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Preface

This book has grown out of an ambition to collect the basic theoretical foundations needed in
our daily work as computational chemists with a focus on calculating molecular spectroscopic
properties. The result is of course a product strongly influenced by our past experiences and will,
as such, provide both a subjective and selective view of the field. It is subjective in the ways we
choose to present the subject matter and it is selective in the inclusion of some topics but leaving
out others that by many may be deemed just as important. But it is our hope that we provide a
basic understanding of key concepts so as to enable further reading of research articles provid-
ing either a more detailed treatment of theoretical specifics and algorithmic implementations,
or covering any one of the several spectroscopies not mentioned in the book.

Every chapter in this book expresses a balance between principles and practices. A principle
(such as the variational principle) can typically be expressed in an extremely compact manner
and governs the practices in a wide range of applications (such as a whole category of meth-
ods in electronic structure theory). After an introductory chapter aimed at getting the reader
into the right mind-set, the second chapter (on the topic of quantum mechanics) almost exclu-
sively deals with principles. It sets the stage and introduces much of the notation used in the
remainder of the book. This chapter, as well as this book, is best appreciated after having com-
pleted a dedicated course on quantum mechanics1 at the level of the second cycle in higher
education. The third chapter is devoted to electrodynamics and here we attempt not only to
provide principles but also practices in a form adapted to its use in theoretical chemistry. It
represents a core chapter of this book and it should be possible to study it even without any
particular background in the field. The fourth chapter is devoted to the topic of symmetry and
it focuses on principles and is hardly the material for a first time encounter. We expect that
the reader is well familiar with the use of molecular point groups and one finds here merely
a brief recapitulation of this topic.2 However, we have tried to provide a novel perspective
that takes the reader a bit further than the standard presentation, which will help prepare the
reader to handle not only spin-free nonrelativistic wave functions, but also systems where the
two-component (or four-component) nature of electronic wave functions must be considered.
In the fifth chapter of this book, we reach the core of the theoretical exposé and become famil-
iar with molecular response properties. This is intended to be a self-contained chapter and it
is followed by the sixth chapter that explains the separation of electronic and nuclear degrees
of freedom and discusses nuclear contributions to molecular properties. The seventh chapter
provides a glimpse into the vast amount of work devoted to implementing the ideas of response
theory in approximate-state theory. This chapter treads somewhere right in between principles
and practices. It treats with certain detail some wave function models but leaves out much of

1 A recommended textbook is Quantum Mechanics by B. H. Bransden and C. J. Joachain.
2 A recommended reading is Group Theory and Chemistry by D. M. Bishop.
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the background in electronic structure theory.3 Our book is completed with the eighth chapter
that illustrates the use of molecular response theory for the calculation of spectroscopic prop-
erties. We exemplify nuclear structure and spin properties, dispersive and absorptive electronic
response properties, electronic birefringences and dichroisms, and vibrational spectroscopies.
Needless to say, the list of examples in this final chapter could be made much longer, but we
hope that our selection is diverse enough to provide compelling evidence for the impact and
use of response theory in molecular modeling.

Before proceeding, let us note some notational conventions that will be used in this book.
We will use the Système International d’unités (SI units). Vectors are typeset in boldface and
operators are denoted by a hat, as for instance the molecular Hamiltonian Ĥ . When referring
to a specific matrix representation of an operator, we leave out the hat. We will indicate the real
and imaginary parts of complex quantities by Re and Im, respectively. For compliance with the
literature on electrodynamics, we will in Chapter 3 use E to denote the electric field. In the rest
of the book, however, we will use F for the electric field in order to avoid confusion with the
molecular energy that will be denoted by E. We will use implicit summation of repeated indices
(the Einstein summation convention), such that

A𝛼𝛼 ⇒
∑

𝛼=x,y,z
A𝛼𝛼.

Over the course of time spent in writing this book, we have discussed the material with a
large number of people. We have organized several week-long courses where the manuscript
has been used as teaching material and we have received numerous comments and corrections
during these events. We are greatly indebted to all the enthusiastic students attending these
schools on response theory, taking place in Chamonix and Luchon in France, as well as at Vir-
ginia Tech in the United States. The school at Virginia Tech has been co-organized with Daniel
Crawford, who has provided excellent local arrangements and shared his expertise with us in
a series of lectures. The U.S. variant of this school could never have been realized without his
kind help. We have also benefited from the dedicated proof reading by several people, includ-
ing Daniel Friese (Düsseldorf ), Bin Gao (Tromsø), Michal Jaszuński (Warsaw), Marius Kadek
(Tromsø), Nanna H. List (Stockholm), Roberto Di Remigio (Tromsø), and Magnus Ringholm
(Tromsø).

A special thanks goes to the following persons for helpful discussions and exchange: Mats
Aigner (Linköping), Radovan Bast (Tromsø), Hélène Bolvin (Toulouse), Richard A. Clarke (Sur-
rey), David J. Griffiths (Reed), Trygve Helgaker (Oslo), John D. Jackson (Berkeley), Mathieu
Linares (Stockholm), and Nanna H. List (Stockholm). We would also like to thank Barbara Hel-
gaker for helping us iron out some language issues.

Things take longer time than one thinks, even when one takes into account that things take
longer time than one thinks. Trond and Patrick would like to thank Hélène, Aurélien, and Sigurd
and Dorthe, Jonathan, and Alexander, respectively, for their patience and understanding over
the several years it has taken to complete this work.

Patrick Norman, Stockholm
Kenneth Ruud, Tromsø
Trond Saue, Toulouse

June, 2017

3 The most comprehensive treatment of today on this topic is found in Molecular Electronic-Structure Theory by
T. Helgaker, J. Olsen, and P. Jørgensen.
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1

Introduction

If you want to find the secrets of the universe, think in terms of energy, frequency and
vibration.

Nicolas Tesla

This is a book about molecular properties, or to be more specific, molecular response prop-
erties. Response properties tell us about how molecules respond to electromagnetic fields. To
understand these responses, we have to enter the microscopic world of atoms and molecules,
governed by the laws of quantum mechanics. For that reason, the reader of this book can expect
several intellectual challenges ranging from profound and conceptual cornerstones of quantum
theory itself to trivial, yet mind-boggling, issues relating to the smallness of atomic sizes. Con-
sider for instance the situation in which a collection of molecules are being exposed to the
intense electric field of a laser, as illustrated in Figure 1.1. From a human perspective, the focal
point of a laser is a dangerous place to be, but, from the atomic perspective, it is far less dramatic.
In our example, there will be fewer photons than molecules, and, for instance, if the purpose
is to protect the eye by efficient optical power limiting, only about every second molecule needs
to absorb an incoming light quanta in order to reduce the energy in the transmitted light pulse
to an eye-safe level. Furthermore, as strong as the electric field may appear to our eyes, to the
individual electron it is several orders of magnitude smaller than the dominating forces exerted
by the atomic nuclei and fellow electrons. To get an idea of magnitudes, one may note that
the electric field below overhead power lines may reach 104 V m−1 and the maximum elec-
tric field strength possible in air without creating sparks is 3.0 × 106 V m−1. In contrast, at the
Bohr radius a0 in the hydrogen atom, the electric field strength is 5.1 × 1011 V m−1. This is a
key point, namely, that we can expose molecules to fields that are strong enough so that we can
detect the responses of their charges (nuclei and electrons) while at the same time the fields are
weak enough to act as probes, not significantly perturbing the electronic and nuclear structure
of the molecule.

Take a very simple example: What happens if a neutral atom (not even a molecule) is placed in
a uniform electric field? An experimentalist will ask nature—that is, he or she may perform an
experiment, where every macroscopic experiment relates to a very large number of probabilistic
microscopic quantum events—by probing how the charge distribution of the atom is modified
by the applied field. A theoretician will ask the wave function 𝜓 . The quantum-mechanical
equivalent to the outcome of the experiment is the expectation value

⟨Ω̂⟩ = ⟨𝜓|Ω̂|𝜓⟩, (1.1)

where Ω̂ is the quantum-mechanical operator corresponding to the observable monitored by
the experiment. Quantum mechanics is a probabilistic theory. The link between theory and

Principles and Practices of Molecular Properties: Theory, Modeling and Simulations, First Edition.
Patrick Norman, Kenneth Ruud, and Trond Saue.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.



�

� �

�

2 Principles and Practices of Molecular Properties

0.1 mm

11.2 mol L–1
0.1 mm

Nm = 5.30 × 1015 molecules

E = 1 mJ @ 532 nm

Np = 2.68 × 1015 photons

Work load = 0.5 photons per molecule

Figure 1.1 Liquid benzene in a small volume corresponding to the focal point of a laser operating at 532 nm
and releasing pulses with an energy of 1 mJ.

experiment is made by considering a large number of systems prepared in the same state, prior
to switching on the field. If we disregard measurement errors, then the possible outcomes of
the individual quantum events are given by the eigenvalues {𝜔n} of the operator Ω̂, defined by
the eigenvalue equation

Ω̂𝜓n = 𝜔n𝜓n. (1.2)

Following the postulates of quantum mechanics, the operator Ω̂ is by necessity Hermitian, and
the eigenvalues are thus real (corresponding to real-valued observables), and there is a prob-
ability pn = |⟨𝜓n|𝜓⟩|2 for the outcome 𝜔n in each of the single quantum events, leading to an
expectation value that is

⟨Ω̂⟩ =
∑

n
𝜔n pn. (1.3)

For example, indirect information about the charge distribution of the atom can be obtained
from measurements of the electric dipole moment since the two quantities are connected
through an expectation value of the form

𝝁 =

⟨
𝜓| − e

Ne∑

i=1
ri|𝜓

⟩
= ∫ r𝜌(r) d3r, (1.4)

where Ne denotes the number of electrons and e is the elementary charge. However, the elec-
tronic charge density can in itself also be expressed as an expectation value

𝜌(r) =

⟨
𝜓| − e

Ne∑

i=1
𝛿(r − ri)|𝜓

⟩
, (1.5)

and it is possible to probe 𝜌(r) in for instance X-ray diffraction experiments.
If the external electric field is weak compared to the internal atomic fields, we can expand the

induced electronic charge density in a Taylor series with respect to field strength. In Figure 1.2,
such a perturbation expansion is illustrated to fifth order for a neon atom. The electric field of
strength F is applied along the vertical z-axis (directed upward in the figure) and will tend to pull
the positive charge along the field and the negative charge in the opposite direction, resulting
in an electronic charge density that can be expanded as

𝜌(r) = 𝜌(0)(r) + 𝜌(1)(r)F + 1
2!
𝜌(2)(r)F2 + 1

3!
𝜌(3)(r)F3 + 1

4!
𝜌(4)(r)F4 + 1

5!
𝜌(5)(r)F5 + · · · .

(1.6)

The zeroth-order density 𝜌(0) refers to that of neon in isolation and integrates to −10e. It follows
from charge conservation that the higher-order densities all integrate to zero. The first-order
density 𝜌(1) shows the charge separation of a dipole, and we then get more and more complicated
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Figure 1.2 Electronic charge density of neon expanded in orders of the applied electric field F. Light and dark
gray regions indicate positive and negative values, respectively.

structures with increasing order. It is also clear that the higher the order, the more diffuse the
density becomes, and we can expect that an accurate description of higher-order responses put
strong requirements on the wave function flexibility at large distances from the nucleus.

