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Preface

This book is devoted to the Pauli exclusion principle, which is a fundamental prin-
ciple of quantummechanics and has been naturally kept in mind in all its numerous
applications in physics, chemistry, molecular biology, and even in astronomy, see
Chapter 1. Nevertheless, to the best of my knowledge, it is the first scientific (not
philosophical) book devoted to the Pauli exclusion principle. Although Wolfgang
Pauli formulated his principle more than 90 years ago, its rigorous theoretical foun-
dations are still absent. In the historical survey (Chapter 1) and in other chapters of
the book, I discuss in detail still existing unsolved problems connected with the
Pauli exclusion principle and for some of them suggest possible solutions.

From the beginning of my scientific activity I have been interested in the issues of
symmetry in quantummechanics and in the mathematical description of it, that is, in
the group theory and, particularly, in the permutation group theory. I was impressed
by the simplicity and clearness of Young’s mathematical language (about Young
diagrams and Young tableaux, see Appendix B), especially if one takes into account
Young’s individuality: most of Young’s papers on the permutation group were writ-
ten when he was a country parish priest. For many years I was occupied with the
following question: why, according to the Pauli exclusion principle, in our Nature
only the antisymmetric or symmetric permutation symmetries for identical particles
are realized, while the Schrödinger equation is satisfied by functions with any per-
mutation symmetry. The possible answers on this question I discuss in Chapter 3.

I was always impressed by the Pauli deep physical intuition, which several times
struck physical community. In fact, the formulation by Pauli of his principle was to
a great extent based on his intuition (it was done before the creation of modern
quantum mechanics), and it gave rise to the discovery of such important quantum
mechanical conception as spin (I describe this dramatic story in Chapter 1).
Another well-known example is the Pauli prediction of neutrino. Pauli made this
prediction without any experimental and theoretical indications that this chargeless



and, as thought at that time, massless particle can exist. He tried to save the energy
conservation law in the β-decay, because he did not agree with Niels Bohr who at
that time was sure that the energy conservation law is not valid for microparticles.
It turns out that Pauli was right.
The construction of functions with a given permutation symmetry is discussed in

detail in Chapter 2. All necessary mathematical apparatus is given in Appendices A
and B. If the total wave function of N identical particle system is represented as a
product of the spatial and spin wave functions symmetrized according to the appro-
priate irreducible representations of the permutation group, it automatically satis-
fies the Pauli exclusion principle and describes the state with a definite value of the
total electronic or nuclear spin.
The application of the permutation group theory for the construction of molecu-

lar wave functions makes possible elaborating effective and elegant methods for
finding the Pauli-allowed states in atomic, molecular, and nuclear spectroscopy
(Chapter 4). In the elaborated methods the linear groups and their interconnection
with the permutation group are applied. The necessary mathematical apparatus is
represented in Appendix C. The classification of the Pauli-allowed states is repre-
sented for all types of many-atommolecules with the explicit formulae for the char-
acters of reducible representations formed by a given set of atomic states. In last
sections of this chapter the methods of finding the Pauli-allowed states for an arbi-
trary many-particle system, containing subsystems characterized by their local
symmetry, are described. These methods do not depend on the number of particles
in subsystems.
Chapter 5 is devoted to exotic statistics: parastatistics and fractional statistics.

Although the elementary particles obeying the parastatistics are not detected,
I demonstrate that the quasiparticles (collective excitations) in a periodical lattice
are obeying the modified parafermi statistics; among them are the hole pairs, which
are analogue of Cooper’s pairs in the high Tc superconductivity, and such well-
known quasiparticles as excitons and magnons. The fractional statistics is also
realized in our Nature for excitations in the fractional quantum Hall effect; these
excitations can be considered as quasiparticles with fractional charge. However,
the theoretical suggestions that the fractional statistics is realized in the high Tc
superconductivity have not been confirmed by experiment.
I tried to write the book for a broad audience from academic researchers to gradu-

ate students connected in their work or study with quantum mechanics. Significant
efforts were made to present the book so as it will be self-sufficient for readers, since
all necessary apparatus of the group theory is described in the appendices.
I would like to acknowledge Lucien Piela, Lev Pitaevsky, Olga Rodimova, Oleg

Vasyutinsky, Vladimir Yurovsky, and Serge Zagoulaev for useful discussions of
different problems connected with the topic of the book. Special acknowledgment
goes to Ulises Miranda and Alberto Lopez who helped me to correct the book.

