

RADIO SPECTRUM MANAGEMENT POLICIES, REGULATIONS AND TECHNIQUES

HAIM MAZAR (MADJAR)

RADIO SPECTRUM MANAGEMENT

RADIO SPECTRUM MANAGEMENT POLICIES, REGULATIONS AND TECHNIQUES

Haim Mazar (Madjar)

WILEY

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books, and vice versa.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781118511794

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

1 2016

To my mother Suzanne (Sévilia) Madjar and to my wife Nitza (Ben-Shemesh) Mazar

Contents

A	bout t	he Aut	hor	xiii	
Fa	orewo	rd		xiv	
Pı	Preface				
A	cknov	vledgm	ents	xviii	
A	crony	ms and	Abbreviations	xxi	
1			Frequency Spectrum and Wireless Communications	1	
			rical Overview	1	
			neral Communication Channel	2	
			Frequency Bands	2	
	1.4		ity of the RF Spectrum	3	
	Refe	erences		4	
2	The	Main 1	Regulated Radio Services	5	
	2.1	Gener	al	5	
	2.2	Terres	trial Broadcasting Delivery: Sound (Radio) and Video (Television)	6	
		2.2.1	Definitions and Introduction	6	
		2.2.2	Broadcasting Video and Audio Delivery	8	
		2.2.3	Terrestrial Sound (Audio)	10	
		2.2.4	Terrestrial Video (Television)	14	
	2.3	Land	Mobile and the Cellular Service	25	
		2.3.1	Definitions and Introduction	25	
		2.3.2	Cellular Reference Network Unit	26	
		2.3.3	Regulation and Standardization of the Cellular Service	28	
		2.3.4	IMT Terrestrial Radio (Including LTE)	33	
	2.4	Fixed	Point-to-Point and Point-to-Multipoint	38	
		2.4.1	Overview of Fixed Services: Fixed Networks and Mobile Backhauling	38	
			Deployment and Performance	39	
		2.4.3	Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) Links	43	
			Fixed Wireless Systems (FWS) and Broadband Wireless		
			Access (BWA) Systems	44	
		2.4.5	Available RF Spectrum and Frequency Planning	45	

	2.5	Satelli	te Communications	47	
		2.5.1	Definitions of Satellite Communications	47	
		2.5.2	Satellite Orbits and Services	47	
		2.5.3	Satellite Equipment	62	
		2.5.4	Monitoring and Regulating Satellite Communications	65	
	Refe	erences		69	
3	Sho	rt Rang	ge Devices and the License-Exempt RF Spectrum	72	
	3.1	Regul	atory Framework of SRDs	72	
			Definitions and Applications	72	
		3.1.2	Non-Interference, Unlicensed and Unprotected	73	
		3.1.3	Mutual Agreements Between Countries/Regions	75	
			Placing the SRD on the Market and the Labeling of SRDs	75	
			SRDs Interfering with Radiocommunications Services	79	
	3.2		ctive Use of SRDs	80	
			Risk-versus-Risk	80	
		3.2.2	The Collectivized View Explaining the Harmonization of SRDs and the RF	81	
		3.2.3		81	
	3.3		ingineering Background to Understand the SRD Technical Parameters	82	
	5.5		Friis Equations, Received Power, Electric and Magnetic	02	
		5.5.1	Field-Strengths: Numerical Equations	82	
		332	Received Power and Electric Field-Strength: Numerical Equations	83	
			Received Power and Magnetic Field-Strength: Numerical Equations	84	
			Received Power, Electric and Magnetic Field-Strength:	01	
		0.0.1	Logarithmic Equations	84	
	3.4	Globa	l Regulation of SRDs	86	
			Globalization	86	
			ISM BANDS: Extracts from ITU RR and Spectrum Management		
			Recommendations	87	
		3.4.3	Frequency Ranges for Global or Regional Harmonization of SRDs	89	
			Technical and Operating Parameters and Spectrum Use for SRDs	91	
	3.5		nal Regulation of SRDs	91	
		-	Region 1 and CEPT/ECC ERC Recommendation 70-03	92	
			Region 2 and the FCC CFR 47 Part 15 Radio Frequency Devices	93	
		3.5.3	Region 3: SRDs in APT Countries	96	
	3.6	Globa	l and Regional Ruling in Three ITU Regions: Case Studies		
		to Cor	npare and Contrast	97	
		3.6.1	Case Study 1: Wi-Fi, RLAN, WLAN, U-NII	98	
		3.6.2	Case Study 2: RFID's Global and Regional Ruling	105	
		3.6.3	Case Study 3: ISM and the Citizen Band 26.96–27.28 MHz	108	
	Refe	erences		110	
4	Policies, Legal and Economic Frameworks to Manage the RF Spectrum				
	4.1		views Shape RF Policies	112	
		4.1.1	Culture, Regulation and Uncertain Risks	112	
		4.1.2	Central Planning (Ex-Ante and A-Priori) Versus Market-Based		
			(Ex-Post and A-Posteriori) Approaches	115	

		4.1.3	Radio Frequency Regulatory Framework and Basic Objectives	118			
	4.2	Legal	Environment	118			
		4.2.1	Two Different Legal Traditions: Civil Law and Common Law	118			
		4.2.2	The Legal Framework	120			
		4.2.3	Radiocommunications Law	122			
		4.2.4	Factors Affecting the RF Value	123			
		4.2.5	The RF Spectrum and Property Rights	123			
		4.2.6	International, Regional and National Legislation	124			
	4.3		conomic Environment	126			
		4.3.1	Economics and Spectrum Management	126			
		4.3.2	Benefits of Using the Radio Spectrum	130			
		4.3.3	National Cost Accounting: The RF Spectrum as a				
			Non-Produced Asset	133			
		4.3.4	Fee Policy	136			
		4.3.5	License Fee: Comparative Evaluation Methods, Auctions				
			and Lotteries, Secondary Trading	138			
		4.3.6	RF Spectrum Annual Fees	143			
	4.4	Intern	ational, Regional and National Frequency Allocation				
			and Redeployment	146			
		4.4.1	Allocation Table	146			
		4.4.2	RF Spectrum Redeployment and Refarming	146			
	Refe	erences		148			
5	RF	RF Engineering and the Link Budget 1					
			Co-End Wireless Communication	150			
	5.2	RF Cł	naracteristics: Modulation and Multiple Access	151			
		5.2.1	Modulation and Digitization	151			
		5.2.2	Representation of the Modulated Signal	155			
		5.2.3	Analog Modulations	157			
		5.2.4	Digital Modulations	157			
		5.2.5	Channel Multiple Access and Full Duplex Techniques	165			
	5.3	Trans	mitters: Power and Unwanted Emissions	168			
		5.3.1	Transmitter Block Diagram	168			
		5.3.2	Emission Mask	169			
		5.3.3	Unwanted Emissions	169			
	5.4	Receiv	vers: Concept, Selectivity, Noise and Sensitivity	172			
		5.4.1	Receiver Noise Floor and Sensitivity	172			
		5.4.2	Noise Factor and Noise Temperature	174			
		5.4.3	Gain to Noise Temperature G/T for Satellite Earth and Space Stations	176			
	5.5	Anten	nas: Fundamental Parameters	177			
		5.5.1	Antenna: Aperture, Beamwidth, Directivity and Gain	178			
		5.5.2	Three-Dimensional Radiation Pattern and Gain Calculations	182			
		5.5.3	Antenna Polarization, Bandwidth, Insertion Loss and Impedance	192			
	5.6	6.6 Propagation					
		5.6.1	General	194			
		5.6.2	Friis Transmission Equation and Free-Space Propagation Loss: Power	194			
		5.6.3	Maxwell's Equations and Received Free-Space Field-Strength				
			from a Far-Field Emission	198			