If we insert the expansion of the charge density into the expression for the dipole moment
[Eq. (1.4)], even orders of the density will not contribute due to symmetry—this is a reflection
of the fact that odd-order electric properties vanish in systems with a center of inversion. The
resulting induced dipole moment, directed along the z-axis, becomes

𝜇z =
[

∫ z𝜌(1)(r) d3r
]

F + 1
3!

[

∫ z𝜌(3)(r) d3r
]

F3 + 1
5!

[

∫ z𝜌(5)(r) d3r
]

F5 + · · · . (1.7)

This expression defines a series of proportionality constants between the induced dipole
moment and powers of the field. The linear and cubic coupling constants are known as the
electric dipole polarizability and second-order hyperpolarizability, and they are conventionally
denoted by Greek letters 𝛼 and 𝛾 , respectively.1 It is the focus of this book to understand
how these and other molecular properties can be determined by means of quantum-chemical
calculations.

When judging the quality of quantum-chemical calculations, one typically considers the
choice of method and basis set. These two quantities combined constitute a theoretical model
chemistry, that is, a certain approximation level reaching toward the exact solution of the
electronic wave function equation. There exist hierarchical series of basis sets that allow
for systematic convergence toward the complete one-particle basis set limit, as indicated
in Figure 1.3. An increase in the cardinal number of the basis set, from double- to triple-𝜁
and so forth, improves the description of the ground-state wave function, whereas levels
of augmentation with diffuse functions in the basis set are particularly important for the
description of the excited electronic states, and therefore also for many molecular properties.
Likewise, in conventional wave function-based electronic structure theory, the configuration
interaction (CI) and coupled cluster (CC) expansions provide systematic ways to reach the
complete N-particle limit. Increased complexity of the theoretical model chemistry comes,
however, at a sometimes staggering computational cost. In general, the computational cost
scales as ny, where the base n represents the size of the one-particle basis set, and therefore
implicitly scales with the system size, and the exponent y is associated with a given electronic

1 Hyperpolarizability is a naming convention originally chosen on the basis of the presumed increase of the
polarizability in the presence of a strong electric field, whereas hypopolarizability, a name not used any longer, was
suggested for systems where there was a decrease.
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DZ TZ QZ

s-aug    d-aug    t-aug

Exact

HF

MP2

CC2
MCSCF

CI

CASPT2

FCI

CCSD

CCSD(T)

CC3

MP3

MP4

KS-DFT

NR

2C

4C Dirac-Coulomb
Gaunt

Breit

SR

Basis set

Hamiltonian

Method

Figure 1.3 Hierarchy of quantum-chemical methods.

structure method. Starting from the Hartree–Fock (HF) method, which formally scales as n4,
each excitation level treated variationally (perturbatively) increases the exponent by two units
(one unit). Accordingly, CC and CI models that include single and double (SD) excitations,
CCSD and CISD, respectively, scale as n6, but the CC expansion includes electron correlation
in a more efficient manner than does CI and has other advantages such as size extensivity.
Adding triple excitations perturbatively, as in CCSD(T), increases the exponent to seven. A
great achievement of quantum chemistry has been to devise algorithms that significantly
reduce these formal scalings.

Kohn–Sham density functional theory (KS-DFT) has become the most widely used method
in quantum chemistry due to its efficient treatment of electron correlation at modest computa-
tional cost. It formally has the same scaling as HF theory as it also employs a single Slater deter-
minant to describe the reference state of the fictitious noninteracting KS system, constrained to
have the same electron density as the real interacting system. The similarity in the parametriza-
tion of the reference state has implications in the presentation of the time-dependent response
approaches. Until the very final stages, we need not specify which of these two approaches we
address, treating them instead in a uniform manner. We will present this formulation, common
to time-dependent HF and KS-DFT theories, under the name self-consistent field (SCF) theory.
At the end of the day, there is only one drawback that stands out as critical with the KS-DFT
technique, and that is the lack of a systematic way to improve the exchange-correlation (XC)
functional, which makes it impossible to provide a general ranking of DFT functionals. This
leads to the necessity to benchmark the performance of different XC functionals, not only with
respect to classes of molecular systems but also with respect to molecular properties.

Theoretical model chemistries are represented as points in the two-dimensional space
spanned by the axis of electronic structure methods and that of the basis sets, as shown in
Figure 1.3. Methods and basis sets should be chosen in a balanced manner. For instance,
combining the HF method with a quadruple-𝜁 basis set is normally a waste of resources and
time. On the other hand, in the 1980s, a widely used theoretical model chemistry was the CISD
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method combined with double-𝜁 basis sets. With increased computational power, however, it
was shown numerically that such a combination of methods and basis sets provided reasonable
results largely due to a fortuitous cancellation of errors—by increasing the quality of basis sets,
the theoretical results moved away from the experimental ones, revealing the intrinsic error of
the method. In general, triple-𝜁 basis sets or better should be used with CC and CI methods
to provide an adequate description of the electron–electron cusp region. It should also be
noted that standard basis sets are, in most cases, optimized according to energy criteria and
that basis set requirements therefore may (and usually do) change when calculating molecular
properties. This is easily understood from Figure 1.2 that demonstrates how the induced charge
densities governing molecular properties become increasingly more diffuse as compared to
the unperturbed density governing the energy.

Since the 1980s, it has become increasingly clear that a theoretical model chemistry providing
a balanced description of all elements of the periodic table requires the inclusion of relativistic
effects. Relativistic effects are normally associated with particles moving at speeds close to the
speed of light c, which is the case for electrons in the vicinity of heavy nuclei. The kinetic energy
of a 1s-electron in a hydrogen-like ion is

K = Z2ℏ2

2men2a2
0
. (1.8)

It is thus proportional to the square of the nuclear charge Z and ranges from 13.6 eV for hydro-
gen to about 105 eV for the heaviest elements with Z ≈ 100. In Eq. (1.8), we have introduced
the electron mass me, the Dirac constant ℏ, also known as the reduced Planck constant, and the
quantum number n for the electron. For small kinetic energies, when

K = mv2

2
, (1.9)

we thus expect a linear dependence between the electron speed and the nuclear charge Z, as
illustrated in Figure 1.4(b). At high kinetic energies, on the other hand, this classical relation
breaks down and we have instead

K = (𝛾 − 1) mc2, (1.10)

where the Lorentz factor 𝛾

𝛾 = 1√
1 − (v∕c)2

, (1.11)

will increasingly deviate from its nonrelativistic limiting value of 1, as illustrated in Figure 1.4(a).
In the region of gold (atomic number 79) in the periodic table, the speed of 1s-electrons reaches
values of about 0.6c, corresponding to a Lorentz factor of about 1.15. The Lorentz factor appears
in the expression for the relativistic mass increase m = 𝛾me, and, since the Bohr radius is
inversely proportional to the mass, we expect relativity to contract and stabilize orbitals.

One can of course argue, as did Dirac himself, that our focus on the 1s-orbitals is an extreme
case for relativistic effects, and, because the 1s-electrons orbit very close to their respective
nuclei, such relativistic effects will play an insignificant role in most of chemistry. However,
relativistic effects propagate out to the valence through their modification of orbitals in the core
region and, through the requirement of orthogonality, among all orbitals. An illustration of this
aspect is given in Figure 1.4(c), in terms of the contraction of the valence ns-orbitals, which is
seen to be particularly pronounced for the coinage metal atoms. The direct effect of relativity
is to contract orbitals, but this contraction leads to increased screening of the nuclear charge,
so there will be a competition between the direct and indirect effects of relativity. In practice,
one finds that s- and p-orbitals tend to contract while d- and f -orbitals tend to expand.
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Figure 1.4 Speed of 1s-electrons relative to the speed of light (b) and the corresponding Lorentz factor (a)
versus atomic number. Relativistic contractions (c), defined as ratio between relativistic and nonrelativistic HF
radial expectation values, of valence ns-orbitals for elements of rows 4, 5, and 6 of the periodic table. Atomic
numbers Z are given relative to atomic number ZM of the coinage metal of each row (M=Cu, Ag, Au).

Relativistic effects associated with the relativistic mass increase of electrons discussed earlier
are denoted scalar relativistic effects. A second relativistic effect is spin–orbit interaction. The
name and typical operator form ĥSO ∼ ŝ ⋅ l̂ suggests an interaction due to a coupling of the spin
and angular momentum of the electron. However, this confuses the underlying physics that is
simply magnetic induction. Spin–orbit coupling refers to the interaction of the electron spin
with the magnetic fields generated by charged particles (nuclei or electrons) in relative motion.
The orbital angular momentum operator l̂ appears in the operator describing the spin–orbit
interaction induced by nuclei because it encodes the relative motion between the electron and
the nucleus. Spin–orbit interactions constitute one of the several categories of intramolecular
magnetic interactions that are unaccounted for in a nonrelativistic formulation, and they are
often introduced in the nonrelativistic framework in an ad hoc manner, as they govern impor-
tant phenomena in chemistry such as intersystem crossings and phosphorescence. Another
example is given by electron paramagnetic resonance (EPR) spectroscopy where one of the
parameters, the anisotropy of the molecular g tensor, is rooted in spin–orbit interactions. The
spin–orbit interaction couples spin and spatial degrees of freedom, such that spin is no longer a
good quantum number. Atomic orbitals will be characterized by their total angular momentum
j = l + s with possible magnitude j = l ± 1∕2 and corresponding azimuthal quantum number
mj = ml + ms. As an example, the six degenerate p-orbitals split into two degenerate p1∕2- and
four degenerate p3∕2-orbitals. The energy associated with the p1∕2-orbitals is lowered as a con-
sequence of an optimum orientation of electron spin in space, see Figure 1.5(a). This flexibility
for the direction of the spin to vary between different points in space is not accounted for in
the nonrelativistic realm, where orbitals are either pure 𝛼- or pure 𝛽-spin orbitals. Interestingly,
this is also the case for the relativistic p3∕2-orbital with mj = ±3∕2, as illustrated in Figure 1.5(b).
The mj = 3∕2 orbital is pure 𝛼 simply because 𝛽 spin (ms = −1∕2) would require ml = 2, which
is not a valid quantum number for l = 1 angular functions.
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(a) (b)

OrbitalOrbital

Figure 1.5 Hydrogen spin densities in the xz-plane for the (a) 2p1∕2 (mj = 1∕2) and (b) 2p3∕2 (mj = 3∕2) orbitals.

Dealing with elements from large parts of the periodic table thus corresponds to a situation
in which conventional nonrelativistic calculations of the electronic structure may make little
sense and relativistic modifications of the Hamiltonian are required, corresponding to the third
axis in Figure 1.3. Scalar relativistic effects can be introduced without significant additional
computational cost, whereas the inclusion of spin–orbit interactions requires Hamiltonians
based on the four-component Dirac operator or two-component approximations to it. A simple
way to introduce relativistic effects is to replace the relativistic core orbitals by effective core
potentials, but this choice is only viable when is concerned with valence electron properties.

The choice of Hamiltonian is in principle one independent of the two other axes of our chart,
which means that the conventional theoretical model chemistries known to us from the non-
relativistic realm can be extended to the relativistic domain. Another important consequence
is that the choice of Hamiltonian only comes with a prefactor, independent of system size, to
the overall computational cost.