Mexico
February 2016
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1
Historical Survey

1.1 Discovery of the Pauli Exclusion Principle
and Early Developments

Wolfgang Pauli formulated his principle before the creation of the contemporary
quantum mechanics (1925–1927). He arrived at the formulation of this principle
trying to explain regularities in the anomalous Zeeman effect in strong magnetic
fields. Although in his Princeton address [1], Pauli recalled that the history of
the discovery goes back to his student days in Munich. At that time the periodic
system of chemical elements was well known and the series of whole numbers
2, 8, 18, 32… giving the lengths of the periods in this table was zealously discussed
in Munich. A great influence on Pauli had his participation in the Niels Bohr guest
lectures at Göttingen in 1922, when he met Bohr for the first time. In these lectures
Bohr reported on his theoretical investigations of the Periodic System of Elements.
Bohr emphasized that the question of why all electrons in an atom are not bound in
the innermost shell is the fundamental problem in these studies. However, no
convincing explanation for this phenomenon could be given on the basis of
classical mechanics.

In his first studies Pauli was interested in the explanation of the anomalous type
of splitting in the Zeeman effect in strong magnetic fields. As he recalled [1]:

The anomalous type of splitting was especially fruitful because it exhibited beautiful
and simple laws, but on the other hand it was hardly understandable, since very

The Pauli Exclusion Principle: Origin, Verifications, and Applications, First Edition. Ilya G. Kaplan.
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general assumptions concerning the electron using classical theory, as well as quan-
tum theory, always led to the same triplet. A closer investigation of this problem left
me with the feeling, it was even more unapproachable. A colleague whomet me strol-
ling rather aimlessly in the beautiful streets of Copenhagen said to me in a friendly
manner, ‘You look very unhappy’; whereupon I answered fiercely, ‘How can one
look happy when he is thinking about the anomalous Zeeman effect?’

Pauli decided to analyze the simplest case, the doublet structure of the alkali
spectra. In December 1924 Pauli submitted a paper on the Zeeman effect [2], in
which he showed that Bohr’s theory of doublet structure based on the nonvanishing
angular moment of a closed shell, such as K-shell of the alkali atoms, is incorrect
and closed shell has no angular and magnetic moments. Pauli came to the conclu-
sion that instead of the angular momentum of the closed shells of the atomic core, a
new quantum property of the electron had to be introduced. In that paper he wrote,
remarkable for that time, prophetic words. Namely:

According to this point of view, the doublet structure of alkali spectra … is due to a
particular two-valuedness of the quantum theoretic properties of the electron, which
cannot be described from the classical point of view.

This nonclassical two-valued nature of electron is now called spin. In anticipating
the quantum nature of the magnetic moment of electron before the creation of
quantum mechanics, Pauli exhibited a striking intuition.
After that, practically all was ready for the formulation of the exclusion

principle. Pauli also stressed the importance of the paper by Stoner [3], which
appeared right at the time of his thinking on the problem. Stoner noted that the
number of energy levels of a single electron in the alkali metal spectra for the given
value of the principal quantum number in an external magnetic field is the same as
the number of electrons in the closed shell of the rare gas atoms corresponding to
this quantum number. On the basis of his previous results on the classification of
spectral terms in a strong magnetic field, Pauli came to the conclusion that a single
electron must occupy an entirely nondegenerate energy level [1].
In the paper submitted for publication on January 16, 1925 Pauli formulated his

principle as follows [4]:

In an atom there cannot be two or more equivalent electrons, for which in strong fields
the values of all four quantum numbers coincide. If an electron exists in an atom for
which all of these numbers have definite values, then this state is ‘occupied.’