		5.6.4	ITU-R P.1546 Propagation Curves 30–3,000 MHz	203
			Fresnel Zones	204
		5.6.6	Attenuation by Atmospheric Gases	206
			Near-Field to Far-Field	206
		5.6.8	Frequency Dependency in Penetrating Walls and Bypassing	
			Obstacles	207
	5.7	Link l	Budget	210
		5.7.1	Power Equations	210
		5.7.2	Conversion Formulae	212
	5.8	Radio	Frequency Interference and Spectrum Sharing	215
		5.8.1	Non-Linear Interference	215
		5.8.2	Linear Interference	217
		5.8.3	Decreasing Interference: Mitigation Techniques	225
	Refe	erences		225
6	Inte	rnatior	nal RF Spectrum Management and Standardization	229
	6.1		ational Regulations and Standards	229
	6.2		ation and Standardization	230
		6.2.1	International RF Spectrum Management and Standardization Players	230
		6.2.2	Worldwide Regulation and Standardization	234
		6.2.3	Globalization of RF Regulation and Standardization	240
	6.3		nal, Regional and Global RF Regulation	242
		6.3.1	Transfer of National Regulatory Power to an Intergovernmental Authority	242
		6.3.2	Implementing Regional RF Spectrum Management and	272
			Standardization	244
	6.4		Il Regulatory Framework: ITU	245
			ITU-D (also Telecommunications Development Bureau, BDT)	246
			ITU-T (also TSB, Telecommunication Standardization Bureau)	247
			ITU-R (also BR, Bureau Radio)	247
			ITU Radio Regulations	249
	6.5		-Border Coordination, Regulation and Techniques	256
			Avoiding Harmful Interference between Administrations	256
			Bilateral and Multilateral Agreements	256
		6.5.3	Preferential Use of Frequencies, Trigger Levels and Distance	
		· - ·	from the Border	257
	Refe	6.5.4 erences	Decreasing Cross-Border Interference: Mitigation Techniques	258 259
_				
7	-		RF Spectrum Management	261
	7.1		egulation on the Continent of Europe: Main Players	261
		7.1.1	0 1	261
		7.1.2	The Main European Organizations	261
		7.1.3		200
		714	Legislation on Spectrum	266
		7.1.4 7.1.5		272
			All Europe Including the EU	273
			. 0	

	7.2		Regional Players in the Americas: OAS, CITEL and CAN	276
		7.2.1	OAS and CITEL	277
		7.2.2	RF Regulatory Framework in CAN	277
		7.2.3	CAN: Overall Approach	279
		7.2.4	CAN Regulation: Conclusion	280
		7.2.5	Additional South American and Caribbean Players	280
		7.2.6	Intergovernmental South American Overall Approach	281
	7.3	Comp	parison of the Two Major Camps: Europe and North America	282
		7.3.1	General	282
		7.3.2	Analysis	283
		7.3.3	Conclusion	285
	7.4	Regul	ation in Asia	285
		7.4.1	General: Leading Asia	286
		7.4.2	Asia-Pacific Telecommunity (APT)	286
		7.4.3	Regulating the Largest Wireless Markets in South-East Asia	288
		7.4.4	Asia-Pacific Broadcasting Union (ABU)	288
		7.4.5	Regional Commonwealth in the Field of Communications (RCC)	289
	7.5	RF Re	egulation in the Arab States and North Africa	289
	7.6	RF Re	egulation in Africa	291
		7.6.1	African Telecommunications Union (ATU)	291
		7.6.2	West African States	292
		7.6.3	East African Community: EAC and EACO	292
		7.6.4	South-African Region: Regulatory Framework	292
	Refe	erences		293
8	Nat	ional S	pectrum Management	295
Ū	8.1		of the National Spectrum Management (NSM)	295
	0.1		National Objectives	295
		8.1.2	Basic Functions and Responsibilities of the NSM	296
			<i>Guidelines and Practices to Optimally Manage the RF Spectrum</i>	298
			RF Spectrum Control	303
	8.2		s in Spectrum Management, Smarter Technologies and Modulations	305
	0.2		Administrative Trends	305
			New Wireless Technologies	306
		8.2.3	Spectrum Policy, Time Scales and Wireless Innovation	309
	8.3		bectrum Management in Some Leading Countries	310
	0.0		RF Regulatory Framework in China	311
			RF Regulatory Framework in France	322
		8.3.3	RF Regulatory Framework in the UK	329
		8.3.4	RF Regulatory Framework in the USA	339
		8.3.5	Regulatory Frameworks of National Case Studies: Conclusion	355
	Refe	erences		356
9	T im	itation	s to Radio Frequency Human Exposure	359
7	1 .1		an-Hazards	359
	9.1 9.2		ealth Risks as a Social Story	359 361
	7.2	кг по 9.2.1	<i>Electromagnetic Hypersensitivity and Electrophobia</i>	361
		9.2.1 9.2.2	Regulating Uncertain Risks	362
		9.2.2	Regulating Uncertain Risks	302