At this point, some readers may feel that a lot of time has been spent discussing relativistic
effects, especially if their focus is on molecular systems containing light atoms only. However, it
should be kept in mind that a book about molecular properties is essentially about electromag-
netic interactions, and electrodynamics—as elegantly summarized by Maxwell’s equations—is
a relativistic theory. In the nonrelativistic limit, electrodynamics scales down to electrostatics;
that is, in this limit not only do the effects of the finite speed of interactions vanish, but also all
magnetic interactions, including magnetic induction. We will demonstrate that nonrelativistic
calculations of magnetic properties are made possible by using a relativistic coupling of parti-
cles to fields. This is a perfectly valid, pragmatic approach, but implies a mixing of theories with
different transformation properties and makes the underlying physics less transparent than a
fully relativistic formulation.

Most quantum-chemical calculations describe molecules alone in the universe and at 0 K.
This may be a good approximation for dilute gases, since intermolecular interactions are often
negligible unless explicitly addressed in the experimental studies. However, the scope of appli-
cations for the computational chemist is far wider, including molecules in liquid and solid
phases, as well as at interfaces. With molecular response approaches, we can address cases
where the properties of the macroscopic system is predominantly determined by the properties
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of the molecules, that is, one can regard the effects of the environment as perturbations. This
is not, however, the same as saying that one employs the techniques of perturbation theory to
account for these interactions; rather, self-consistent schemes are commonly adopted. Either
way, the space is divided into regions treated at different levels of accuracy, where the core
quantum region is large enough to encompass those parts of the electron density that give rise
to the response signal in the experiment. The exterior of the core quantum region is treated
by means of classical physics, either in terms of continuum dielectric medium models, such as
the polarizable continuum model (PCM), or by the introduction of discrete charge multipole
expansions representing the solvent molecules in molecular mechanics (MM) approaches. The
latter of the two techniques can be rather straightforwardly combined with molecular dynam-
ics (MD) simulations, be it classical or quantum MD, and it is a common procedure to extract
snapshots from MD simulations and perform individual response theory calculations based on
each of these snapshots. This is a way to sample the molecular configuration space under given
experimental conditions of temperature, liquid, and chromophore densities, and the statisti-
cally averaged theoretical spectra represents the final result of the simulation. Figure 1.6 shows
one such snapshot taken from simulations of luminescence properties of an oligothiophene
chromophore used for optical probing of certain proteins. The partitioning of a solvent or a
large molecular system into a target area treated accurately and with the remaining environ-
ment being treated in a more approximate manner is often referred to as focused models, and
can be considered a computational equivalent of the chemical concept of active or functional
regions in a complex molecular system.

This brief introduction aims to show that when the computational chemist needs to evaluate
molecular response properties, a number of problems of computational and theoretical nature
must be addressed, explicitly or at least assessed with respect to the expected relevance and
importance. This book aims to be a valuable aid in this work, by introducing a response theory
framework that is general enough to host the most commonly adopted model chemistries while
leaving out most details of their implementations. The choice of basis set in the calculation is
an obvious parameter that is not of much concern in the formulation of a theory, and, although
less obvious, this holds largely true also for the choice of Hamiltonian. The reason for the latter
simplification is that, before evaluating specific matrix elements, one can suppress the reference

Figure 1.6 Anionic polythiophene acetic acid with sodium counterions in water solution.
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to the explicit form of the Hamiltonian and write it in a general form, including summations
of one-electron ĥ(i) and two-electron ĝ(i, j) terms—a form which is common to one-, two-,
and four-component Hamiltonians. Even such a seemingly insurmountable complexity as that
provided by the interactions with the surrounding environment can, from our perspective, be
largely ignored. The key here is to define effective operators that will couple the external clas-
sical region to the core quantum region. Once this coupling is achieved, it can be viewed as a
modification of the Hamiltonian that fits into our general framework. When it comes to the
third axis in Figure 1.3—the electronic structure methods used in the model chemistries—the
situation becomes substantially more complicated. In this case, care has to be taken already at
the outset of the derivation of the response functions when choosing an equation of motion for
the time evolution of the wave function. Although all formulations of exact-state wave mechan-
ics give rise to identical time propagations of a given initial reference state, this is no longer true
in approximate-state theories. We will discuss this issue at length and consider two fundamen-
tally different formulations of time-dependent perturbation theory. These two formulations are
referred to as the Ehrenfest and the quasi-energy approaches, respectively, and while the for-
mer is applicable only to variational electronic structure methods, the latter can also be applied
to nonvariational methods.
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2

Quantum Mechanics

Quantum mechanics, that mysterious, confusing discipline, which none of us really under-
stands but which we know how to use. It works perfectly, as far as we can tell, in describ-
ing physical reality, but it is a ‘counter-intuitive discipline’, as social scientists would say.
Quantum mechanics is not a theory, but rather a framework, within which we believe any
correct theory must fit.

M. Gell-Mann (1980)

In this chapter we give a brief, and in many respects, an incomplete introduction to quantum
mechanics, with a focus on the bare minimum of concepts that are central to the subsequent
parts of the book. In addition to providing the necessary basis for the subsequent chapters, this
chapter introduces much of the notation that will be used throughout the book.

2.1 Fundamentals

2.1.1 Postulates of Quantum Mechanics

The theory of quantum mechanics rests on a set of postulates as illustrated in Table 2.1 in the
case of a single-particle system in one-dimensional (1D) motion. The precise knowledge of the
system state and physical observables in the classical case has, in the quantum case, been turned
into a situation where the values of observables can only be predicted probabilistically. The
coordinate vectors |x⟩ that are often used as a basis for the infinite-dimensional Hilbert space
can be imagined (but not realized) as states of perfect particle localization ⟨x′|x⟩ = 𝛿(x − x′),
but in general the position of the quantum particle is described by the probability density (or
simply the density)

n(x, t) = |𝜓(x, t)|2. (2.3)

Changes in the density may be predictable and deterministic in accordance with Postulate D
(the time-dependent Schrödinger equation), but they may also be indeterministic and asso-
ciated with sudden “quantum jumps” to eigenstates of the operators Ω̂ in accordance with
Postulate C.

2.1.2 Lagrangian and Hamiltonian Formalisms

From Postulate D, we see that the correspondence between classical and quantum mechanics
goes through the Hamiltonian formalism. In order to better understand the construction of the
Hermitian operators in quantum mechanics that are associated with physical observables, we

Principles and Practices of Molecular Properties: Theory, Modeling and Simulations, First Edition.
Patrick Norman, Kenneth Ruud, and Trond Saue.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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Table 2.1 Postulates in classical and quantum mechanics.

Classical mechanics Quantum mechanics

State of system
A The state of a particle at any given time is

given by the two variables x(t) and p(t), that
is, a point in a 2D phase space.

The state of a particle is represented by a state vector
|𝜓(t)⟩ of unit norm in a Hilbert space. The projection
on the basis |x⟩ gives the wave function
⟨x|𝜓(t)⟩ = 𝜓(x, t) in coordinate space.

Observables
B Every dynamical variable 𝜔 is a function of x

and p: 𝜔 = 𝜔(x, p).
The independent variables x and p in classical
mechanics are represented by the Hermitian
operators x̂ and p̂ that obey the commutator relation

[x̂, p̂] = iℏ.

The operator that corresponds to the dynamical
variable 𝜔(x, p) is the Hermitian operator obtained
from the substitution

Ω̂(x̂, p̂) = 𝜔(x → x̂, p → p̂).
Measurements
C A measurement of the variable 𝜔 on a

particle in a state given by x and p gives a
value 𝜔(x, p). After the measurement, the
state is left unchanged.

A measurement of the variable, corresponding to
operator Ω̂, on a particle in a normalized state |𝜓⟩
results in an eigenvalue 𝜔 with probability
P(𝜔) = |⟨𝜔|𝜓⟩|2. The state of the system is left in the
associated eigenstate |𝜔⟩ after the measurement.

Equations of motion
D The state variables have a time dependence

given by Hamilton’s equations

ẋ = 𝜕H
𝜕p

; ṗ = − 𝜕H
𝜕x
. (2.1)

The state vector |𝜓(t)⟩ has a time dependence given
by the time-dependent Schrödinger equation

iℏ 𝜕
𝜕t
|𝜓(t)⟩ = Ĥ|𝜓(t)⟩, (2.2)

where Ĥ(x̂, p̂, t) = H(x → x̂, p → p̂, t) is the quantum
mechanical Hamiltonian and H is the classical
Hamiltonian.

need to take a closer look at Hamiltonian mechanics. In fact, in order to get the complete picture
of quantization, we shall start from Lagrangian mechanics. A fascinating aspect of Lagrangian
mechanics is that it allows us to derive the equations of motion of a dynamical system of N
particles from a single scalar function, the Lagrangian. Let x ≡ x(t) collectively denote the 3N
coordinates of the particles in the system—mapping out a point in the configuration space of
the system—with corresponding velocities given by their total time derivatives ẋ ≡ dx∕dt. In
particular, let x(ta) and x(tb) be the particle coordinates at times ta and tb, respectively. We next
introduce the action S defined as

S[x] = ∫
tb

ta

L(x, ẋ, t)dt, (2.4)

which is an example of a mathematical object known as a functional. In general, functionals
map functions onto complex numbers, in contrast to functions that map sets into sets. In order
to explore the possible values of the input function, a functional is often given as a definite
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integral over the function variables, that is

F[y] = ∫
x2

x1

f (y(x), y′(x),… , x) dx. (2.5)

The functional dependence of F on the function y(x) is indicated by square brackets to separate
it from arguments of a function that are kept inside parenthesis. In the calculus of variations,
a central question is how the value of the functional depends on the variations of the function.
For this purpose, the first variation of the functional F is defined as

𝛿F = lim
𝜀→0

F[y + 𝜀𝛿y] − F[y]
𝜀

, (2.6)

where 𝛿y is an unspecified test function that can be viewed as pointing out a direction in the
function space along which one takes an infinitesimal step by means of the multiplication with
𝜀. A variation 𝛿y in the input function is connected to the variation of the functional through
the functional derivative

𝛿F = ∫
x2

x1

(
𝛿F
𝛿y(x)

)
𝛿y(x) dx. (2.7)

This can be compared to the corresponding relation for functions, where an infinitesimal
change in the argument is connected to the change in the function through the (function)
derivative

dy =
(

dy
dx

)
dx. (2.8)

In our applications, the function y is typically to be replaced by either the wave function𝜓 or the
electron charge density 𝜌, and we will be scanning the respective function spaces in the search
for elements that yield zero first-order variations. Since the function variations 𝛿y are arbitrary,
this implies that the functional derivative itself is zero. In the present case, the functional under
study is the action S, which is a functional of the system trajectory x(t) and expressed as an
integral over the Lagrangian from an initial time ta to a final time tb, as seen in Eq. (2.4).