In this paper Pauli explained the meaning of four quantum numbers of a single
electron in an atom, n, l, j= l± 1 2, and mj (in the modern notations); by n and
l he denoted the well known at that time the principal and angular momentum
quantum numbers, by j and mj—the total angular momentum and its projection,

2 The Pauli Exclusion Principle



respectively. Thus, Pauli characterized the electron by some additional quantum
number j, which in the case of l= 0 was equal to ± 1 2. For the fourth quantum
number of the electron Pauli did not give any physical interpretations, since he
was sure, as we discussed above, that it cannot be described in terms of classical
physics.

Introducing two additional possibilities for electron states, Pauli obtained
2 2l+ 1 possibilities for the set (n, l, j, mj). That led to the correct numbers 2,
8, 18, and 32 for the lengths of the periods in the Periodic Table of the Elements.

As Pauli noted in his Nobel Prize lecture [5]: “…physicists found it difficult to
understand the exclusion principle, since nomeaning in terms of a model was given
to the fourth degree of freedom of the electron.”Although not all physicists! Young
scientists first Ralph Kronig and then George Uhlenbeck and Samuel Goudsmit did
not take into account the Pauli words that the electron fourth degree of freedom
cannot be described by classical physics and suggested the classical model of
the spinning electron. Below I will describe in some detail the discovery of spin
using the reminiscences of the main participants of this dramatic story.

Kronig recalled [6] that on January 7, 1925, at the age of 20, he, as a traveling
fellow of the Columbia University, arrived in the small German university town of
Tübingen to see Landé and Gerlach. At the Institute of Physics Kronig was
received by Landé with the remark that it was a very opportune moment, since
he was expecting Pauli the following day and he just received a long and very inter-
esting letter from Pauli. In that letter Pauli described his exclusion principle. Pauli’s
letter made a great impression on Kronig and it immediately occurred to him that
additional to the orbital angular momentum l the momentum s = 1 2 can be con-
sidered as an intrinsic angular momentum of the electron. The same day Kronig
performed calculations of the doublet splitting. The results encouraged him,
although the obtained splitting was too large, by a factor of 2. He reported his
results to Landé. Landé recommended telling these results to Pauli. Next day Pauli
arrived at Tübingen, and Kronig had an opportunity to discuss with him his ideas.
As Kronig [6] wrote: “Pauli remarked: ‘Das ist ja ein ganz Einfall’,1 but did not
believe that the suggestion had any connection with reality.”

Later Kronig discussed his ideas in Copenhagen with Heisenberg, Kramers, and
others and they also did not approve them. Under the impression of the negative
reaction of most authoritative physicists and some serious problems in his calcu-
lations Kronig did not publish his ideas about a spinning electron. In the letter to
van der Waerden [7] Kronig wrote about the difficulties he met in his studies of the
spinning electron:

First, the factor 2 alreadymentioned.Next, thedifficulty tounderstandhowa rotationof
the electron about its axis would yield a magnetic moment of just onemagneton. Next,
the necessity to assume, for the rotating charge of an electron of classical size, velocities

1 This is a very funny idea.
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surpassing the velocity of light. Finally, the smallness of the magnetic moments of
atomic nuclei, which were supposed, at that time, to consist of proton and electrons

Independent ofKronig, theDutch physicists Uhlenbeck andGoudsmit after read-
ing the Pauli paper on his exclusive principle also arrived at the idea of the spinning
electron. In his address, delivered at Leiden on the occasion of his Lorentz Profes-
sorship, Uhlenbeck [8] told in detail the story of their discovery and its publication.2