9.3	RF (R	adio Frequency) Exposure and Thermal Damage	363
	9.3.1	Human-Hazards: Risks from RF Exposure	363
	9.3.2	The International, Regional and National Thresholds:	
		Comparative Study	374
9.4	Quant	ified RF Hazards from Fixed Transmitters	375
	9.4.1	Power-Density, Field-Strength and Safety-Distances	
		around Fixed Transmitters	375
	9.4.2	Emissions Transmitted from the Same Site:	
		Multiple-Antenna Installation	377
9.5	Simul	ations and Measurements of RF Exposure	379
	9.5.1	Calculated Safety-Distances, Worst-Case,	
		Multiple-Antenna Installation	379
	9.5.2	Monitoring Human Exposure	382
9.6	RF Ha	azards Limits and Their Impact on Mobile Network Planning	386
	9.6.1	Excessive Exposure Limits Affect Network Planning	386
	9.6.2	Handling Low Exposure Thresholds by Additional Cellular	
		Antennas or Additional RF Spectrum	387
	9.6.3	Test to Quantify RF Versus Sites	389
9.7	Polici	es and Mitigation Techniques to Reduce Human Exposure	390
	9.7.1	Policies to Reduce Human Exposure to RF Radiation	390
	9.7.2	Mitigation Techniques to Decrease the Radiation Level	391
	9.7.3	Myths and Realities	392
9.8	Concl	usions	393
Refe	erences		393
dex			398

Index

About the Author

Dr. Haim Mazar (Madjar) has more than 45 years of experience in wireless communications (including broadcasting, mobile, fixed, radiolocation, satellite and public services) and RF spectrum management. In addition to contributing to ITU-D and ITU-T Study Groups, Haim has contributed to all ITU-R Study Groups (and their associated Working Parties), in total, more than 180 technical contributions. Elected by 88 countries at the ITU Radio Assembly 2015, he serves as Vice Chair of ITU-R Study Group 5 (Terrestrial Services). Dr. Mazar is a consultant for national administrations and industries around the world on spectrum management, the ruling of Short Range Devices and RF Human Hazards. He holds a BSc EE, from the Technion Israel Institute of Technology in 1971; an MBA from Bar Ilan University in 1988; and a PhD from Middlesex University, London, UK, in 2008, focusing on regulatory frameworks for wireless communications. He is currently a radio communications lecturer and since January 2016, a guest professor at Xihua University, Chengdu, China.

Foreword

Mr. Mazar has been involved extensively in ITU activities since 1991 and is well known and appreciated within the wireless regulatory community. This book is intended to provide engineers, lawyers and economists involved in wireless communications a valuable source of information and inspiration for professional activities in this field.

I am sure that all professionals involved in regulatory and standardization activities relating to wireless communications will appreciate this book.

François Rancy Director, Radiocommunication Bureau International Telecommunication Union

Preface

An understanding of the policies, regulations, standards and techniques of radio spectrum management is useful to those who manage and administrate it, to operators, to equipment providers and to the users of wireless communication (i.e., all of us). For many years the author has been deeply involved in ruling the RF spectrum at the national, regional and global levels. The book is based on the professional experience of the author, his academic courses, presentations and tutorials in five continents. The book reflects this legacy and will be of use to engineers, lawyers and economists, who serve the global industry of the wireless world; in it they may find solutions to the problems they frequently encounter.

The book provides the background and an overall view, evaluating the regulatory framework for wireless communications of most administrations. The European idea to transfer national regulatory power to an intergovernmental authority may be repeated in other continents, to assist many developed and developing countries. Rather than creating new regulations and standards, administrations worldwide may follow the European, North American or Asian rules.

The regulation of the RF spectrum is concerned with the following features: regulating uncertain risks, harmful interference, the security of life services, and placing on the market new wireless technologies. Unwanted emissions and human hazards are problems that require worldviews and values to guide their regulation.

The nine chapters of the book explore the administrative, engineering, legal and economic aspects of wireless communications; then the main international and regional organizations influencing the regulation and standardization of the RF spectrum are detailed. The national regulations and standards of China, France, the UK and the USA serve as case studies. Other topics discussed are the proliferation of cellular base stations, the public dislike of large antenna structures, and the growing concern about electromagnetic pollution. These topics oblige regulators to be involved, therefore, human exposure to RF is emphasized.

Chapter 1 explores wireless communications, by giving a short historical overview, depicting the basic communication channels and detailing the RF bands. Chapter 2 examines the main regulated radio services. The broadcasting delivery and technical parameters of analog and digital sound (radio) and video (television) are detailed; the analog radio FM and digital DVB-T are emphasized. Due to its importance and the continuous need for additional RF to provide capacity and coverage, a section focuses on the cellular service. Fixed point-to-point and point-to-multipoint are radiocommunication services between specified fixed stations; therefore, the fixed service can be provided by alternative cable or satellite systems. However, line-of-sight and non-line-of-sight links provide quick cost-effective broadband solutions. Satellites are used for commerce, government purposes, science, research and astronomy; therefore, satellite orbits, plus services and equipment are specified.

As regulators and the public are very concerned about Short Range Devices (SRDs), Chapter 3 provides their technical and operating parameters; SRDs are not considered a "radiocommunication service"; thus they operate normally on this basis: unlicensed, unprotected and with non-interference with other radio equipment. The roaming of SRDs obliges regional and global harmonization. The global success of Wi-Fi can be compared to the triumph of GSM. Wi-Fi, RFID and the citizens' band 26.96–27.28 MHz serve as case studies.

Chapter 4 describes policies, the legal and economic frameworks to manage the RF spectrum; the central planning (*ex-ante* and *a-priori*) approach is compared and contrasted with the market-based (*ex-post* and *a-posteriori*) style. The main objectives of spectrum control are listed. The two different legal traditions (civil law and common law) characterize the legislative environment; the importance of the radiocommunications law to the legal framework is specified; the property rights of the license holders are discussed; international, regional and national legislation is reviewed. The economic aspects of the RF are also analyzed; the benefits of wireless communications to economic welfare and to increase productivity are indicated; countries include the RF spectrum as a non-produced asset in their national cost accounting. License fees are evaluated by secondary trading, auctions and lotteries; the annual fees are quantified; international, regional and national frequency allocation tables are explained; redeployment and refarming are economic tools to optimize RF use.

Chapter 5 studies end-to-end wireless communication; power and unwanted emissions of transmitters are examined for RF sharing. Since receivers can be interfered with, their selectivity, noise and sensitivity are assessed. As there is no RF signal without antennas, a section details their fundamental parameters (aperture, beamwidth and gain; polarization, bandwidth, insertion loss and impedance). Because the attenuation of the RF signal is fundamental to the RF environment, free-space propagation loss and Maxwell's equations are presented, Fresnel zones are proved, near-field and far-field are compared. The frequency dependency when penetrating walls and bypassing obstacles explains why traditional cellular systems operate below 6 GHz. Non-linear and linear RF interference and spectrum sharing are calculated, and mitigation techniques are proposed to decrease interference.

