLAS) that was aboard the NASA Ice, Cloud, and land Elevation (ICESat). 
This satellite operated between 2003 and 2010. The GLAS LiDAR sensor on board 
of ICESat scanned the globe following a profiling pattern, and produced a global 
coverage of large full waveform signal footprints. ICESat sampled millions of 
approximately 65 m diameter footprints every 172 m along track in between 2003 
and 2009. However, the vertical extent of each GLAS waveform increases as a func-
tion of terrain slope and footprint size, making this information insufficient over 
sloped terrain to estimate canopy height [29]. There is no current LiDAR satellite in 
orbit at the moment. ICESat‐2 will be launched in 2017, and the Global Ecosystem 
Dynamics Investigation LiDAR (GEDI) mission, which will attach a LiDAR profiling 
sensor to the International Space Station (ISS), will not be operative until 2020. 
These profiling sensors cannot be used alone to produce wide area AGB mapping, 
but they are very useful in combination with other Earth Observation datasets 
[e.g. 30,31].

1 Area illuminated by the laser and from which the waveform-return signal gives information.
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2.3 Global Forest Monitoring

The first challenge to monitoring forests at a global scale is the definition of forest itself, 
and consequently the definitions of deforestation and forest degradation. Forests are 
ecosystems dominated by trees and other woody vegetation, but there are approxi-
mately 1500 definitions of forest worldwide based on administrative, cover, use or eco-
logical characteristics [32]. These different definitions are based on different concerns 
and interests of people and states. Legal definitions greatly differ from ecological or 
traditional definitions, though the characteristics and thresholds are more clearly 
defined. These definitions are mostly focused on setting the minimum physical thresh-
olds for a vegetated ecosystem to be considered as a forest. Unfortunately, there is no 
universally agreed definition of forest (Figure 2.2). This situation makes any study at 
global scale using data generated at national level very complicated.

The remote sensing approaches allow the study of forest vegetation from a physical 
perspective. Therefore, the same vegetation thresholds defining forest, deforestation 
and forest degradation can be applied globally. The downside of this physical approach 
is that other types of woody vegetation such as oil palm plantations, which are respon-
sible for large‐scale deforestation in tropical areas, are sometimes included in the 
forest class, especially when using coarse or medium‐resolution optical sensors to 
monitor the forest [e.g. 34]. To overcome this challenge, ancillary data with the 
location of these plantations or accurate remote sensing methods to differentiate 
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these plantations from natural forest have to be implemented. Long‐wavelength 
Synthetic Aperture Radar (SAR) sensors could play an important role as the radar 
signal is sensitive to forest structure such as the regular spacing patterns observed in 
oil palm plantations [35].

Several products are globally or continentally produced to monitor forest changes 
(Table 2.2). These projects are generally based on in situ data and satellite optical sen-
sors with medium to coarse spatial resolutions. The use of airborne and high‐resolution 
sensors is restricted to sub‐national level or project level, as it could be impractical and 
the cost prohibitive at country, continental or global scale. Nevertheless, the use of 
these sensors on demand can be extremely valuable for monitoring specific hot spots 
where deforestation is a major issue, as well as to assist in the validation of medium‐
resolution products. The products developed by these programmes are mostly created 
using optical imagery, which requires a complex and extensive data processing chain in 
order to produce consistent global products. The main parameters measured by these 
data projects are forest cover and forest type. Most of these products lack the capabili-
ties to produce spatial AGB estimates.