The principle of stationary action states that the actual path taken by the system between
times ta and tb is the one for which an infinitesimal change in the trajectories leaves the action
unchanged (stationary), or, in other words, the first variation of the action vanishes

𝛿S = ∫
tb

ta

[(
𝜕L
𝜕x

)
𝛿x(t) +

(
𝜕L
𝜕ẋ

)
𝛿ẋ(t)

]
dt = 0. (2.9)

To find the corresponding functional derivative of S with respect to the trajectory x(t) in con-
figuration space, we compare the above expression with the defining relation

𝛿S = ∫
tb

ta

𝛿S
𝛿x(t)

𝛿x(t) dt. (2.10)

We see that the first, but not the second term of Eq. (2.9), has the desired form. In order to bring
the latter into the correct form, we carry out an integration by parts

∫
tb

ta

(
𝜕L
𝜕ẋ

)
𝛿ẋ(t)dt =

(
𝜕L
𝜕ẋ

)
𝛿x(t)

||||

tb

ta

− ∫
tb

ta

(
d
dt
𝜕L
𝜕ẋ

)
𝛿x(t)dt. (2.11)

We now impose that the start- and endpoints of the trajectories are known and fixed such that

𝛿x(ta) = 𝛿x(tb) = 0. (2.12)
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Then the first term on the right-hand side of Eq. (2.11) vanishes and we obtain a form of 𝛿S
that allows us to extract the functional derivative. Setting the functional derivative to zero for
all coordinates xi gives

𝛿S
𝛿xi(t)

= 𝜕L
𝜕xi

− d
dt

(
𝜕L
𝜕ẋi

)
= 0; i = 1,… , 3N . (2.13)

These equations of motion are known as the Euler–Lagrange equations. The condition 𝛿S = 0
implies that functional derivatives for individual coordinates are zero only to the extent that the
coordinates are linearly independent. It may be that there are constraints on the motions of the
particles; for instance, that our particles are constrained to move on the surface of a sphere, in
which case this condition no longer holds. However, if there are k constraints on the form

f𝛼(x, t) = 0; 𝛼 = 1,… , k, (2.14)

then we may build them into our formalism by transforming to a set of 3N − k linearly indepen-
dent generalized coordinates qi, collectively denoted as q, which now defines our configuration
space. In our derivations we will for simplicity ignore such constraints.

At this point it is important to note that the Lagrangian function is not given a priori,
but should be chosen to give trajectories in accordance with the experiment. Building new
Lagrangians therefore means building new physics. Generally, in the absence of dissipative
forces such as friction, the Lagrangian has the form L = T − U where T is the kinetic energy
and U = U(x, ẋ, t) is called the generalized potential. The kinetic energy is the Lagrangian of
free particles, corresponding to the case U = 0. In the absence of any constraints, the kinetic
energy is a function of velocities only and we may re-write the Euler–Lagrange equations,
Eq. (2.13), in the form of Newton’s second law as

Fi =
d
dt

(
𝜕T
𝜕ẋi

)
; i = 1,… , 3N , (2.15)

where the generalized force Fi appears

Fi = −𝜕U
𝜕xi

+ d
dt

(
𝜕U
𝜕ẋi

)
. (2.16)

Now let us consider the force F acting on a single particle. The work done by the force upon the
particle along its trajectory between times t1 and t2 is given by a line integral

W = ∫
r(t2)

r(t1)
F ⋅ dr = ∫

t2

t1

F ⋅ vdt. (2.17)

A first thing to note is that if we use Newton’s second law F = ma, we can show that the total
work along the trajectory is equal to the change in kinetic energy T = 1

2
mv2 between the end-

points of the trajectory, that is,

W = ∫
r(t2)

r(t1)
F ⋅ dr = ∫

t2

t1

m dv
dt

⋅ vdt = 1
2

m∫
t2

t1

d(v2)
dt

dt = ∫
T(t2)

T(t1)
dT = T(t2) − T(t1).

(2.18)

Let us assume that the force is monogenic, that is, derivable from a single potential function
U(r, v, t), as in Eq. (2.16). We can then write the infinitesimal work as

dW = F ⋅ dr =
[
−
(
𝜕U
𝜕r

)
+ d

dt

(
𝜕U
𝜕v

)]
⋅ dr (2.19)

= −dU +
(
𝜕U
𝜕v

)
⋅ dv +

(
𝜕U
𝜕t

)
dt + d

dt

(
𝜕U
𝜕v

)
⋅ dr,
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where, in the final step, we have used the total differential

dU =
(
𝜕U
𝜕r

)
⋅ dr +

(
𝜕U
𝜕v

)
⋅ dv +

(
𝜕U
𝜕t

)
dt, (2.20)

of the generalized potential. In many situations, but not in the presence of electromagnetic
forces, the potential function has no explicit dependence on velocities and time. In such a case,
the work along the trajectory is given by the value of the potential function at the endpoints,
that is,

W = U(t1) − U(t2). (2.21)

The work is therefore path independent and will for instance be zero around any closed path.
Combining the above result with Eq. (2.19) we have

T(t1) + U(t1) = T(t2) + U(t2), (2.22)

and the force is said to be conservative.
Returning to the general case, let us consider the total time derivative of the work. Starting

from Eq. (2.19), we obtain

dW
dt

= −dU
dt

+
(
𝜕U
𝜕v

)
⋅

dv
dt

+ 𝜕U
𝜕t

+ d
dt

(
𝜕U
𝜕v

)
⋅

dr
dt

= −dU
dt

+ d
dt

[(
𝜕U
𝜕v

)
⋅ v
]
+ 𝜕U
𝜕t
.

(2.23)

Keeping in mind that dW = dT , we can rearrange this to
d
dt

[
T + U −

(
𝜕U
𝜕v

)
⋅ v
]
= 𝜕U
𝜕t
. (2.24)

We identify the expression in square brackets with energy

E = T + V ; V = U −
(
𝜕U
𝜕v

)
⋅ v, (2.25)

where V is the potential energy.1 Eq. (2.24) therefore demonstrates that the total energy is con-
served if the general potential has no explicit time dependence.

Let us now turn to Hamiltonian mechanics. Again, a scalar function, this time the Hamilto-
nian, takes center stage. It can be obtained from the Lagrangian by a Legendre transformation

H(x, p, t) =
3N∑

j=1
ẋjpj − L(x, ẋ, t). (2.26)

A crucial difference between the Hamiltonian and the Lagrangian is that the dependence on
velocity ẋ in the latter is replaced by dependence on momentum p in the former, achieved
through the Legendre transformation. We can also use the Legendre transformation to find
the general definition of momentum: The Hamiltonian does not depend on velocity and so by
taking the partial derivative with respect to velocity ẋ on both sides of Eq. (2.26), we obtain

𝜕H
𝜕ẋi

= 0 ⇒ pi =
𝜕L
𝜕ẋi

= 𝜕T
𝜕ẋi

− 𝜕U
𝜕ẋi

. (2.27)

If the generalized potential does not depend on velocity, that is, for a conservative system, the
momentum reduces to its usual (nonrelativistic) form pi = mẋi, denoted by the mechanical
momentum. However, as discussed in Chapter 3, magnetic forces depend on particle veloc-
ities, and hence the need to start from the correct Lagrangian to get a proper definition of
momentum for use in the Hamiltonian, both in classical and quantum mechanics.

1 C. Lanczos. The Variational Principles of Mechanics. University of Toronto Press, 1949.
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Hamilton’s equations, which appear in Postulate D in Eq. (2.1), can be obtained from the Leg-
endre transformation, Eq. (2.26), as well. Taking the partial derivative with respect to momen-
tum we obtain the first equation. Taking the partial derivative with respect to coordinate x and
using the Euler–Lagrange equations, Eq. (2.13), gives the second equation. Finally, taking the
total time derivative of the Hamiltonian using the chain rule, we obtain

dH
dt

=
(
𝜕H
𝜕x

)
ẋ +

(
𝜕H
𝜕p

)
ṗ + 𝜕H

𝜕t
. (2.28)

By using Hamilton’s equations, we find that the first two terms cancel. The final result is

dH
dt

= 𝜕H
𝜕t

= −𝜕L
𝜕t
, (2.29)

where the final step is obtained by taking the explicit time derivative of the Legendre transfor-
mation. If the Lagrangian has no explicit time dependence, the above expression shows that the
Hamiltonian is time independent and thus a constant of motion. In fact, we can obtain Eq. (2.29)
directly by taking the total time derivative of the Lagrangian. For a single particle, we get

dL
dt

=
(
𝜕L
𝜕r

)
⋅

dr
dt

+
(
𝜕L
𝜕v

)
⋅

dv
dt

+ 𝜕L
𝜕t

= d
dt

[(
𝜕L
𝜕v

)
⋅ v
]
+ 𝜕L
𝜕t
, (2.30)

where the final step is obtained using the Euler–Lagrange equation, Eq. (2.13). By rearrange-
ment, we obtain

d
dt
[
p ⋅ v − L

]
= −𝜕L

𝜕t
. (2.31)

We see that the Legendre transformation leading to the Hamiltonian function drops out directly
in the above expression. We can even go one step further and show that it is equivalent to the
energy expression of Eq. (2.25) by writing the Legendre transformation, Eq. (2.26), as

H = T + V = v ⋅
𝜕L
𝜕v

− L (2.32)

and carrying it out separately for the components T and U of the Lagrangian. From the kinetic
energy, we get

𝜕T
𝜕v

− T = T , (2.33)

and from the generalized potential we get directly the potential energy. The Hamiltonian can
therefore be identified with the total energy,2 which is conserved if there is no explicit time
dependence in the generalized potential.

Let us illustrate these concepts with a very simple, albeit not very chemical, example, namely
that of the free particle. We can deduce the nonrelativistic (NR) form of this Lagrangian from
some simple considerations: (i) for a free particle there is no preferred moment in time (homo-
geneity of time), so the Lagrangian cannot depend explicitly on time, and (ii) there is no pre-
ferred point or direction in space (homogeneity and isotropy of space) so the Lagrangian cannot
depend explicitly on the position or the velocity direction. Based upon these considerations, we
write the Lagrangian as proportional to the square of the velocity (or speed) of the particle

LNR
0 = T = 1

2
mẋ2, (2.34)

2 In the case of constrained motions [Eq. (2.14)], Eq. (2.33) does not hold if there is an explicit time dependence in
the functions f

𝛼
expressing the constraints. The Hamiltonian can then not be identified with energy.
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where the constant of proportionality is fixed by experiment. Using Eq. (2.27), we find that
the momentum of the free particle is p = mx. Next, we obtain the corresponding free-particle
Hamiltonian by the Legendre transformation, Eq. (2.26),

HNR
0 = mẋ2 − 1

2
mẋ2 =

p2

2m
. (2.35)

Note that the intermediate expression, referred to as the energy function, does not represent a
valid Hamiltonian since it is expressed in terms of the velocity. Only after the velocity is substi-
tuted by the momentum does the Hamiltonian become a function of position and momentum
as required. The velocity in terms of momentum is provided by the first of Hamilton’s equations,
whereas the second takes the form ṗ = 0, corresponding to Newton’s first law. We again stress
the fact that the momentum is defined from the Lagrangian and will therefore hinge upon a
correct definition of this function. This point will turn out to be crucial when considering the
introduction of electromagnetic fields, as will be discussed in Chapter 3.