Chapter 6 explores the international spectrum management and standardization by cataloging the relevant players and detailing how rules and standards are developed and implemented. The three ITU sectors of Development ITU-D BDT, Telecommunications ITU-T TSB and Radio ITU-R BR are surveyed. Readers may learn about bilateral and multilateral agreements between administrations, cross-border coordination and mitigation techniques to avoid interference.

Chapter 7, on regional RF spectrum management, details the exceptional European model, as a result of which the EU countries relinquish some of their sovereignty. European regulation, the main players, intergovernmental and international regulatory relationships, the legislation on the spectrum, computerized tools and harmonized activities are described. The main regional American players are OAS, CITEL and CAN. Regulation and standardization in the two major camps (Europe and North America) are compared and summarized. Regulation is explored in Asia, the (ex-Russian) Regional Commonwealth in the field of communications (RCC), the Arab countries and Africa (African Telecommunications Union, the West African states, the East African community and the South African region).

Chapter 8 details the national spectrum management: roles, objectives, basic functions, guidelines and practices to optimally manage the RF spectrum. Administrative trends in spectrum management, smarter technologies and wireless innovation modernize the ruling. The chapter discusses how China, France, the UK and the USA manage their spectrum. Chapter 9 presents RF health risks as a social story; the electromagnetic hypersensitivity and electrophobia are explained; international, regional and national thresholds are compared; power density and field-strength are simulated and measured to define safety distances around base stations. The impact of RF hazards limits on mobile network planning is quantified; policies and mitigation techniques to reduce human exposure are proposed.

Acknowledgments

As this book extends over a wide area of subjects and many regulatory bodies I wish to acknowledge the contribution of a large number of colleagues who reviewed the text and suggested valuable editions. In view of the diversified nature of the material on the one hand and the focused nature of most contributors, I believe that the best way to recognize the assistance by these contributors is by way of the following table.

Name	Chapters	Country	
1. Agostinho Linhares de Souza Filho	5 and 9	BR	
2. Aldo Scotti	9	IT	
3. Alex Orange	7	NZ	
4. Alon Zheltkov	2	IL	
5. Alonso Llanos Yánez	7	EC	
6. Amir Shalev	2	IL	
7. Andre Arts	4	NL	
8. Annette Gallas	6	DE	
9. Avraham Arar	2	IL	
10. Arie Taicher	2	IL	
11. Avi Rimon	4	IL	
12. Ben Ousmane Ba	6	СН	
13. Bruce Emirali	6	NZ	
14. Chaim Kallush	5 and 9	IL	
15. Chang Ruoting	8	CN	
16. Christoph Dosch	2	DE	
17. Chungsang Ryu	6	KR	
18. Deborah Housen-Couriel	4	IL	
19. Dieter Horst	3	DE	
20. Ding Jiaxin	8	CN	
21. Doron Ezri	5	IL	
22. Dunger Hartmut	3	DE	
23. Ehoud Peleg	5	IL	
24. Eldad Barzilay	2	IL	
25. Eli Sofer	2	IL	
26. Elizabeth Mostyn	Administrative	СН	
27. Ely Levine	5	IL	
28. Emmanuel Faussurier	8	FR	
29. Erik van Maanen	3	NL	

Chapters	Country
2, 5 and 9	IL
3 and 7	DK
9	PL
2	IL
9	CA
6	HU
9	IL
9	FI
8	US
7	NL
8	FR
4	IE
6	SE
8	GB
2 and 6	GB
2	GB
	CA
	AR
	IL
	US
4	FR
8	US
	IL
	IL
	DE
	US
	IL
	AU
	IL
	IL IL
	IL IL
	IL IL
	FR
	US
	IL
	IN
	DE
	IL
	RU
	IL AR
	AR KE
	GB
	DE
	DE GB
	2, 5 and 9 3 and 7 9 2 9 6 9 9 8 7 8 4 6 8 2 and 6 2 7 5 9 4 4

(Continued)

Name	Chapters	Country
77. Vicente Rubio Carretón	4	ES
78. Vladimir Rabinovitch	2	IL
79. Yair Hakak	4	IL
80. Yasuhiko Ito	7	JP
81. Yoav Katz	2	IL
82. Yuval Mazar	5 and 9	IL

(Continued)

In addition, it is my pleasure to acknowledge contributions that were spread over many chapters of the book. In this context, I gratefully acknowledge contributions by Dr. Reuven Meidan, who helped me with many aspects of this book.

Last but not least are the members of my family who were patient with me during the long period that this book was written, a period over which the book took up most of my attention.

Acronyms and Abbreviations

1G	First Generation
2G	Second Generation
3G	Third Generation
3GPP	Third Generation Partnership Project
3GPP2	Third Generation Partnership Project 2
4G	Fourth Generation
ABU	Asia-Pacific Broadcasting Union
AF	Annual Fee
AHCIET	Asociación Iberoamericana de Centros de Investigación y Empresas de
	<i>Telecomunicaciones</i> (Ibero-American Association of Telecommunications Research and Enterprises)
AICTO	Arab Information and Communication Technology Organization
AM	Amplitude Modulation
ANFR	Agence Nationale des Fréquences (France)
ANSI	American National Standards Institute (USA)
APT	Asia-Pacific Telecommunity
ARCEP	Autorité de Régulation des Communications Electroniques et des Postes (France)
ARCTEL-CPLP	Associação de Reguladores de Comunicações e Telecomunicações da Comunidade
	dos Países de Língua Portuguesa (Association of Communications and Telecom-
	munications Regulators of the Community of Portuguese-Speaking Countries)
AREGNET	Arab Regulators Network
ARIB	Association of Radio Industries and Businesses (Japan)
ARRL	American Radio Relay League Incorporated
ASETA	Association of Andean Community Telecommunications Enterprises
ASK	Amplitude Shift Keying
ASMG	Arab States Spectrum Management Group
AT-DMB	Advanced Terrestrial Digital Multimedia Broadcasting (South Korea)
ATIS	Alliance for Telecommunications Industry Solutions
ATSC	Advanced Television Systems Committee (USA and Canada)
ATU	African Telecommunications Union
AWG	APT Wireless Group
BASK	Binary Amplitude Shift Keying
BBC	British Broadcasting Corporation (UK)
BDT	Telecommunications Development Bureau (ITU)
BER	Bit Error Rate
BEREC	Body of European Regulators for Electronic Communications
BFSK	Binary Frequency Shift Keying