According toUhlenbeck, heandGoudsmitweregreatlyaffectedby thePauli exclu-
sion principle, in particular by the fourth quantum number of the electron. It was a
mystery, why Pauli did not suggest any concrete picture for it. Due to their conviction
that every quantum number corresponds to a degree of freedom, they decided that the
pointmodel for the electron, which had only three degrees of freedom,was not appro-
priateand the electron shouldbe assumedas a small sphere that could rotate.However,
very soon they recognized that the rotational velocity at the surface of the electron had
to be many times larger than the velocity of light. As Uhlenbeck writes further,

…we had not the slightest intention of publishing anything. It seems so speculative
and bold, that something ought to be wrong with it, especially since Bohr, Heisenberg
and Pauli, our great authorities, had never proposed anything of this kind. But of
course we told Erenfest. He was impressed at once, mainly, I feel, because of the vis-
ual character of our hypothesis, which was very much in his line.… and finally said
that it was either highly important or nonsense, and that we should write a short note
for Naturwissenschaften and give it to him. He ended with the words ‘und dann wer-
den wir Herrn–Lorentz fragen’.3 This was done. … already next week he (Lorentz)
gave us a manuscript, written in his beautiful hand writing, containing long calcula-
tions on the electromagnetic properties of rotating electrons. We could not fully
understand it, but it was quite clear that the picture of the rotating electron, if taken
seriously, would give rise to serious difficulties. … Goudsmit and myself felt that it
might be better for present not to publish anything; but when we said this to Erenfest,
he answered: ‘Ich habe Ihren Brief schon längst abgesandt; Sie sind beide jung genug
um sich eine Dummheit leisten zu können.4

Thus, the short letter of Uhlenbeck and Goudsmit was transmitted by Erenfest to
the editor of Naturwissenschaften and soon published [9]. Then in February 1926
they published a paper inNature [10]. In the letter to Goudsmit fromNovember 21,
1925 (see van derWaerden [7]), Heisenberg congratulated him with their paper but
also asked him how he envisaged getting rid of the wrong factor 2 in the doublet
splitting formula. Bohr, who was initially rather skeptic about the hypothesis of the
spinning electron and did not approve the Kronig idea, gradually changed his mind.

2 English translation of an essential part of Uhlenbeck’s address represented in Ref. [7].
3
…and then we will also ask Mr. Lorentz.

4 I have already sent your letter some time ago. You are both young enough and can afford yourself a
foolishness.
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The meeting with Einstein became crucial. In his letter to Kronig from March 26,
1926 (see van der Waerden [7]), Bohr writes:

When I came to Leiden to the Lorenz festivals (December 1925), Einstein asked the
very first moment I saw him what I believe about the spinning electron. Upon my
question about the cause of the necessary mutual coupling between spin axis and
the orbital motion, he explained that this coupling was an immediate consequence
of the theory of relativity. This remark acted as a complete revelation to me, and
I have never since faltered in my conviction that we at last were at the end of our
sorrows.

Under the influence of Bohr’s opinion on the idea of spinning electron, Heisenberg
at last removed his objections.

However, Pauli did not! His deep intuition did not allow him at once to admit the
hypothesis of the spin as an intrinsic angular momentum of the rotating electron.
Pauli’s objections resulted from the wrong factor 2 in the doublet splitting, but
mainly from the classical nature of the spin hypothesis. After the Lorentz festival
(December 1925), Pauli met Bohr in Berlin and in strong words expressed his
dissatisfaction that Bohr changed his position. Pauli was convinced that a new
“Irrlehre”5 has arisen in atomic physics, as van der Waerden wrote in his recollec-
tions [7].