The final quantum-mechanical Hamiltonian is obtained by replacing the position and
momentum variables by their corresponding operators. These should be chosen such that the
canonical commutation relation

[
xi, pj

]
= iℏ𝛿ij, (2.36)

is obeyed. In the coordinate representation, we use the substitutions

xi → x̂i = xi; pi → p̂i = −iℏ 𝜕

𝜕xi
. (2.37)

Another option is the momentum representation

xi → x̂i = iℏ 𝜕

𝜕pi
; pi → p̂i = pi, (2.38)

but it is less useful for localized systems such as molecules.
The relativistic (R) free-particle case is more complicated and the appropriate form of the

Lagrangian is less evident. In fact, since there is no longer a universal time, we should not single
out a specific infinitesimal of time dt in the action [Eq. (2.4)] but rather use the Lorentz-invariant
proper time 𝜏 , which is the time in the reference frame moving with the particle. The variation
of the action becomes

𝛿S = 𝛿 ∫
𝜏b

𝜏a

Λ(x𝜇, v𝜇, 𝜏) d𝜏 = 0; c d𝜏 =
√

c2dt2 − dx2, (2.39)

where the relativistic Lagrangian Λ is now a function of the four-position x𝜇 = (x, ict),
four-velocity v𝜇 = 𝛾 (ẋ, ic), and the proper time 𝜏 . Following the same line of arguments as for
the nonrelativistic free particle, it can be proposed that the relativistic Lagrangian should be
proportional to the square of the four-velocity. In fact, the suitable form is Λ = mv𝜇v𝜇 = −mc2,
which clearly is Lorentz invariant. We can go to a specific frame by noting that

c d𝜏 = c dt𝛾−1, (2.40)

where the Lorentz factor 𝛾 was defined in Eq. (1.11) and can be considered a diagnostic for
relativistic effects. Relativistic effects will be important (and 𝛾 large) when the speed of the
particle v is sizable compared to the speed of light, here denoted by c.

The action integral can now be re-expressed in its familiar form of Eq. (2.4) with the relativistic
free-particle Lagrangian

LR
0 = −mc2𝛾−1. (2.41)
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At first sight, Eqs. (2.34) and (2.41) look very different, but if we expand the inverse Lorentz
factor to second order in (v∕c)2, we obtain

LR
0 = −mc2 + 1

2
mv2 − 1

8
mv4

c2 . (2.42)

The first term, which does not contribute to the equation of motion since it is constant, is minus
the rest mass, the second term is the nonrelativistic free-particle Lagrangian LNR

0 , Eq. (2.34), and
the third term represents a relativistic correction known as the mass-velocity correction. Using
Eq. (2.27), we obtain the relativistic momentum

p = 𝛾mv, (2.43)

which differs from the nonrelativistic definition by the Lorentz factor. The appearance of the
Lorentz factor can be associated with a relativistic mass increase. A Legendre transformation
of the Lagrangian in accordance with Eq. (2.26) gives

HR
0 = ẋp − LR

0 = mc2𝛾. (2.44)

Before the identification of a valid Hamiltonian can be made, we must in this expression replace
the velocity hidden in the Lorentz factor by the momentum. However, in order to carry out this
replacement, we must proceed via a quadratic form and arrive at

(
HR

0
)2 = (pc)2 + (mc2)2 ⇒ HR

0 = ±
√

m2c4 + c2p2. (2.45)

This is a problematic expression, for many reasons. One is that we face the possibility of free
particles with negative sign. Another is that quantization is not straightforward because the
momentum operator appears in the square root. We shall, however, postpone this discussion
to Section 3.2.2.

2.1.3 Wave Functions and Operators

The wave function 𝜓(x, t) associated with a single electron is, from a mathematical point of
view, an element of a Hilbert space, which is a complete vector space equipped with a norm in
the form of a scalar product. The probabilistic interpretation of the wave function implies that
it should belong to the Hilbert space L2 of square-integrable functions. More precisely, it can
be enforced that

∥𝜓∥2 = ∫ℝ3
𝜓†(x, t)𝜓(x, t)d3r = 1; ∀t. (2.46)

Starting from the vector space 𝕍 o associated with the scalar orbital part, we may successively
add further degrees of freedom through a sequence of direct products

𝕍 = 𝕍 o ⊗ 𝕍 c ⊗ 𝕍 s. (2.47)

The electron spin is typically added by multiplying the spatial orbital by spin functions 𝛼 and 𝛽,
but we may also proceed in a more formal manner by using their representations

(𝛼, 𝛽) → 𝕍 s =
{(

1
0

)
,

(
0
1

)}
. (2.48)

The corresponding representation of the spin operator ŝ = (ŝx, ŝy, ŝz) is given by ℏ𝝈∕2, where
the Pauli spin matrices appear

𝜎x =
(

0 1
1 0

)
; 𝜎y =

(
0 −i
i 0

)
; 𝜎z =

(
1 0
0 −1

)
. (2.49)
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If we go all the way to the description of the electron provided by the Dirac equation, we also
have to include a further two-dimensional part 𝕍 c, now associated with the charge conjuga-
tion degrees of freedom (changing the sign of the charge but leaving other properties intact)
because the Dirac equation describes both electrons and their antiparticles, the positrons. The
four components of the Dirac wave function is constructed as

𝜓L𝛼(x, t)⊗
(

1
0

)
⊗

(
1
0

)
; 𝜓L𝛽(x, t)⊗

(
1
0

)
⊗

(
0
1

)
; (2.50)

𝜓S𝛼(x, t)⊗
(

0
1

)
⊗

(
1
0

)
; 𝜓S𝛽(x, t)⊗

(
0
1

)
⊗

(
0
1

)
,

forming the general wave function as the sum of these four components to arrive at

𝜓(x, t) =
⎛
⎜
⎜
⎜⎝

𝜓L𝛼

𝜓L𝛽

𝜓S𝛼

𝜓S𝛽

⎞
⎟
⎟
⎟⎠

. (2.51)

The label s = 𝛼, 𝛽 of each component 𝜓cs refers to spin. It is important to realize, though, that
the label c = L, S, referring to large and small components, respectively, does not correspond
directly to electronic or positronic degrees of freedom. The entire wave function is in fact either
electronic or positronic, but related to that of its antiparticle through charge conjugation. Arriv-
ing at the full four-component form of the wave function, we note that the adopted ordering of
vector spaces in Eq. (2.47), with 𝕍 c to the left of 𝕍 s, leads to a collection of the two large (small)
components in the upper (lower) half of the spinor.

In a two-component formalism, one suppresses the degrees of freedom associated with 𝕍 c,
and, in a one-component nonrelativistic formalism, one may also suppress the reference to 𝕍 s

and instead introduce and manage electron spin in a more ad hoc manner, as described above.
Because the nonrelativistic Hamiltonian is spin independent, one can always separate the spatial
and spin parts of the wave function, but regardless of such simplifications in the representation
and notation of the wave function, the true nature of the electronic wave function is described
by Eq. (2.51), and we refer to such a wave function as a four-spinor.

The corresponding density is

n(x, t) = 𝜓†(x, t)𝜓(x, t) =
L,S∑

c

𝛼,𝛽∑

s
|𝜓cs(x, t)|2. (2.52)

We will, however, often use the simplified notation of the density as introduced in Eq. (2.3)
regardless of the number of components in the wave function.

We extract information that can be related to experiment from wave functions by forming
integrals

⟨𝜓i|Ω̂|𝜓j⟩ = ⟨𝜓i|Ω̂𝜓j⟩. (2.53)

In particular, expectation values (i = j) connect to observables, whereas the squared norm of
transition moments (i ≠ j) connects to spectral intensities. The right-hand side of Eq. (2.53)
stresses that the operator Ω̂ acts to the right, on the ket. The adjoint operator Ω̂† is defined to
give the same result when acting on the bra, that is

⟨Ω̂†𝜓i|𝜓j⟩ = ⟨𝜓j|Ω̂†|𝜓i⟩∗ = ⟨𝜓i|Ω̂𝜓j⟩. (2.54)

In more informal usage one writes

⟨𝜓|Ω̂ = ⟨Ω̂†𝜓|, (2.55)
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Table 2.2 A selection of quantum mechanical operators.

Operator Symbol �̂�o �̂�c �̂�s

Identity Î Î I2 I2

Position x̂ x I2 I2

Linear momentum p̂x −iℏ𝜕∕𝜕x I2 I2

Orbital angular momentum l̂x yp̂z − zp̂y I2 I2

Spin angular momentum ℏ

2
Σ̂x Î I2

ℏ

2
𝜎x

Nonrelativistic velocity v̂x p̂x∕m I2 I2

Relativistic velocity c�̂�x Î

(
0 1
1 0

)
c𝜎x

Dirac β-matrix 𝛽 Î

(
1 0
0 −1

)
I2

Operators relating to Cartesian components y and z are obtained by straightforward generalization.

that is, an operator becomes its adjoint when acting to the left.3 Quantum-mechanical operators
are selected to be self-adjoint (Ω̂† = Ω̂) such that expectation values are real. We usually refer
to such operators as Hermitian, and we shall adhere to this usage, although there is a subtle
difference between the two terms.4

Similar to what we discussed for wave functions, general electronic quantum-mechanical
operators are written as a direct product between one part that acts in orbital space Ω̂o, one that
acts in spin space Ω̂s, and one part associated with the charge conjugation degrees of freedom

Ω̂ = Ω̂o ⊗ Ω̂c ⊗ Ω̂s. (2.56)

The formation of a product operator means that we take the product in each individual operator
space in accordance with

Ω̂Λ̂ = Ω̂oΛ̂o ⊗ Ω̂cΛ̂c ⊗ Ω̂sΛ̂s. (2.57)

A small selection of operators is given in Table 2.2. In this table, only one of the Cartesian
components is provided for the vectorial operators, but other components follow suit.

With pure spatial (or spin) operators, we refer to situations when only Ω̂s (or Ω̂o) is differ-
ent from the identity operator—the identity operator itself is both a pure spatial and a pure
spin operator. It is common practice to allow for simplified notations of operators, for example,
to omit the symbol for the direct product or, for pure operators, to omit the identity opera-
tors. We shall use such conventions whenever there is no risk of confusion. An example of a
pure orbital operator where the identity operators in 𝕍 s and 𝕍 c have been left out is given by
the nonrelativistic Hamiltonian in the form given in Eq. (2.35). In dealing with pure operators,

3 From a mathematical point of view this is sloppy, since operators always act to the right. Furthermore, it may be
that Ω̂ and its adjoint Ω̂† have different domains; see next footnote.
4 The difference between Hermitian and self-adjoint operators arises from the fact that operators are mathematically
defined not only by their actions, but also by their domain (Ω̂); that is, the function space they act on. Hermitian
operators have the same action Ω̂†𝜓 = Ω̂𝜓 for all functions 𝜓 ∈ (Ω̂), but it may be that (Ω̂†) ≠ (Ω̂), contrary to
self-adjoint operators. This distinction becomes particularly important for unbounded operators, of which both the
position and momentum operators are examples. Bounded operators satisfy ∥Ω̂𝜓 ∥≤ M ∥𝜓 ∥ for positive constant M
and for all functions 𝜓 ∈ (Ω̂). A good discussion of this and other subtle points has been discussed in F. Gieres.
Rep. Prog. Phys., 63:1893, 2000.
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simplifications may be introduced in the notation, and it also makes it possible to separately
treat symmetries in the vector and operator spaces. In the nonrelativistic domain, we do so for
instance by the construction of spin-adapted wave functions and operators as well as by the
use of symmetry-adapted spatial orbitals. In the relativistic domain, on the other hand, spin
and spatial degrees of freedom are always coupled with the spin-orbit interactions and, as a
consequence, it becomes impossible to separately treat spin and spatial symmetries.