BIPM	Bureau International des Poids et Mesures
BIS	Business, Innovation and Skills (UK Department)
Bps	Bits Per Second, also termed bit/s
BPSK	Binary Phase Shift Keying
BR	Bureau Radio (ITU)
BSS	Broadcasting-Satellite Service
BW	Band Width
BWA	Broad Wireless Access
C/A	Coarse/Acquisition (civilian code of GPS)
CA	Channel Arrangement
CAATEL	Comité Andino de Autoridades de Telecomunicaciones (Andean Committee of
	Telecommunications)
CAN	Comunidad Andina de Naciones
CANTO	Caribbean Association of National Telecommunication Organizations
CAPTEF	Conférence des Administrations des Postes et Télécommunications des pays
	d'Expression Française
CATV	Cable TV
CCA	Combinatorial Clock Auction
CCSA	China Communications Standards Association
CDMA	Code Division Multiple Access
CEN	European Committee for Standardization
CENELEC	European Committee for Electrotechnical Standardization
CEPT	European Conference of Postal and Telecoms Administrations
CFR	Code of Federal Regulations (USA)
C/I	Carrier to Interference
CISPR	International Special Committee on Radio Interference
CITEL	Comisión Interamericana de Telecomunicaciones (Inter-American Commission of
	Telecommunications)
CJK	China, Japan and South Korea
C/N	Carrier to Noise (interchangeable with S/N)
CNR	Carrier to Noise Ratio (interchangeable with SNR)
COPANT	Pan American Standards Commission
COSPAS-SARSAT	International Satellite System for Search and Rescue
CPCE	Code des postes et des communications électroniques (France)
CPG	Conference Preparatory Group (CEPT)
CRAF	Committee on Radio Astronomy Frequencies (Europe)
CRASA	Communication Regulators' Association of Southern Africa
CRS	Cognitive Radio System
CS	Constitution and Convention (ITU)
CSA	Conseil Supérieur de l'Audiovisuel (France)
СТО	Commonwealth Telecoms Organisation
CTU	Caribbean Telecommunications Union
DAA	Detect And Avoid
DAB	
DAC	Digital Audio Broadcasting
DAS	Dynamic Access to Spectrum
dB	Dynamic Access to Spectrum deciBel
dB dBd	Dynamic Access to Spectrum deciBel dB relative to half Dipole antenna
dB	Dynamic Access to Spectrum deciBel

DBS	Direct Broadcast Satellite
dBW	dB relative to 1 W
DCMS	Department for Culture, Media and Sport (UK)
DD	Digital-Dividend
DFS	Dynamic Frequency Selection
DGPS	Differential Global Positioning System
DL	Down Link (downlink)
DMB-T/H	Digital Media TV Broadcasting-Terrestrial/Handheld) (South Korea); see also T-DMB
	and AT-DMB
DRM	Digital Radio Mondiale
DSB	Digital Sound Broadcasting
DTH	Direct To Home
DTMB	Digital Terrestrial Multimedia Broadcast (China)
DTT	Digital Terrestrial Television
DTTB	Digital Terrestrial TV Broadcasting
DVB-H	Digital Video Broadcasting – Handheld
DVB-T	Digital Video Broadcasting – Terrestrial
EAC	East African Community
EACO	East African Communications Organization
EASA	European Aviation Safety Agency
EBU	European Broadcasting Union
EC	European Commission
ECC	Electronic Communications Committee (Europe)
E_c/I_0	Energy of Carrier over Interference reference
ECO	European Communications Office
ECOWAS	Economic Community of West African States
ECTEL	Eastern Caribbean Telecommunications Authority
EDGE	Enhanced Data rates for Global Evolution
EEA	European Economic Area
EFTA	European Free Trade Association
EHF	Extremely High Frequency (30–300 GHz)
EHS	Electromagnetic HyperSensitivity
E.I.R.P.	Equivalent Isotropically Radiated Power
EMF	Electro Magnetic Fields
EN	European Standard
EPRA	European Platform of Regulatory Authorities
ERC	European Radiocommunications Committee
E.R.P.	Effective Radiated Power
ESA	European Space Agency
ETSI	European Telecommunications Standards Institute
EU	European Union and European Commission
FAA	Federal Aviation Administration (USA)
FCC	Federal Communications Commission (USA)
FDD	Frequency Division Duplexing
FDMA	Frequency Division Multiple Access
FHSS	Frequency Hopping Spread Spectrum
FM	Frequency Modulation
FRATEL	réseau FRAncophone des régulateurs des TÉLécommunications (France)
	(Francophone Telecoms Regulatory Network)

FS	Fixed Service			
FSK	Frequency Shift Keying			
FSS	Fixed Satellite Service			
FWS	Fixed Wireless Systems			
GDP	Gross Domestic Product			
GE-89	Regional Agreement for the African TV Broadcasting Area (Geneva 1989)			
GE-2006	Regional Radio Conference 2006; also called RRC-06 Agreement			
GEO	GEostationary Orbit (equivalent to GSO)			
GLONASS	Глобальные Навигационные Спутниковые Системы (Russian GPS) ГЛОНАСС, Global'naya Navigatsionnaya Sputnikovaya Sistema (GNSS)			
GMDSS	Global Maritime Distress and Safety System			
GPS	Global Positioning System			
GS1	Global Standards One			
GSM	Groupe Spéciale Mobile (Global System for Mobile communications)			
GSMA	GSM Association			
GSO	Geostationary Satellite Orbit (equivalent to GEO)			
G/T	Gain to noise Temperature			
HCM	Harmonized Calculation Method (Europe)			
HDTV	High Definition TV			
HEO	High Earth Orbit, Highly Elliptical Orbit or Highly Eccentric Orbit			
	(low under 1,000 km, high up to 40,000 km)			
HF	High Frequency (3–30 MHz)			
HFCC	High Frequency Co-ordination Conference			
HRP	Hypothetical Reference Path			
HRX	Hypothetical Reference Connection			
Hz	Hertz (the base unit of frequency)			
IAF	International Astronautical Federation			
IARC	International Agency for Research on Cancer			
IARU	International Amateur Radio Union			
IATA	International Air Transport Association			
IAU	International Astronomical Union			
IBB	Integrated Broadcast-Broadband			
IBOC	In Band On Channel			
ICAO	International Civil Aviation Organization			
ICNIRP	International Commission on Non-Ionizing Radiation Protection			
ICT	Information and Communication Technologies			
IEC	International Electrotechnical Commission			
IEEE-SA	Institute of Electrical and Electronics Engineers – Standards Association			
IIRSA	South American Regional Infrastructure Integration			
IMO	International Maritime Organization			
IMP	Inter Modulation Products			
IMSO	International Mobile Satellite Organization			
IMT	International Mobile Telecommunications			
I/N	Interference to Noise			
IP	Internet Protocol			
IP3	3rd order Intercept Point			
IRG	Independent Regulators Group (pan-European body)			
ISDB-T	Integrated Services Digital Broadcasting Terrestrial			
ISM	Industrial, Scientific and Medical			