Meanwhile, in April 1926, a young English physicist Llewellyn Thomas, who
had spent half a year in Copenhagen with Bohr, published a letter in Nature [11],
where he presented a relativistic calculation of the doublet splitting. Thomas dem-
onstrated that the wrong factor 2 disappears and the relativistic doublet splitting
does not involve any discrepancy. In the end Thomas noted, “… as Dr. Pauli
and Dr. Heisenberg have kindly communicated in letters to Prof. Bohr, it seems
possible to treat the doublet separation as well as the anomalous Zeeman effect
rigorously on the basis of the new quantum mechanics.” Thus, this time Pauli
was certain that the problem can be treated rigorously by the quantum mechanical
approach. The relativistic calculations by Thomas finally deleted all his doubts.

In his Nobel Prize lecture Pauli recalled [5]:

Although at first I strongly doubted the correctness of this idea because of its classical
mechanical character, I was finally converted to it by Thomas [11] calculations on the
magnitude of doublet splitting. On the other hand, my earlier doubts as well as the
cautious expression ‘classically non-describable two-valuedness’ experienced a cer-
tain verification during later developments, as Bohr was able to show on the basis of
wave mechanics that the electron spin cannot be measured by classically describable
experiments (as, for instance, deflection of molecular beams in external electromag-
netic fields) and must therefore be considered as an essentially quantum mechanical
property of the electron.

5 Heresy.
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It is now clear that Pauli was right in not agreeing with the classical interpret-
ation of the fourth degree of freedom. The spin in principle cannot be described by
classical physics. The first studies devoted to applying the newborn quantum
mechanics to many-particle systems were performed independently by Heisenberg
[12] and Dirac [13]. In these studies, the Pauli principle, formulated as the prohib-
ition for two electrons to occupy the same quantum state, was obtained as a con-
sequence of the antisymmetry of the wave function of the system of electrons.
It is instructive to stress how young were the main participants of this

dramatic story. They were between 20 and 25 years. In 1925, the creators
of quantum mechanics—Werner Heisenberg (1901–1976), Paul Dirac
(1902–1984), Wolfgang Pauli (1900–1960), Enrico Fermi (1901–1954), and
some others—were of the same age. Namely: Heisenberg—24, Dirac—23,
Pauli—25, Fermi—24.

∗ ∗
∗

In his first paper [12], submitted in June 1926, Heisenberg constructed the
antisymmetric Schrödinger eigenfunction for the system of n identical particles
(electrons) as a sum:

φ=
1

n
−1

δk
φ1 mk

α φ2 mk
β …φn mk

ν (1.1)

where δk is a number of transpositions in a permutation, Pk (a parity of permuta-
tion), and mk

αm
k
β…mk

ν the new order of quantum numbers m1m2…mn after the
application of permutation Pk. Heisenberg concluded that this function cannot have
two particles in the same state, that is, it satisfies the Pauli exclusion principle. In
the following paper [14], submitted in July 1926, Heisenberg considered a two-
electron atom and from the beginning assumed that the Pauli-allowed wave func-
tions must be antisymmetric. He demonstrated that the total antisymmetric wave
function can be constructed as a product of spatial and spin wave functions and
discussed two possibilities: A—the symmetric eigenfunction of the space coord-
inates is multiplied by the antisymmetric eigenfunction of the spin coordinates;
B—the antisymmetric eigenfunction of the space coordinates is multiplied by
the symmetric eigenfunction of the spin coordinates. Case A corresponds to the
atomic singlet state with the total spin S = 0; case B corresponds to the triplet state
with S = 1. Heisenberg presented detailed calculations for the atom He and the ion
Li+ . These were first quantum mechanical calculations of the atomic states char-
acterized by the total spin S of the atom defined by the vector addition of the spins
of the individual electrons.
Dirac [13] began with the two-electron atom and noted that the states differing

by permutations of electrons ψn(1)ψm(2) and ψn(2)ψm(1) correspond to the same
state of the atom; these two independent eigenfunctions must give rise to the sym-
metric and antisymmetric linear combinations providing a complete solution of the

6 The Pauli Exclusion Principle



two-electron problem. Then Dirac considered the systems with any number of elec-
trons and represents an N-electron antisymmetric function as a determinant6:

ψn1 1 ψn1 2 … ψn1 r

ψn2 1 ψn2 2 … ψn2 r

… … … …

ψnr 1 ψnr 2 … ψnr r

(1.2)

After presenting the many-electron wave function in the determinantal form
Dirac wrote: “An antisymmetrical eigenfunction vanishes identically when two
of the electrons are in the same orbit. This means that in the solution of the problem
with antisymmetrical eigenfunctions there can be no stationary states with two or
more electrons in the same orbit, which is just Pauli’s exclusion principle. The
solution with symmetrical eigenfunctions, on the other hand, allows any number
of electrons to be in the same orbit, so that this solution cannot be the correct one
for the problem of electrons in an atom.”

In the second part of his paper [13], Dirac considered an assembly of noninter-
acting molecules. At that time it was supposed that molecules are resembled elec-
trons and should satisfy the Pauli exclusion principle. Dirac described this
assembly, in which every quantum state can be occupied by only one molecule,
by the antisymmetric wave functions and obtained the distribution function and
some statistical quantities. It should be mentioned that these statistical formulae
were independently published by Fermi [16] in the paper submitted several months
earlier than the Dirac paper [13]. Fermi also considered an assembly of molecules
and although his study was performed within the framework of classical mechan-
ics, the results were the same as those obtained by Dirac who applied the newborn
quantum mechanics. This concluded the creation of the statistics, which is at pre-
sent named the Fermi–Dirac statistics.

In the same fundamental paper [13], Dirac considered the assembly described by
the symmetric wave functions and concluded that he arrived at the already known
Bose–Einstein statistical mechanics.7 Dirac stressed that the light quanta must be
described by the symmetric wave functions and he specially noted that a system of
electrons cannot be described by the symmetric wave functions since this allows
any number of electrons to occupy a quantum state.

6 It is important to note that the determinantal representation of the electronic wave function, at present
widely used in atomic and molecular calculations, was first introduced in general form by Dirac [13] in
1926. In 1929, Slater [15] introduced the spin functions into the determinant and used the determinantal
representation of the electronic wave function (so-called Slater’s determinants) for calculations of the
atomic multiplets.
7 This statistics was introduced for the quanta of light by Bose [17] and generalized for particles by
Einstein [18, 19].
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Thus, with the creation of quantummechanics, the prohibition on the occupation
numbers of electron system states was supplemented by the prohibition of all types
of permutation symmetry of electron wave functions except for antisymmet-
ric ones.
The first quantum mechanical calculation of the doublet splitting and the

anomalous Zeeman effect for atoms with one valence electron was performed
by Heisenberg and Jordan [20] in 1926. They used the Heisenberg matrix approach
and introduced the spin vector s with components sx, sy, and sz with commutations
relations the same as for the components of the orbital angular moment l. The
spin–orbit interaction was taken as proportional to l s. The application of the
perturbation theory led to results, which were in full accordance with experiment.
In 1927, Pauli [21] studied the spin problem using the wave functions. Pauli

introduced the spin operators sx, sy, sz acting on the wave functions, which depend
on the three spatial coordinates, q, and a spin coordinate. Pauli took sz as a spin
coordinate. The latter is discrete with only two values. Therefore, the wave func-
tion ψ(q, sz) can be presented as a two-component function with components ψα(q)
and ψβ(q) corresponding to sz = 1 2 and sz = −1 2, respectively. The operator, act-
ing on the two-component functions, can be presented as a matrix of the second
order. Pauli obtained an explicit form of the spin operators, representing them
as sx = 1 2σx, sy = 1 2σy, and sz = 1 2σz, where στ are the famous Pauli matrices:

σx =
0 1

1 0
, σy =

0 − i

i 0
, σz =

1 0

0 −1
(1.3)