The generalization of the vector space and the operators to a many-electron system is quite
straightforward. For instance, the state vectors for two-electron systems are elements of a
Hilbert space of the form

𝕍 = 𝕍 1 ⊗ 𝕍 2, (2.58)

and the corresponding operators are given by

Ω̂ = Ω̂′(1)⊗ Ω̂′′(2). (2.59)

For many-electron systems, we should keep in mind that electrons belong to the family of
fermions and as such they obey the Pauli exclusion principle. This means that no two inter-
acting electrons can be in the same quantum state, and the vector space 𝕍 is therefore limited
to include only antisymmetric two-particle vectors of the type

𝜓(x1, x2) =
1√
2

[
𝜓a(x1)⊗𝜓b(x2) − 𝜓b(x1)⊗𝜓a(x2)

]
= 1√

2

||||
𝜓a(x1) 𝜓b(x1)
𝜓a(x2) 𝜓b(x2)

||||
. (2.60)

In the last step we have made use of a determinant to write the antisymmetrized two-particle
state, and we have also included an optional, explicit, normalization constant of 1∕

√
2 together

with the assumption that the one-particle state vectors are individually normalized. Such a
determinant is known as a Slater determinant in quantum chemistry, and one of the most
notable properties of the Slater determinant is that when a = b, the wave function vanishes. The
Slater determinant thus ensures that the Pauli principle is satisfied. It is clear that the set of all
possible Slater determinants constructed from a complete set of one-particle states constitutes
the natural basis of 𝕍 .

Another aspect to note—and which is a reminder in the handling of the vector as well as the
operator spaces—is that there are vectors and operators that themselves may not be written as
direct products. The general electronic wave function in Eq. (2.51) is one example as it is a sum
of four direct product components, and for many-electron systems, a simple example is given
by the coupled two-particle operator with a coordinate representation in terms of the Dirac
delta function

Ω̂ = 𝛿(x1 − x2). (2.61)

Let us assume that {𝜓n} forms a complete set of orthonormal one-particle functions. We then
have

𝛿(x1 − x2) = ⟨x2|x1⟩ =
∑

n
⟨x2|𝜓n⟩⟨𝜓n|x1⟩ =

∑

n
𝜓∗

n (x1)𝜓n(x2), (2.62)

which provides a resolution of Ω̂ into products of one-particle functions. Another and also very
important example is given by an instantaneous Coulomb interaction operator. The Coulomb
operator for a two-electron system takes the basic form

Ω̂ = 1
|r1 − r2|

. (2.63)
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We may replace the orthogonality condition for the basis vectors with a condition of biorthog-
onality

⟨𝜓n|𝜙m⟩ = 𝛿nm, (2.64)

or, equivalently,
∑

n
𝜓∗

n (r1)𝜙n(r2) = 𝛿(r1 − r2), (2.65)

where the operator Ω̂ relates the pairs of biorthogonal vectors

𝜙m(r) = ∫
𝜓m(r′)
|r − r′|d

3r′. (2.66)

We can then proceed to obtain a resolution of the Coulomb operator according to

Ω̂ =
∑

n,m
∫ ∫ 𝜙n(r2)𝜓∗

n (r′2)
1

|r′1 − r′2|
𝜓m(r′1)𝜙

∗
m(r1)d3r′1d3r′2 (2.67)

=
∑

n
𝜙∗

n(r1)𝜙n(r2),

which provides a resolution of the Coulomb operator in a one-particle basis. Apart from
providing a demonstration of how to decouple a two-particle interaction operator, it gives a
glimpse into a family of techniques developed to achieve cost-efficient numerical treatments
of two-electron integrals.

In this section, we have demonstrated how to construct wave functions and operators for
many-electron systems. We emphasize that the foundations of quantum mechanics do not
depend on the inclusion or exclusion of relativity, and to the extent possible, the aim has been to
give a presentation that is valid in both situations. At the same time, it cannot be avoided that, at
a certain level of detail, one must be specific about the choice of Hamiltonian (and other opera-
tors) and depending on that choice, there are particular and less general aspects to be explored
and utilized in the calculations.

2.2 Time Evolution of Wave Functions

The time evolution of the state vector is given by the time-dependent Schrödinger equation,
Postulate D, and is thus dictated by the Hamiltonian. Formally, we may describe the evolution
of the wave function from some initial time t0 by the introduction of a time evolution operator,
or time propagator, according to

|𝜓(t)⟩ = Û(t, t0)|𝜓(t0)⟩, (2.68)

An equation of motion for the propagator is obtained by first inserting the above expression into
the time-dependent Schrödinger equation. Since |𝜓(t0)⟩ is independent of the time variable t,
we obtain a resulting operator equation

iℏ 𝜕
𝜕t

Û(t, t0) = ĤÛ(t, t0), (2.69)

which is equivalent to the time-dependent Schrödinger equation. Expressions for the time evo-
lution operator are now obtained by integrating this equation. Alternatively, we can proceed via
an infinitesimal time evolution operator. For an infinitesimal time interval dt, we may Taylor
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expand the wave function to first order and use the time-dependent Schrödinger equation to
arrive at

|𝜓(t0 + dt)⟩ = |𝜓(t0)⟩ + dt 𝜕
𝜕t
|𝜓(t)⟩

||||t=t0

= |𝜓(t0)⟩ −
i
ℏ

dtĤ(t0)|𝜓(t0)⟩, (2.70)

which shows that the infinitesimal time evolution operator is

Û(t0 + dt, t0) = Î − i
ℏ

dtĤ(t0). (2.71)

Since we only retain the infinitesimal interval dt to first order and since the Hamiltonian is
Hermitian, it follows that the infinitesimal time evolution operator is unitary

Û†(t0 + dt, t0)Û(t0 + dt, t0) =
(

Î + i
ℏ

dtĤ†(t0)
)(

Î − i
ℏ

dtĤ(t0)
)
= Î. (2.72)

For a finite time interval, we may express the time evolution operator as a product of infinites-
imal time evolution operators by dividing the time interval into sufficiently small pieces

tk = t0 + k
t − t0

n
; k = 0,… , n, (2.73)

which yields a time propagator that reads as

Û(t, t0) = lim
n→∞

n−1∏

k=0
Û(tk+1, tk) = lim

n→∞

n−1∏

k=0

[
1 − i

ℏ

(t − t0)
n

Ĥ(tk)
]
. (2.74)

This product form of individually unitary operators shows that the time evolution for a finite
interval is unitary as well. When the Hamiltonian is time independent, the time evolution oper-
ator attains a simple exponential form

Û(t, t0) = lim
n→∞

[
1 − i

ℏ

(t − t0)
n

Ĥ
]n

= e−iĤ(t−t0)∕ℏ. (2.75)

If the initial state happens to be an eigenstate of the Hamiltonian, the time dependence becomes
an overall phase factor of the wave function. Let us assume that at time t0, the wave function is
an eigenstate of Ĥ denoted by 𝜓n with eigenvalue En. From Eq. (2.68), we get

𝜓(x, t) = 𝜓n(x)e−iEn(t−t0)∕ℏ, (2.76)

and the particle density, Eq. (2.3), is thus in this case time independent

n(x) = |𝜓n(x)|2. (2.77)

For this reason, the eigenstates of the Hamiltonian are also referred to as the stationary states
of the system and are characterized by being separable in space and time. It is important to note
that even for a system in a stationary state there can be an associated nonzero linear momentum
as illustrated by the case of the nonrelativistic free particle. The stationary states can in this case
be written as

𝜓p(x, t) = eipx∕ℏe−iEp(t−t0)∕ℏ, (2.78)

and the associated linear momentum is given by

⟨ p̂⟩ = p. (2.79)

This corresponds to particle motion at a speed of v = p∕m for the stationary state. For a molecu-
lar system with bound electrons, a nonzero linear momentum may be found in orbitally degen-
erate states—such as the p-states in hydrogen, or the E-states in benzene—but the current
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density is such that the particle flow into a probing infinitesimal volume ΔV equals the flow
out of it.

In general, the initial state will not be an eigenstate of the Hamiltonian, and consequently
the density of a system will be time dependent, even when its Hamiltonian is not. This can
be illustrated by the nonrelativistic harmonic oscillator with a displaced Gaussian wave packet
serving as the initial state at time t0 = 0

𝜓(x, 0) =
(m𝜔
𝜋ℏ

)1∕4
e−m𝜔(x−x0)2∕2ℏ, (2.80)

centered about x = x0, and the initial wave packet corresponds to a translated ground-state
harmonic oscillator wave function. We follow the propagation of the generally complex wave
packet𝜓 and its amplitude |𝜓| in Figure 2.1. At the initial time, the phase of the wave function is
independent of the spatial coordinate x—in fact the phase is equal to zero since the initial state
is real—and the expectation value of the Hermitian, but imaginary linear momentum operator,
must therefore vanish. In the initial state, ⟨ p̂⟩ = 0 and ⟨x̂⟩ = x0, corresponding to a classical
turning point of the harmonic oscillator, as illustrated in the lowest curve plot in Figure 2.1.
At a later time, the wave function is found by application of Eq. (2.68). After a short while,
at t = 0.002T (T = 2𝜋∕𝜔), it will take the form illustrated in the second curve plot. Here it is
visible that we plot not only the amplitude but also the complex value of the wave function. The
z and y directions are used for plotting the real and imaginary parts of 𝜓(x, t), respectively, and
since we adopt a right-handed coordinate system with a z-axis directed upward, the positive y
axis points into the plane of the paper. In this second curve plot, the phase starts to become
negative for all values of x.

At a time equal to one quarter of the period time (t = T∕4), the phase changes rapidly in space
corresponding to a maximum in the linear momentum, and we may think of the complex wave
function in terms of a corkscrew drilling its way through space. By the time the wave packet

–

Figure 2.1 Time evolution of a wave packet 𝜓 (x, t) in a harmonic oscillator potential. The black line indicates
the amplitude |𝜓| of the generally complex wave function. The full wave packet (gray line) has been traced in
the complex plane normal to the x-axis; the orientation of the y imaginary axis and z real axis is indicated in the
lower curve plot.
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Figure 2.2 Time dependence of the probability current density for the harmonic oscillator.

reaches the other classical turning point, at time t = T∕2, the phase again becomes independent
of the spatial coordinate so that the linear momentum will be zero. The uppermost curve plot is a
snapshot taken right before the turning point. This example illustrates that although the changes
in the density function are not very dramatic—the density performs an oscillatory motion with
a shape that is constant in time—the time and spatial dependencies of the phase function are
all the more violent.

Associated with the time-dependent density there is a nonzero probability current density
which is

j(x, t) = Re
[
𝜓∗(x, t)

p̂
m
𝜓(x, t)

]
. (2.81)

For the displaced harmonic oscillator, j(x, t) is illustrated together with the density in Figure 2.2.
Different points on the density curve are shown by lines pointing in the direction of the current
and with lengths proportional to the size of the current. At the two turning points the current
density vanishes since the linear momentum vanishes.