ISO	International Organization for Standardization		
ITSO	International Telecommunications Satellite Organization		
ITU	International Telecommunication Union		
ITU-D	ITU – Development Sector		
ITU-R	ITU – Radiocommunications Sector		
ITU-T	ITU – Telecommunications Sector		
LBT	Listen Before Talk		
LEO	Low-altitude Earth Orbit (about 1,000 km above sea level)		
LF	Low Frequency		
LoS	Line-of-Sight		
LSA	Licensed Shared Access		
LTE	Long-Term Evolution		
MEO	Medium-altitude Earth orbit (about 10,000 km above sea level)		
MERCOSUR	Mercado Común del Sur (Common South American Market)		
MF	Medium Frequency		
MFN	Multi Frequency Network		
MIFR	Master International Frequency Register		
MIIT	Ministry of Industry and Information Technology (China)		
MIMO	Multiple Input and Multiple Output		
MMN	Man-Made Noise		
MOD	Ministry of Defence (UK)		
MoU	Memorandum of Understanding		
MPE	Maximum Permissible Exposure		
MPEG	Moving Picture Experts Group		
MSS	Mobile Satellite Service		
NABA	North American Broadcasters Association		
NAFTA	North American Free Trade Agreement		
NATO	North Atlantic Treaty Organization		
NF	Noise Figure		
NGSO	Non Geo-Stationary Orbit (also termed non-GSO or non-GEO)		
NIR	Non Ionizing Radiation		
NLoS	Non-Line-of-Sight		
NOI	Notice of Inquiry (USA FCC)		
NRA	National Regulatory Authority		
NSM	National Spectrum Management		
NTIA	National Telecommunications and Information Administration (USA)		
NTSC	National Television System Committee (originated by USA, 1954)		
OAS	Organization of American States		
OECD	Organisation for Economic Co-operation and Development		
OET	Office of Engineering and Technology (USA FCC)		
Ofcom	Office of Communications (UK)		
OFDMA	Orthogonal Frequency Division Multiple Access		
PAL	Phase Alternation by Line (originated by Germany and UK, 1967)		
PED	Personal Electronic Device		
PIM	Passive Inter Modulation		
P-MP	Point-to-Multi-Point		
P-P	Point-to-Point		
PR	Protection Ratio		
PRN	Pseudo Random Numbers (used in GPS)		
	······································		

PSK	Phase Shift Keying			
PSTN	Public Switched Telephone Network			
PTC	Pacific Telecommunications Council			
PV	Present Value			
QAM	Quadrature Amplitude			
QED	quod erat demonstrandum (Latin: which was to be demonstrated)			
QoS	Quality of Service			
QPSK	Quadrature Phase Shift Keying			
R&O	Report and Order (USA)			
R&TTE	Radio equipment and Telecommunications Terminal Equipment Directive 1999/5/			
	EC			
RAN	Radio Access Network			
RBDS	Radio Broadcast Data System			
RCF	Regional Commonwealth in the Field of Communication (former USSR)			
RDS	Radio Data System			
RED	Radio Equipment Directive (2014/53/EU)			
REGULATEL	Foro latinoamericano de entes REGULAdores de TELecomunicaciones (Latin			
	American Forum of Telecom Regulators)			
RF	Radio Frequency			
RFID	Radio Frequency IDentification			
RLAN	Radio Local Area Network			
RMS	Root Mean Square			
RNSS	Radio Navigation Satellite Service			
RR	Radio Regulations of ITU			
RSC	Radio Spectrum Committee (EC body)			
RSCP	Received Signal Code Power			
RSPG	Radio Spectrum Policy Group (EU)			
RSRP	Reference Signal Received Power			
RSRQ	Reference Signal Received Quality			
RSSI	Received Signal Strength Indicator			
SADC	Southern African Development Community			
SAR	Specific Absorption Rate			
SAT HB	Satellite Communications Handbook			
SC	Safety Code (Health Canada)			
SCDMA	Synchronous Code-Division Multiple Access			
SC-FDMA	Single Carrier Frequency Division Multiple Access			
SCG	Spectrum Coordination Group (Asia-Pacific)			
SDO	Standard Development Organization			
SDR	Software Defined Radios			
SECAM	SÉquentiel Couleur Avec Mémoire (originated by France, 1967) (Sequential Color			
	with Memory)			
SFN	Single Frequency Network			
SINR	Signal to Interference plus Noise Ratio (interchangeable with SNIR)			
S/N	Signal to Noise (interchangeable with C/N)			
SNIR	Signal to Noise plus Interference Ratio (interchangeable with SINR)			
SNR	Signal to Noise Ratio (interchangeable with CNR)			
SRD	Short Range Device			
ST-61	Regional Agreement for the European Broadcasting Area (Stockholm 1961)			
STM	Synchronous Transport Module level (such as STM-1 and STM-4)			