Applying his formalism to the problem of the doublet splitting and the anomalous
Zeeman effect, Pauli obtained, as can be expected, the same results as Heisenberg
and Jordan [20] obtained by the matrix approach.
The Pauli matrices were used by Dirac in his derivation of the Schrödinger

equation for the relativistic electron [22]. However, for most of physicists the
two-component functions that do not transform like vectors or tensors seemed very
strange. As van der Waerden recalled [7]: “Erenfest called these quantities Spinors
and asked me on his visit to Göttingen (summer, 1929): ‘Does a Spinor Analysis
exist, which every physicist can learn like Tensor Analysis, and by which all
possible kinds of spinors and all invariant equations between spinors can be written
down?’ ” This request made by an outstanding physicist was fulfilled by van der
Waerden in his publication [23].
After these publications, the first stage of the quantum mechanical foundation of

the Pauli exclusion principle and the conception of the spin could be considered as
completed. Although it is necessary to mention very important applications of the
group-theoretical methods to the quantum mechanical problems, which were
developed at that time by John von Neumann and Eugene Wigner [24–27]. Very
soon the three remarkable books on the group theory and quantummechanics were
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published; first by Herman Weyl [28] and then by Wigner [29] and by van der
Waerden [30].

The discovery of various types of elementary particles in the 1930s allowed for-
mulating the Pauli exclusion principle in a quite general form. Namely:

The only possible states of a system of identical particles possessing spin s are those
for which the total wave function transforms upon interchange of any two particles as

PijΨ 1,…, i,…j,…,N = −1 2sΨ 1,…, i,…j,…,N (1.4)

that is, it is symmetric for the integer values of s (the Bose–Einstein statistics) and
antisymmetric for the half-integers (the Fermi–Dirac statistics).

The Pauli exclusion principle formulated above also holds for composite
particles. First, it was discussed by Wigner [31] and independently by Ehrenfest
and Oppenheimer [32]. The latter authors considered some clusters of electrons
and protons; it can be atoms, molecules, or nuclei (at that time the neutron had
not been discovered yet and it was believed that the nuclei were built from electrons
and protons). They formulated a rule, according to which statistics of a cluster
depends upon the number of particles from which they are built up. In the case
of odd number of particles it is the Fermi–Dirac statistics, while in the case of even
number it is the Bose–Einstein statistics, see Fig. 1.1. It was stressed that this rule is
valid, if the interaction between composite particles does not change their internal
states; that is, the composite particle is stable enough to preserve its identity.

A good example of such stable composite particle is the atomic nucleus. It con-
sists of nucleons: protons and neutrons, which are fermions because they both have
s = 1 2. Depending on the value of the total nuclear spin, one can speak of boson
nuclei or fermion nuclei. The nuclei with an even number of nucleons have an inte-
ger value of the total spin S and are bosons; the nuclei with an odd number of
nucleons have a half-integer value of the total spin S and are fermions.

Fermion composite particle Boson composite particle

2N+1
Fermions

2N
Fermions

Fig. 1.1 The statistics of composite particles
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Awell-known example, in which the validity of the Pauli exclusion principle for
composite particles can be precisely checked in experiment, is the 16O2 molecule.
The nucleus 16O is a boson composite particle, so the total wave function of the
16O2 molecule must be symmetric under the permutations of nuclei. At the
Born–Oppenheimer approximation [33] a molecular wave function can be repre-
sented as a product of the electronic, Ψel, and nuclear, Φn, wave functions. At the
equilibrium distances the nuclear wave function, in its turn, can be represented as a
product of the vibrational, Φvib, and rotational, Φrot, wave functions. Thus,

Ψ 16Oa−
16Ob =Ψel ab Φvib ab Φrot ab (1.5)