2.3 Time Evolution of Expectation Values

It is interesting to note molecular responses to electromagnetic fields and the time evolution
of expectation values, since they correspond to observables such as electric and magnetic
moments. The direct approach to this problem is to determine the time dependence of the
reference wave function and then subsequently form the expectation value to determine
the property. However, in a situation where the Hamiltonian depends on time, the direct
integration of the Schrödinger equation cannot be carried out to form a simple propagator
expression as in Eq. (2.68). Instead, we can establish an equation of motion for the expectation
value itself, and from this equation determine the property of interest. The time derivative of
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an expectation value takes the form

𝜕

𝜕t
⟨Ω̂⟩ =

⟨
𝜕𝜓

𝜕t
|Ω̂|𝜓(t)

⟩
+
⟨
𝜓(t)|Ω̂|𝜕𝜓

𝜕t

⟩
+
⟨
𝜓(t)|𝜕Ω̂

𝜕t
|𝜓(t)

⟩
= − i

ℏ
⟨[Ω̂, Ĥ]⟩ +

⟨
𝜕Ω̂
𝜕t

⟩
,

(2.82)

where, in the last step, the substitution of the time derivative of the wave function is made
with use of the time-dependent Schrödinger equation. This equation is known as the Ehren-
fest theorem and it is equivalent to the Schrödinger equation in the sense that it provides
neither more nor less information. As an example, we see that, for a system described by a
time-independent Hamiltonian, we have

𝜕

𝜕t
⟨Ĥ⟩ = 0. (2.83)

To the extent that the Hamiltonian can be identified with the energy as discussed in con-
nection with Eq. (2.33), the above result demonstrates the conservation of energy of the
quantum-mechanical system. An example of paramount importance to us is given by molec-
ular systems subjected to external static electromagnetic fields, leading to well-defined,
field-dependent energies that can be used as starting points to define molecular properties.

Another important application of the Ehrenfest theorem is provided by Ω̂ = Î that leads to
𝜕

𝜕t
⟨𝜓(t)|𝜓(t)⟩ = 0, (2.84)

showing that the time-dependent Schrödinger equation conserves the norm of the wave func-
tion. This implies that

⟨𝜓(t)|𝜓(t)⟩ = ⟨𝜓(t0)|Û
†(t, t0)Û(t, t0)|𝜓(t0)⟩ = ⟨𝜓(t0)|𝜓(t0)⟩, (2.85)

which is another demonstration of the fact that the time-evolution operator is unitary.
If we insert the time evolution operator into the expectation value expression for a general

operator, we can shift the time dependence of the wave function to the operator

⟨Û(t, t0)𝜓(t0)| Ω̂ |Û(t, t0)𝜓(t0)⟩ = ⟨𝜓(t0)|Ω̂H(t)|𝜓(t0)⟩, (2.86)

where

Ω̂H(t) = Û†(t, t0) Ω̂ Û(t, t0). (2.87)

This corresponds to going from the Schrödinger picture to the Heisenberg picture, a trans-
formation which is indicated by a subscript H on the now generally time-dependent operator.
Analogous to the Ehrenfest theorem, we can obtain an equation of motion for operators in
the Heisenberg picture by using the equation for the time evolution operator Eq. (2.69). The
resulting Heisenberg equation of motion takes the form

dΩ̂H(t)
dt

= − i
ℏ

[
Ω̂, Ĥ

]

H
+
(
𝜕Ω̂
𝜕t

)

H
. (2.88)

Choosing Ω̂ to be the position operator r leads to
drH

dt
=

p̂H

m
. (2.89)

In the nonrelativistic domain, this equation suggests that the velocity operator vH is the momen-
tum operator divided by the particle mass, which is reasonable. The relativistic result is more
intriguing. The velocity operator, defined in Table 2.2, in the Heisenberg picture is denoted by
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v̂R
H and becomes c𝜶H. Since the square of any of the Dirac 𝜶 matrices is the unit matrix, this

suggests that each component of the particle velocity is on the order of the speed of light c,
such that the speed of the particle is beyond c. We must remember, however, that we cannot
independently probe the three velocity components in any conceivable experiment because the
three Dirac 𝜶 matrices fail to commute. The curious form of the relativistic velocity operator is
a manifestation of the particle motion proposed by Schrödinger, known as Zitterbewegung, that
is, the highly oscillatory motion due to the interference of positive and negative energy states
that is superimposed on the average trajectory of the relativistic electron.

2.4 Variational Principle

A fundamental property of the eigenfunctions |𝜔n⟩ of a Hermitian operator Ω̂ is that they form
a complete set and can be used for the formation of an orthonormal basis of our wave function
space. The eigenstates and eigenvalues of Hermitian operators are of particular interest to us
because they appear in connection with measurements as described in Postulate C in Table 2.1.
An arbitrary wave function can be expanded in the basis of eigenstates

|𝜓⟩ =
∑

n
cn |𝜔n⟩, (2.90)

where the expansion coefficient cn is to be regarded as a projection coefficient of |𝜓⟩ onto the
basis vector |𝜔n⟩, that is

cn = ⟨𝜔n|𝜓⟩. (2.91)

The change from one orthonormal basis |n⟩ to another |𝜔n⟩ represents a unitary transformation
according to

|𝜔n⟩ = Û|n⟩ =
∑

k
|k⟩⟨k|Û|n⟩ =

∑

k
|k⟩Ukn, (2.92)

and so, if the matrix representation of the operator Ω̂ is Ω in the basis |n⟩, then we can diago-
nalize this matrix by means of the unitary transformation matrix U

D = U†ΩU. (2.93)

The matrix D now contains the eigenvalues of Ω as diagonal elements. This result provides
us with a convenient way to evaluate the function of a matrix f (Ω) by employing |𝜔n⟩ as an
auxiliary basis. The explicit formula becomes

f (Ω) = Uf (D)U†, (2.94)

where f (D) is a diagonal matrix with diagonal elements that are f (𝜔n). A closely related result
is that

f (Ω̂)|𝜔n⟩ = f (𝜔n)|𝜔n⟩. (2.95)

If one could be granted access to the eigenfunctions (and eigenvalues) of a single Hermi-
tian operator, the first choice would be to pick those of the Hamiltonian. Already from the
eigenvalues, or, to be more precise, the differences between them, it is possible to compare the
theoretical results to spectral peak positions arising from any of the several different available
absorption spectroscopies. Additionally, the energy basis also stands out as one in which cer-
tain technical calculations can be performed with ease. Let us for instance assume that the wave
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function at time t0 is known and that we are interested in its time propagation. With the use of
an expansion of 𝜓(t0) in the energy basis, the result can immediately be written as

|𝜓(t)⟩ = Û(t, t0)
∑

n
cn(t0) |𝜓n⟩ =

∑

n
cn(t0) |𝜓n⟩e−iEnt∕ℏ, (2.96)

where the time propagator, being a function of the Hamiltonian, acts on the energy eigenstates
in analogy with Eq. (2.95).

As attractive as these results may be, they represent a detour from our destination in this
section since the true eigenstates of the Hamiltonian are rarely accessible to us in practical
calculations. But the mere fact that the energy basis does exist and that an arbitrary ket vector
can in principle be expanded in this basis allows for an important conclusion with practical
implications in approximate-state theory. Any wave function in approximate-state theory 𝜓A

can also be expanded in the energy basis according to

|𝜓A⟩ =
∑

n
cA

n |𝜓n⟩. (2.97)

The energy EA associated with the wave function 𝜓A is given by the expectation value of the
Hamiltonian. For this expectation value, we conclude that

EA = ⟨𝜓A| Ĥ |𝜓A⟩ =
∑

n
|cA

n |2En ≥ E0, (2.98)

where E0 is the lowest eigenvalue of the Hamiltonian, corresponding to the ground state.5 This
result is known as the variational principle, and it is often used as a measure of the quality of
approximate-state wave functions. The wave function 𝜓A includes a set of parameters, such as
for example, molecular orbital coefficients, and the best values of these parameters are defined
as those minimizing the energy EA. This approach is directly applicable to the optimization of
ground-state wave functions, but with some constraints it can also be adopted for the optimiza-
tion of wave functions representing excited states.

In Eq. (2.98), it is natural to consider EA as a mapping of wave functions to real numbers. This
turns out to represent an example of a functional as introduced in Eq. (2.5). With respect to
wave functions, the simplest functional of interest to us is the norm of the wave function

N[𝜓] = ⟨𝜓|𝜓⟩. (2.99)

This functional is special in the sense that it maps all wave functions onto the real number 1,
and it is clear that the first variation of N vanishes for all allowed 𝜓 . We can also formulate this
as a requirement on the test function 𝛿𝜓 (or variations in 𝜓) that results in

𝛿N[𝜓] = ⟨𝛿𝜓|𝜓⟩ + ⟨𝜓|𝛿𝜓⟩ = 0. (2.100)

This means that, when we move from𝜓 to𝜓 + 𝜀𝛿𝜓 in function space, we are restricted to move
in directions given by

|𝛿𝜓⟩ = |𝛿𝜓⟂⟩ + i𝜂|𝜓⟩; 𝜂 ∈ , (2.101)

where 𝛿𝜓⟂ is strictly orthogonal to 𝜓 .
Next we consider the stationary states in quantum mechanics which, as we have seen, are

separable in space and time variables. The spatial parts of these particular solutions to the
Schrödinger equation fulfill the eigenvalue equation of the Hamiltonian

Ĥ𝜓n(x) = En𝜓n(x), (2.102)

5 This assumes that the Hamiltonian is bounded from below, which is true for the nonrelativistic, but not for the
relativistic, case.
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often referred to as the time-independent Schrödinger equation. We can isolate the energy En
in Eq. (2.102) by the multiplication with a bra vector

⟨𝜓n|Ĥ|𝜓n⟩ = En. (2.103)

It is clear that the multiplication with a vector belonging to the orthogonal complement yields

⟨𝜓⟂
n |Ĥ|𝜓n⟩ = 0. (2.104)

For allowed variations of the form given in Eq. (2.101), by using Eq. (2.104) we can conclude
that the first variation in the energy functional vanishes

𝛿En = ⟨𝛿𝜓n|Ĥ|𝜓n⟩ + ⟨𝜓n|Ĥ|𝛿𝜓n⟩ = 0. (2.105)

All eigenstates of the Hamiltonian are characterized by having a zero electronic gradient.
In many cases, the Hamiltonian carries a dependence on a parameter F (such as an external

static field amplitude), and we can trace the dependence of the eigenfunctions of the Hamilto-
nian on this parameter. Due to the normalization condition, it is clear that

d
dF
⟨𝜓n(F)|𝜓n(F)⟩ =

⟨d𝜓n

dF
|𝜓n(F)

⟩
+
⟨
𝜓n(F)|

d𝜓n

dF

⟩
= 0, (2.106)

which tells us that 𝛿𝜓n = d𝜓n∕dF is an allowed variation of the wave function in accordance
with Eq. (2.100). The derivative of the energy with respect to the parameter F thereby becomes

dEn

dF
=
⟨d𝜓n

dF
|Ĥ|𝜓n

⟩
+
⟨
𝜓n|Ĥ|

d𝜓n

dF

⟩
+
⟨
𝜓n
||||
𝜕Ĥ
𝜕F
||||
𝜓n

⟩
(2.107)

= 𝛿En +
⟨
𝜓n
||||
𝜕Ĥ
𝜕F
||||
𝜓n

⟩

=
⟨
𝜓n
||||
𝜕Ĥ
𝜕F
||||
𝜓n

⟩
,

where, the last step is based on the fact that the first-order variation in the energy vanishes
for all eigenfunctions of the Hamiltonian [see Eq. (2.105)]. The resulting equation is known
as the Hellmann–Feynman theorem, and it holds as long as the wave function is variation-
ally optimized with respect to the Hamiltonian. As can be seen in Chapter 5, this theorem is
highly relevant, since it provides a bridge between energy derivatives and molecular properties,
through the left- and right-hand sides of the equation, respectively.