The Forest Resource Assessments (FRAs) are based on the analysis of forest inventory 
information supplied by each country and supported by expert judgements, remote 
sensing and statistical modelling. A National Forest inventory is the most widely used 
method for in situ forest monitoring due to its historic roots in national forestry admin-
istrations, its accuracy and low technical requirements. A forest inventory is a system-
atic collection of forest data for assessment or analysis. The approach consists of 
sample‐based statistical methods, sometimes in combination with remote sensing and 
aerial imagery. In developing countries where the labour cost is low, the use of forest 
inventories could be a relatively cost‐effective approach. The FRAs analyse information 
on forest cover, forest state, forest services and non‐wood forest products. However, it 
was not until 2000 that a single technical definition for forest was used (10% crown 
cover). Changes in baseline information, inconsistent methods and definitions through 
the different FRAs make their comparison difficult [39]. Several authors have ques-
tioned the country‐level estimates of forest carbon stocks reported by the FRAs due to 
inadequate sampling for the national scale, inconsistent methods, and in most tropical 
countries figures that were based on ‘best guesses’ instead of actual measurements 
[7,10,47].

The Global Remote Sensing Survey (RSS) implemented in 2009 was a systematic sam-
pling based on units located at longitude and latitude intersections worldwide. Each 
sample unit consist of Landsat imagery covering an area of 10 km × 10 km, which was 
automatically classified into forest/non‐forest areas. The survey reported estimates of 
forest area, deforestation and afforestation at global, continental and ecological zone 
level for 1990, 2000 and to 2005.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the 
Terra and Aqua satellites provides biophysical parameter datasets, which allow monitor-
ing of biosphere dynamics. MODIS Vegetation Continuous Fields (VCF) is a sub‐pixel‐
level representation of surface vegetation cover estimates globally [48]. The percent 
canopy cover per MODIS pixel refers to the amount of sky obstructed by tree canopies 
equal to or greater than 5 m in height [48], which agrees with the UN Food and Agriculture 
Organization (FAO) definition of forest. The current version (collection 5) has been pub-
lished with 250 m resolution globally. Initial results show that this version of the product 
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is substantially more accurate (50% improvement in RMSE) than the previous 500 m 
version [45]. The pixel size of 250 m (ca. 6.25 ha) is still far from a pixel size of 71 m, which 
would be the minimum resolution that could detect a minimum unit area of forest 
(0.5 ha) according to the main forest definitions [49]. Nevertheless, VCF collection 5 cur-
rently has the best temporal coverage (from 2000) among the coarse resolution global 
forest monitoring products that are free of charge. Following the success of MODIS VCF, 
a recent 30 m resolution Tree Cover Continuous Fields (VCF) dataset has been devel-
oped, re‐scaling the 250 m MODIS VCF with Landsat imagery [46] (Figure 2.3).

A data mining approach of the Landsat archive by means of the Google Earth Engine 
was also used to globally quantify annual forest loss (2000–12) as well as 12 years of 
cumulative forest gain at 30 m spatial resolution [34]. This dataset together with others 
such as FORMA alerts [50], which provide tree cover lost alerts every 16‐days interval, 
can be freely downloaded and visualised on the website of the Global Forest Watch 
(www.globalforestwatch.org/). This site is a web‐platform that aims to provide reliable 

0 305 10 20
Km

Figure 2.3 Area in Central Siberia. Left: Landsat Tree Cover Continuous Fields 30 m resolution (2000) 
(Raw data: [46]), Centre: Forest/Non Forest K&C Initiative Product 50 m resolution (2010) (Source data 
provided by JAXA as the ALOS high level product © JAXA, METI), Right: GlobCover 300 m resolution (2009) 
(Source Data: © ESA / ESA GlobCover Project, led by MEDIAS‐France/POSTEL). Green colours (grey colours 
in printed version) denote forest, black colour water bodies, and white colour non‐forest area.

http://www.globalforestwatch.org
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information about forest to interested stakeholders such as governments, NGOs and 
companies by combining satellite technology, open data and crowdsourcing. The site 
also includes a forest carbon map for the year 2000 covering the tropical areas [31].

ESA’s Copernicus Global Land Service provides vegetation biophysical parameters at 
global level such as Fraction of green Vegetation Cover (FCOVER), Leaf Area Index 
(LAI), Normalized Difference Vegetation Index (NDVI), Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR), and others. The products have 1 km spa-
tial resolution.