The vibrational wave function, Φvib(ab), depends only on the magnitude of the
interatomic distance and remains unaltered under the interchange of the nuclei.
The ground state electronic wave, Ψel(ab), is antisymmetric under the interchange
of the nuclei. Hence, for fulfilling the boson symmetry of the total wave function
(1.5), the rotational wave function, Φrot(ab), must be also antisymmetric under the
interchange of the nuclei. The symmetry of the rotational wave function in the state
with the rotational angular momentum K is determined by the factor −1 K . There-
fore, in the ground electronic state the even values of K are forbidden and only odd
values of K are allowed. Exactly this was revealed in 1927 in spectroscopic meas-
urements [34] made before the theoretical studies [31, 32].
I presented above the general formulation of the Pauli exclusion principle in the

terms of the permutation symmetry of the total wave function. There is also a for-
mulation of the Pauli exclusion principle in the second quantization formalism. The
second quantization for the electromagnetic field, that is, for bosons, was created
by Dirac [35]; the commutations relations for fermion and boson operators in the
explicit modern form were formulated by Jordan and Wigner [36], see also refer-
ences therein.
For bosons, which are described by the symmetric wave functions and satisfy the

Bose–Einstein statistics, the commutation relations for the creation b+
k and anni-

hilation bk operators in the quantum state k are (see Appendix E)

bk,b
+
k −

= bk b
+
k −b+

k bk = δkk ,

bk,bk − = b+
k ,b

+
k −

= 0
(1.6)

while for fermions, which correspond to the Fermi–Dirac statistics with the
antisymmetric wave functions, the commutation relations for the creation c +k
and annihilation ck operators (in the fermion case they are transformed to the
anticommutation relations) are

ck,c
+
k + = ck c

+
k + c +k ck = δkk ,

ck,ck + = c +k ,c
+
k + = 0

(1.7)
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As follows from the second line of the fermion anticommutation relations (1.7),

c +k
2
= 0 (1.8)

or no more than one fermion particle can be created in one quantum state, which is
exactly the primary formulation of the Pauli principle. A more detailed description
of the second quantization formalism is presented in Appendix E.

Some of the field theory specialists claimed that the second quantization formu-
lation of the Pauli exclusion principle is the most general; see, for instance, Ref.
[37]. I do not think so, these formulations are quite different. On the one hand,
the second quantization formalism is developed for N-particle system in the case
when each particle is characterized by its own wave function (so-called one-
particle approximation),8 while the ψ-formalism considers the permutation
symmetry of the total wave function in any approximation, even for an exact solu-
tion when the particles lost their individualities. Thus, in this sense the
ψ -formulation of the Pauli exclusion principle is more general than the formulation
in the second quantization formalism. On the other hand, for the composite par-
ticles the formulation in the second quantization formalism allows to take into
account the internal structure of the composite particle. The symmetry of the wave
functions of N-particle system does not change when we go from elementary to
composite particles satisfying the same statistics, while for the commutation rela-
tions of the second quantization operators it is not true; in the case of composite
particles they are changed. We will discuss this problem and the reasons for this
in the next subsection.

1.2 Further Developments and Still Existing Problems

In 1932, Chadwick [38] discovered neutron. In the same year, Heisenberg [39]
considered consequences of the model, in which the nuclei are built from protons
and neutrons, assuming that the forces between all pairs of particles are equal and
in this sense the proton and neutron can be considered as different states of one
particle. Heisenberg [39] introduced a variable τ. The value τ = −1 was assigned
to the proton state, and the value τ = 1 to the neutron state. Wigner [40] called τ as
isotopic spin (at present named also as isobaric spin). Taking into account for pro-
tons and neutrons their nuclear spin s = 1 2 too,Wigner studied the nuclear charge-
spin supermultiplets for Hamiltonian not involving the isotope spin and the ordin-
ary spin as well, see also Refs. [41, 42].

In the 1940s, Giulio Racah published a series of four papers [43–46], in which he
considerably improved methods of classification and calculation of atomic spectra.
At that time the calculations of atomic spectra were performed by the diagonal-sum

8 It is natural in the relativistic theory where the number of particles in the system can be changed.
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