T-DAB	Terrestrial Digital Audio Broadcasting
TDD	Time Division Duplexing
TDMA	Time Division Multiple Access
T-DMB	Terrestrial Digital Multimedia Broadcasting (South Korea); same as DMB-T
TD-SCDMA	Time Division Synchronous Code Division Multiple Access (China)
TIA	Telecommunications Industry Association (USA)
TPC	Transmitter Power Control
TSB	Telecommunication Standardization Bureau (ITU)
TTA	Telecommunications Technology Association (South Korea)
TTC	Telecommunications Technology Committee (Japan)
TVRO	TeleVision Receive-Only
UE	User Equipment
UHF	Ultra High Frequency (300–3,000 MHz)
UK	United Kingdom
UKSSC	UK Spectrum Strategy Committee
UL	Up Link (uplink)
UMTS	Universal Mobile Telecommunication System
UNASUR	Unión de NAciones SURamericanas (Union of South American Nations)
UNESCAP	United Nations Economic and Social Commission for Asia and the Pacific
U-NII	Unlicensed-National Information Infrastructure (USA FCC)
US	United States
UTRA	UMTS Terrestrial Radio Access
UTRAN	UMTS Terrestrial Radio Access Network
UWB	Ultra Wide Band
VHF	Very High Frequency (30–300 MHz)
VSAT	Very Small Aperture Terminal
VSB	Vestigial Side Band
VSWR	Voltage Standing Wave Ratio
WARC	World Administrative Radio Conference (ITU)
WAS	Wireless Access Systems
WATRA	West Africa Telecommunications Regulators Assembly
W-CDMA	Wideband-Code Division Multiple Access
WHO	World Health Organization
Wi-Fi	Wireless Fidelity (IEEE)
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless Local Area Network
WRC	World Radio Conference (ITU)
WSD	White-Space Devices
WTA	Wireless Telegraphy Act
WTO	World Trade Organization

1

The Radio Frequency Spectrum and Wireless Communications

1.1 Historical Overview

Between 1864 and 1873, James Clerk Maxwell (1831–1894), a Scottish theoretical physicist, demonstrated that four relatively simple equations could fully describe electric and magnetic fields and their interaction. He described how charges and currents can produce an electromagnetic radio wave. In 1887, in the research laboratory of a young German physicist, Heinrich Hertz, the first radio transmitter began working briefly over a range of just a few meters. Alexander Popov (1859–1906) demonstrated his instrument for the detection and recording of electrical oscillations on May 7, 1895. In the spring of the same year, Guglielmo Marconi (1874–1937) took his wireless experiments outdoors and soon discovered that an intervening hill was no barrier to the reception of electromagnetic waves. According to the ITU Statistics (ITU 2015), in December 2014, there are more than 7 Billion mobile-cellular telephone subscriptions in the 228 ITU Member States; this is equivalent to 100% of the world's population.

The Radio Frequency (RF) spectrum is a natural resource; however, it is commonly agreed that wireless telecommunications need regulation at national, regional and global levels. The first sentence of the International Telecommunication Union (ITU) Constitution (ITU 2011) fully recognizes "the sovereign right of each State to regulate its telecommunication." The sovereign right of states to act independently within their territory is enshrined in general international law. RF is a national limited resource, much like water, land, gas, and minerals. Like these, it is scarce; however, the RF is renewable and not nearing exhaustion. It requires optimal use; if we do not use the RF spectrum in real time, this is an economic waste of a national resource. The RF is an ethereal medium, carrying wireless e-communications: a networked service of general economic interest (similar to transport, gas, and electricity). RF regulation is nationally important in theory, policy, and practice. Technological advances, innovation, penetration of new technologies, economic and military power are all directly connected to wireless regulation. The radio frequencies serve as a lever to raise the economic and social conditions of society.

Radio Spectrum Management: Policies, Regulations and Techniques, First Edition. Haim Mazar. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

The RF ether is not related to any cultural factor *per se*: history, tradition, language, religion, or legal origin. RF is perceived as a technical rather than a cultural factor, in contrast to currency, legislation, taxes or left-hand driving issues. In RF allocation, the common denominator among countries may be the dominant factor. For this reason the RF standards can be harmonized more easily (unlike, e.g., foreign affairs), and the national RF allocation chart can be copied without alteration, from country to country (if these countries are located in the same ITU region). Lessons, ideas, and technologies cross the ocean easily, as RF is the same worldwide, it exists everywhere, it serves all nations, and it deserves to be used rationally, for worthwhile applications, such as saving lives, emergencies, navigation, smart sustainable cities, multicultural broadcasting, health, education, agriculture, science, research, meteorology, astronomy, the environment, urban and rural planning, and basic human welfare.

The RF spectrum is located in the public domain of a nation, so the State authority must manage it efficiently, for the greatest benefit of the entire population. RF spectrum management takes place within a regulatory framework comprised of engineering, and the main departments in the government regulating the economy and legislation. Authorized spectrum users enjoy the benefits of the RF license and its associated obligations to access the spectrum.

1.2 A General Communication Channel

The definition of telecommunication given in the ITU Constitution is: "any transmission, emission or reception of signs, signals, writings, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic systems." Figure 1.1 schematically depicts a general communication channel (Shannon, 1949, p. 2). There are two kinds of media: wired (the transmitter is linked to the receiver via a cable) or wireless (the transmitter is linked to the receiver via electromagnetic waves). This book discusses the wireless medium. Most vital industry and military sectors are based on access to radio frequencies: mobile communications, audio and television broadcasting, satellites, radiolocation, transportation, and the Internet of Things (IoT).

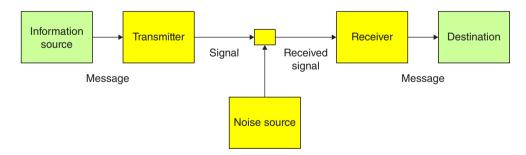
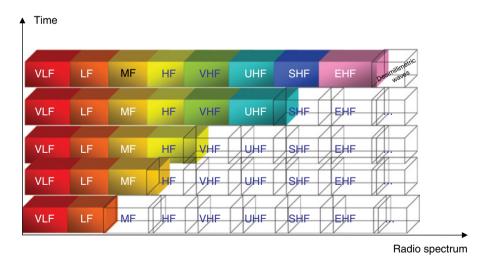


Figure 1.1 Shannon's schematic diagram of a general communication

1.3 Radio Frequency Bands


Based on ITU Radio Regulations (ITU 2012), No. 2.1 (Article 2, provision 1), Table 1.1 specifies the symbols of the radio frequency bands.

Band number	Symbols	Frequency range	Metric subdivision
4	VLF	3–30 kHz	Myriametric waves
5	LF	30–300 kHz	Kilometric waves
6	MF	300-3,000 kHz	Hectometric waves
7	HF	3–30 MHz	Decametric waves
8	VHF	30–300 MHz	Metric waves
9	UHF	300–3,000 MHz	Decimetric waves
10	SHF	3–30 GHz	Centimetric waves
11	EHF	30-300 GHz	Millimetric waves
12		300-3,000 GHz	Decimillimetric wave

 Table 1.1
 RF spectrum frequency bands

1.4 Scarcity of the RF Spectrum

Provision 0.3, in the principles of the ITU Radio Regulations, states: "[R]adio frequencies and the geostationary satellite orbit are limited natural resources and ... they must be used rationally, efficiently and economically." The institutional, legal and economic challenges are mainly due to the scarcity of radio resources. Figure 1.2 depicts how the RF enters a higher RF, due to the scarcity of radio resources and the need for higher bandwidths. The relatively lower frequencies, such as the VHF and UHF bands, are the scarcest, due to their quality, with extended range and reliable wireless communications, without line-of-sight between the transmitter and the receiver. Scarcity is the direct result of the spread of cellular equipment and the growing demand for wireless data; the RF is the narrow bottleneck that prevents higher capacities.