Biomass Geo‐Wiki is a partnership project between the International Institute for 
Applied Systems Analysis (IIASA), University of Applied Sciences Wiener Neustadt, 
and the University of Freiburg. The project uses a crowdsourcing approach to compare 
and validate forest AGB products generated from different providers (e.g. NASA, 
IIASA, Friedrich‐Schiller University of Jena, etc.) at different spatial resolutions, for 
different areas and temporal coverage.

Land cover mapping provides a static representation of land cover. It does not show 
change in forest area, but serves as a baseline for assessment of forest cover change. Two 
main projects are the most representative and widely used at the moment: GlobCover and 
MODIS land products. GlobCover is a project from the European Space Agency (ESA) 
whose goal is to develop an Earth’s global land cover product [51] (Figure 2.3). Data from 
the Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar 
(MERIS) on board Environmental Satellite (ENVISAT) is used to develop a Land Cover 
product labelled according to the UN Food and Agriculture Organisation’s Land Cover 
Classification System. Two GlobCover products based on ENVISAT MERIS data at full 
resolution (300 m) were released by ESA for the years 2005–06 and for 2009.

The MODIS Land Cover Type Product (MCD12Q1) provides data characterizing five 
global land cover classification systems and is offered free of charge. The land cover 
product is an annual 500 m spatial resolution product derived through a supervised 
decision‐tree classification method.

The ALOS Kyoto & Carbon (K&C) Initiative is an international project led by Japan 
Aerospace Exploration Agency (JAXA). Coordinated by JAXA Earth Observation 
Research Centre (EORC), the programme focuses on producing data products primarily 
from the Phased Array L‐band Synthetic Aperture Radar (PALSAR) sensor on‐board the 
Advanced Land Observing Satellites (ALOS and ALOS-2). The main products from the 
K&C programme are the 25 m, 50 m and 100 m spatial resolution forest/non‐forest (FNF) 
area mosaics from resampled 10 m data every year (2007–2010 and 2015 onwards) 
(Figure 2.3). The method for developing this FNF product is based on a decision-tree 
classification that applies different backscatter intensity thresholds [41].

2.4 Remote Sensing and Biomass Allometry

AGB is accurately and directly measured through in situ destructive sampling methods. 
Through these methods entire trees are felled and the different tree components are 
separated and weighted in situ, resulting in a significantly laborious, expensive and 
impractical approach at a large scale [52]. Non‐destructive in situ methods such as for-
est inventories make use of allometric models to predict AGB. In situ non‐destructive 
measurements are broadly used for AGB monitoring as their accuracy lies between 
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20% and 2% [53]. Biophysical parameters like tree height or diameter are commonly 
measured in forest inventories and other studies, and used to estimate AGB through 
allometric equations.

Derivation of allometric relationships is based on the allometry of living organisms. 
Allometry is the condition of geometric similitude, which results when geometry and 
shape are conserved among organisms differing in size [54]. It works as a “rule of pro-
portions” between organism components and their whole. Allometric biomass regres-
sions are developed by measuring the biomass of entire trees or their components and 
regressing the data against some more easily measured variables [55]. The use of allo-
metric equations has been shown to be a cost efficient technique due to the use of 
existing and easily measured variables. Common examples of these variables are tree 
height, basal area, wood specific gravity, or diameter at breast height.

The most commonly used mathematical model for AGB estimation uses the form of 
a non‐linear function (Eq. 2.1), where Y is the total aboveground tree dry biomass or any 
other tree component, b0 and b1 are parameters, and X is the biophysical parameter 
used for prediction [56]:

 Y b X b
0

1  (2.1)