Further Reading

1 J. E. Baggott. Beyond Measure: Modern Physics, Philosophy, and the Meaning of Quantum
Theory. Oxford University Press, 2004.

2 B. H. Bransden and C. J. Joachain. Quantum Mechanics. Pearson Education, 2000.
3 C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum Mechanics. Wiley, 1977.
4 K. G. Dyall and K. Fægri Jr. Introduction to Relativistic Quantum Chemistry. Oxford

University Press, 2007.
5 W. Greiner. Relativistic Quantum Mechanics, volume 3. Springer, 1990.
6 E. Merzbacher. Quantum Mechanics. Wiley, 1998.
7 D. J. Tannor. Introduction to Quantum Mechanics. University Science Books, 2007.



�

� �

�



�

� �

�

31

3

Particles and Fields

From a long view of the history of mankind, seen from, say, ten thousand years from now,
there can be little doubt that the most significant event of the nineteenth century will be
judged as Maxwell’s discovery of the laws of electrodynamics.

R. Feynman

The overall theme of this book is the behavior of molecules when subject to combinations of
electromagnetic fields. We therefore need to know how to introduce external electromagnetic
fields into our molecular or electronic Hamiltonian. The same procedure can also be used to
introduce internal fields not normally taken into account in our unperturbed Hamiltonian, such
as those associated with nuclear magnetic moments.

For a system of particles and fields we can generally write the total Hamiltonian as

Ĥ = Ĥp + Ĥint + Ĥf , (3.1)

where Ĥp, Ĥf , and Ĥint describe particles, fields, and their interactions, respectively. In prac-
tice one never employs the full Hamiltonian, containing all degrees of freedom associated with
both particles and fields. Usually, the external fields are considered fixed and enter the Hamil-
tonian as parameters rather than as variables. This means that the fields do not react to the
particle motion so that the field term Ĥf becomes a constant and contributes a mere shift of the
energy that can be neglected. In the framework of classical mechanics, such a constant term will
disappear from the equations of motion because they only involve derivatives of the Hamilto-
nian with respect to the variables (see Postulate D in Chapter 2). It is also possible to go to the
other extreme and fix the particle motion, such that the particle term Ĥp disappears from the
equations of motion. The particles are now simply sources of electromagnetic fields and the
resulting equations of motion in classical electrodynamics are Maxwell’s equations.

The latter view is often the perspective of the experimentalist, who will probe a molecu-
lar sample with electromagnetic fields and monitor their changes. A simple example is opti-
cal activity where the experimentalist observes the rotation of the plane of polarization as
light passes through the sample. We thus have, on the one hand, the theoretician studying the
responses of the molecular charge density and, on the other hand, the experimentalist studying
the responses of the electromagnetic fields. A further distinction to keep in mind is that the
theoretician starts from a microscopic description of the system, whereas the experimentalist
necessarily, due to the size of the measuring apparatus, works at a macroscopic level. Connect-
ing theory and experiment therefore means that the response of molecules and fields as well as
the microscopic and macroscopic descriptions of phenomena must be reconciled.

Principles and Practices of Molecular Properties: Theory, Modeling and Simulations, First Edition.
Patrick Norman, Kenneth Ruud, and Trond Saue.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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3.1 Microscopic Maxwell’s Equations

3.1.1 General Considerations

Classical electrodynamics is summarized by the celebrated Maxwell’s equations. These are
first-order differential equations consisting of a homogeneous and an inhomogeneous pair.
The homogeneous pair, with right-hand sides being equal to zero, reads as

𝛁 ⋅ B = 0, (3.2)
𝛁 × E + 𝜕tB = 𝟎, (3.3)

and thus involves only the electric E and magnetic B fields. In the above equations, 𝜕t represents
the derivative with respect to time, while 𝛁 is the gradient, or del, operator, which in Cartesian
coordinates takes the form

𝛁 = 𝜕xex + 𝜕yey + 𝜕zez =
(
𝜕

𝜕x
,
𝜕

𝜕y
,
𝜕

𝜕z

)
. (3.4)

The inhomogeneous pair, with right-hand sides different from zero, is given by

𝛁 ⋅ E = 𝜌∕𝜀0, (3.5)

𝛁 × B − 1
c2 𝜕tE = 𝜇0j, (3.6)

in which appear the electric and magnetic constants 𝜀0 and 𝜇0, respectively, also known as the
permittivity and permeability of free space. These constants are connected to the vacuum speed
of light c through the relation

𝜇0𝜀0 = 1
c2 . (3.7)

The inhomogeneous pair adds the sources of the fields, that is, the charge density 𝜌 and cur-
rent density j. For a classical point charge with charge q, as depicted in Figure 3.1, the charge
density reduces to charge times a Dirac delta function fixing the instantaneous position to the
trajectory r(t) of the particle whereas the current density is charge times the instantaneous
velocity, or, equivalently,

𝜌(r′, t) = q 𝛿(r′ − r(t)); j(r′, t) = qṙ(t) 𝛿(r′ − r(t)). (3.8)

Maxwell’s equations determine the electric and magnetic fields given a set of sources.
Equation (3.5) is known as Gauss’ law, and by analogy Eq. (3.2) is sometimes called Gauss’
law of magnetism. Equation (3.3) corresponds to Faraday’s law and describes electromagnetic
induction, that is, the generation of an electric field by a magnetic field varying in time.

Figure 3.1 A classical point charge in motion.
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Equation (3.6) is known as the Ampère–Maxwell equation and enounces that a magnetic field
can be generated from currents (Ampère’s law) and time-varying electric fields. The latter
effect, pointed out by Maxwell, is important and leads to a relation between the charge and
current density as follows:

For a general vector field F, the divergence of its curl vanishes, or in other words,

𝛁 ⋅ (𝛁 × F) = 0. (3.9)

By taking the divergence of Eq. (3.6), we are thereby led to conclude

− 1
c2 𝜕t(𝛁 ⋅ E) = 𝜇0(𝛁 ⋅ j), (3.10)

and, with further use of Eqs. (3.5) and (3.7), we arrive at

(𝛁 ⋅ j) + 𝜕t𝜌 = 0. (3.11)

This important relation is known as the continuity equation, and it expresses the conservation
of charge, as will become clear by the consideration to follow.

The integral of the divergence of a vector function F over some volume V is related to its flux
through the surface S enclosing the volume according to the divergence theorem1

∫V
(𝛁 ⋅ F)dV = ∫S

(F ⋅ n)dS. (3.12)

On the right-hand side of Eq. (3.12), n is a unit vector normal to the surface that, by conven-
tion, points outward from the surface at each point and dS is an infinitesimal surface element.
The right-hand integral thus represents a surface summation of the component of the vector
function F perpendicular to the surface, which in turn encloses the entire volume. An example
of the use of the divergence theorem is to recast the continuity equation, Eq. (3.11), in integral
form

∫V
(𝛁 ⋅ j)dV = ∫S

(j ⋅ n)dS = −∫V
𝜕t𝜌 dV = −𝜕tQ. (3.13)

The surface integral represents the charge flowing out of the enclosed volume and it is equal to
the negative time derivative of the total charge Q inside the volume, showing that the continuity
equation expresses charge conservation.

Correspondingly, by the curl theorem2, the integral of the outward component of the curl of
a vector function over some surface S is related to its circulation around a curve C enclosing
the surface

∫S
(𝛁 × F) ⋅ n dS = ∮C

(F ⋅ t)dl. (3.14)

On the right-hand side of Eq. (3.14), t is a unit vector tangential to the curve at each point and
dl is an infinitesimal line element such that the line integral samples the tangential component
of the vector function along the curve. If the normal vector n points toward the reader, the line
integration follows the tangential vector t in a counterclockwise sense around the curve.

We can derive a specific form of the divergence theorem by considering the vector function

F = f m, (3.15)

where m is a constant vector. Its divergence is

𝛁 ⋅ F = m ⋅ 𝛁f . (3.16)

1 Other names are Gauss’ theorem, Ostrogradsky’s theorem, and Gauss–Ostrogradsky theorem.
2 Also known as Stokes’ theorem.
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From the divergence theorem it then follows that

∫V
𝛁f dV = ∫S

f n dS, (3.17)

which is useful when integration by parts is to be done in vector calculus. For a product function
with a vanishing surface integral, we have

0 = ∫V
𝛁( fg) dV = ∫V

g𝛁f dV + ∫V
f 𝛁g dV . (3.18)

We can alternatively define the divergence of a vector function F in a point by a limiting
process in which the surrounding volume in Eq. (3.12) tends toward zero, that is

𝛁 ⋅ F = lim
ΔV→0

1
ΔV ∫S

(F ⋅ n)dS. (3.19)

In the same manner, we can define the curl of a vector function F in a point and in the direction
normal to some surface by a limiting process in which the surface area in Eq. (3.14) tends toward
zero, that is

(𝛁 × F) ⋅ n = lim
ΔS→0

1
ΔS ∮C

(F ⋅ t)dl. (3.20)

These limiting values are independent of the shape of the corresponding volumes and surfaces.

3.1.2 The Stationary Case

Let us now explore the physical content of Maxwell’s equations. We begin by a treatment of
the stationary case in which the electric and magnetic fields are time independent. Under such
circumstances, Maxwell’s equations simplify to

𝛁 ⋅ B = 0; 𝛁 ⋅ E = 𝜌∕𝜀0;
𝛁 × E = 𝟎; 𝛁 × B = 𝜇0j. (3.21)

This restriction on the electric and magnetic fields also implies restrictions on the sources: Tak-
ing the divergence of the last relation, we obtain 𝛁 ⋅ j = 0, which corresponds to steady currents
and, from the continuity equation, time-independent charge densities. In other words, steady
current implies that there is no net transport of charge. As a further restriction, if there exist
no currents (j = 𝟎), we obtain the static case.

The left-hand sides of the stationary Maxwell equations involve the divergence and curl of
the electric and magnetic fields. Let us therefore first look at these vector operations in more
detail. We note that the sources determine directly the curl and divergence of the fields, but
not the fields themselves. Boundary conditions must be added to uniquely determine the fields
for a given set of sources. The conventional boundary condition is to let E and B go to zero at
infinite distance from the sources.

As an example, consider the case where there are no sources. Equation (3.21) shows that
the divergence and the curl of the electric and magnetic fields are zero everywhere in space.
But both vector fields F1 = (0, 0, 0) and F2 = (yz, zx, xy) have zero divergence and curl and it is
not until we impose the boundary condition that we can conclude that F1 is the only accept-
able solution of the two. Can there be additional acceptable solutions? In order to address this
question, we employ the vector field identity

∇2F = 𝛁(𝛁 ⋅ F) − 𝛁 × (𝛁 × F), (3.22)