Allometric models have been traditionally developed to be used in national forest 
inventories or specific studies. The samples used to create these models are usually 
delimited to the area under study. Such models are generally developed for specific 
species and sites [57–60]. In temperate and boreal forested areas, there is a large avail-
ability of allometric equations [61]. Unfortunately, these equations are not easily avail-
able for developing countries in tropical regions with large areas of natural forests due 
to the geographical remoteness, lack of research studies, data paucity, high tree diversity 
or armed conflict situations. The Congo Basin is a clear example of the scarcity of 
ground samples. Even though the Congo basin is one of the largest forested areas in the 
world, only a small number of allometric equations have been developed for the forests 
of this region [62]. Several studies found that allometric models could be generalised by 
the incorporation of additional variables that explain the regional variability, such as 
wood density, and developed models for specific regions or forest biomes based on a 
large number samples [52,63,64]. Generalized equations are frequently used in tropical 
areas, but are just recommended in cases where no local models are available [65].

Few allometric models relating remote sensing‐derived biophysical parameters (usually 
canopy height) to AGB are presently available [e.g. 31,66,67–69]. This kind of relationship 
at the plot or pixel scale is conceptually similar to relationships at tree level. The main 
difference is that the relationship is established between the biophysical parameter and 
the AGB of all trees inside the area of interest. At tree level, AGB can be accurately calcu-
lated from tree height, diameter and specific wood density [64,70,71] using generalized 
models. Remote sensing can measure tree height but cannot directly measure wood den-
sity. The use of allometric models calibrated with regional ground data can circumvent 
this problem and provide accurate estimates of AGB [72]. Moreover, the use of additional 
forest structure variables can also improve the estimates [73,74]. Forest biomes or ecologi-
cal regions present different tree allometries depending on climatic conditions, vegetation 
structure, species, soil types, and other characteristics, which ultimately affect the corre-
lation between AGB and biophysical parameters like mean canopy height at plot and pixel 
level. It seems therefore logical to develop regional models that capture the regional 
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variability, as the slopes of these allometric functions will differ from region to region 
(Figure 2.4). Regional allometry has not been sufficiently explored to be used with remote 
sensing, but its use could improve AGB estimation worldwide.

New techniques applied to SAR and LiDAR sensors can be used to estimate biophysi-
cal parameters such as tree canopy height [31,75,76]. Biophysical parameters can be 
used with regional allometric models to estimate forest AGB. This approach does not 
suffer from the AGB/radar backscatter saturation problem. AGB can be mapped by SAR 
from interferometric height models in combination with allometry [75]. This approach 
requires a ground Digital Terrain Model (DTM), which is not always easy to obtain. 
Polarimetric Interferometry is another SAR technique, which in contrast to single‐
polarisation interferometry, does not rely on an external DTM, as it estimates terrain 
and canopy height from the different polarimetric scattering mechanisms [67,77,78]. It 
relies on the coherence of two SAR scenes taken over the same site, either within a short 
time window or simultaneously from two slightly different positions within a certain 
distance range or baseline. SAR Tomography goes beyond the polarimetric interferom-
etry technique by using a multi‐baseline of interferometric SAR images to generate a 3D 
vertical structure of the vegetation based on the variation of backscatter scattering as a 
function of height [24,79].

Several authors have studied LiDAR‐derived biophysical canopy metrics such as 
maximum canopy height, Lorey’s mean height (hL) and the height of median energy 
(HOME) to characterize forest vertical structure [75,80–85]. In recent studies [80,86], 
spaceborne profiling LiDAR from the GLAS sensor was used to create global maps of 
forest canopy height. The maps estimated top canopy height [86] and Lorey’s mean 
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canopy height (hL) [80] from the full waveform of the GLAS footprints (area illuminated 
by the laser and from which the waveform‐return signal gives information). Lorey’s 
mean canopy height is the basal area weighted height of all trees. At plot and LiDAR 
footprint level hL shows a robust relationship with AGB [80]. The size of the GLAS 
footprints (<0.4 ha) is comparable to most forest plots sizes (0.02–1 ha). Therefore, 
there are plenty of data available for developing regional models, which could relate 
canopy height to AGB as seen in [31,66,69].

2.5 Synergistic Use of Regional Allometry, in situ 
Measurements, and Spaceborne Profiling LiDAR, 
with Optical and SAR Imagery for Biomass Mapping

There is no sensor that can currently be used for AGB estimation across larger regions, 
either because of limitations in signal saturation, cloud cover persistence, or complex 
signal retrieval due to topography. Several studies have aimed to map AGB at global, 
biome, or continental levels using a variety of methods. Products mapping forest AGB 
and carbon stocks globally [87], continentally [14,88], in the tropical [30,31], temperate 
and boreal regions [89], as well as growing stock volume continentally [90], and in 
boreal regions [91] have recently been published. Together with the limitations of 
remote sensing imagery to map forest AGB, all these products also face important chal-
lenges regarding ground data availability to calibrate their approaches. Most of these 
studies use methods for combination of multiple datasets in order to circumvent such 
limitations. Data synergy approaches make possible to exploit the specific strengths of 
each sensor. For example, LiDAR sensors can be used for estimation of AGB samples 
across the landscape, while SAR sensors in combination with optical sensors can be 
used for forest area estimation and extrapolation of the measurements.

There are a number of parametric and non‐parametric approaches to extrapolate 
values of AGB to larger spatial scales using remote sensing imagery. Multiple regression 
analysis, k‐nearest neighbour technique (k‐NN), co‐kriging, random forests, and neural 
networks are some examples. Parametric approaches make assumptions on the shape 
(i.e., normal distribution), and on the parameters or form of the sample distribution, 
while non‐parametric approaches only make few or no assumptions. Parametric mod-
els present bigger challenges for extrapolating AGB data, as there are no current satellite 
observations that can be reasonably related to AGB across the whole landscape. 
Moreover, the assumptions in parametric models of independence and multivariate‐
normality are often violated [92]. As complex ecological systems like forests show non‐
linear relationships, autocorrelation, and variable interaction across temporal and 
spatial scales, the use of non‐parametric algorithmic methods often outperform para-
metric methods [93].

Two recent papers mapped the spatial distribution of AGB in the tropics using syner-
gistic approaches based on the use of GLAS footprints for the estimation of AGB 
[30,31]. The approach described by Baccini et al. [30] relates GLAS waveforms to AGB 
using a model calibrated by ground plots directly located under the GLAS footprints, 
while Saatchi et al. [31] uses three continental allometric models derived from ground 
data to relate GLAS‐derived Lorey’s mean canopy height to AGB. As discussed in the 
previous section, the use of a model for each continent might better explain the 
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allometric regional variability than a single model, but might still introduce a great 
amount of uncertainty when applied to very different forest biomes such as temperate 
coniferous and tropical rainforest. The studies use non‐parametric approaches such as 
Random Forest [94] and MaxEnt [95,96] for extrapolation of the AGB across wide areas, 
to produce 463 m and 1 km resolution maps respectively. One of the most innovative 
features of using MaxEnt is the possibility of mapping the uncertainty of the AGB esti-
mation on a pixel‐by‐pixel basis. Both approaches use MODIS and SRTM products, 
and in the case of [31] also Quickscatterometer data (QSCAT). None of these products 
can solely explain the variability of AGB across the landscape, but the methods used by 
these  studies aim to take advantage of the full potential of the information contained in 
each product.

2.5.1 Global Biomass Monitoring Approach

Based on the previous examples, it is possible to define a general concept for AGB map-
ping (Figure  2.5) using a combination of datasets from different remote sensors by 
means of a non‐parametric approach such as MaxEnt to extrapolate the AGB calibra-
tion data. These AGB data could be directly obtained from forest inventory datasets, or 
by means of regional allometric models relating AGB to remote sensing‐derived bio-
physical parameters such as mean canopy height calculated from Spaceborne LiDAR.

A baseline AGB map can be developed and updated at predefined time intervals (e.g. 
every 3–5 years). If annual products are needed for periods in between updates, those 
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Figure 2.5 AGB mapping method proposed for a Global Biomass Monitoring Approach.