Figure 1.2 Scarcity of RF increases in time. Source: ITU-D Resolution 9 report ITU-D 2014 Market mechanisms used for frequency assignment; Resolution 9: participation of countries, particularly developing countries, in spectrum management. Reproduced with permission

As the RF spectrum is limited, the regulators and all the wireless players will have to accommodate more services in less spectrum, within budgetary limits. The challenges in frequency management are no longer simply technical and administrative, but also economic and financial. Market strategies are steadily imposing themselves on all the players in the radio communications sector, especially regulators and operators. The World Trade Organization's (WTO) Telecommunications Services Reference Paper of April 24, 1996 (paragraph 6) promotes new methods to allocate and use scarce resources:

Any procedures for the allocation and use of scarce resources, including frequencies, numbers and rights of way, will be carried out in an objective, timely, transparent and non-discriminatory manner. The current state of allocated frequency bands will be made publicly available, but detailed identification of frequencies allocated for specific government uses is not required.

Around the world, the most restricted licensed RFs are the FM radio 88–108 MHz, the cellular frequency bands, and the satellite Ku Band 12–18 GHz. However, despite RF scarcity, it is important to note that at any place in the world, most of the available frequencies are unused, see Chapter 8.

References

Note: * the author contributed to this reference.

- ITU (2011) Constitution*. Available at: http://www.itu.int/pub/S-CONF-PLEN-2011 (accessed April 19, 2016).
- ITU (2012) Radio Regulations*. Available at: http://www.itu.int/pub/R-REG-RR-2012 (accessed April 19, 2016).
- ITU (2015) Statistics, End 2014 data for key ICT indicators, published in the 19th edition of the World Telecommunication/ ICT Indicators Database, released on 22 December 2015. Available at: http://www.itu.int/en/ITU-D/Statistics/ Documents/statistics/2015/Mobile cellular 2000-2014.xls (accessed April 19, 2016).
- ITU-D (2014) Market Mechanisms Used for Frequency Assignment; Resolution 9: Participation of Countries, Particularly Developing Countries, in Spectrum Management*. Available at: http://www.itu.int/dms_pub/itu-d/opb/ stg/D-STG-SG02.RES09.1-2014-PDF-E.pdf (accessed April 19, 2016).

Shannon, C.E. (1949) A mathematical theory of communication. Bell System Technical Journal 27, 379-423.

WTO (1996) Telecommunications Services: Reference Paper, April 24. Available at: www.wto.org/english/tratop_ e/serv_e/telecom_e/tel23_e.htm (April 19, 2016).

The Main Regulated Radio Services

2.1 General

The International Telecommunication Union Radio Regulations (ITU RR) Article, 1 provision 19, defines radiocommunication service thus: "A service involving the transmission, emission and/or reception of radio waves for specific telecommunication purposes." In the RR, unless otherwise stated, any radiocommunication service relates to terrestrial radiocommunication. This chapter is extensively based on the provisions of ITU-R; the international regulatory body developing these free web deliveries: Radio Regulations, Recommendations and Reports. Details of engineering material such as transmitters, receivers, antennas, propagation, link budget, interference, diversity and mitigation techniques are provided in Chapter 5. The ITU Radio Regulations Volume 1 states that the RR allocate the Radio Frequency (RF) to services and administrations, that is, governments, assign the RF to stations. The main services specified in the RR Section III: Radio services in this order are:

- *Terrestrial Services*: broadcasting; fixed; mobile (land, maritime and aeronautical); radio determination; radio navigation (maritime and aeronautical); radio location; meteorological aids; standard frequency and time signal; radio astronomy; amateur; safety; special.
- *Space Services*: fixed-satellite; inter-satellite; space operation; mobile-satellite; maritime mobilesatellite; aeronautical mobile; aeronautical mobile-satellite; broadcasting-satellite; radio determination-satellite; radio navigation-satellite; maritime radio navigation-satellite; aeronautical radio navigation-satellite; radio location-satellite; earth exploration-satellite; meteorological-satellite; standard frequency and time signal-satellite; space research; amateur-satellite.

This chapter discusses only the services that most concern regulators around the world: broadcasting video (television) and sound (radio), mobile (mainly cellular), fixed point-to point and point-to-multipoint, satellite communications. These radio services are also the main contributors to the fees; see Chapter 4.

Radio Spectrum Management: Policies, Regulations and Techniques, First Edition. Haim Mazar. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

To save space, important services, such as radio location, radio amateur,¹ science (earth, space/ passive and active), radio astronomy, safety, distress and emergency services, are not detailed. Short Range Devices (SRDs) are described in Chapter 3. This chapter highlights regulatory and standardization issues; therefore, many ITU publications are given in the references.

2.2 Terrestrial Broadcasting Delivery: Sound (Radio) and Video (Television)

2.2.1 Definitions and Introduction

Following the ITU Constitution 1.38, the definition of broadcasting service is: "A *radiocommunication service* in which the transmissions are intended for direct reception by the general public. This service may include sound transmissions, *television* transmissions or other types of transmission."

The broadcasting service consists of sound, video and data broadcasting. Broadcasting serves an important social function, and consequently many countries have established public service broadcasters as a matter of public policy. The British Broadcasting Corporation (BBC), for example, was established by Royal Charter in the United Kingdom. Based on that Charter, the BBC has six public broadcasting purposes:

- sustaining citizenship and civil society;
- promoting education and learning;
- stimulating creativity and cultural excellence;
- representing the nation, regions and communities;
- bringing the nation to the world and the world to the nation;
- helping to deliver to the public the benefit of emerging communications technologies and services, and taking a leading role in the switchover to digital broadcasting.

According to the ITU Radio Regulations, the bands allocated to the broadcasting service start at 47 MHz (Band I) and 174 MHz (Band III), respectively. Terrestrial broadcasting of FM audio and TV is located at VHF (30–300 MHz) and UHF (300–3,000 MHz). The original broadcasting band designations I, III, IV and V derive from the Regional Agreement for the European Broadcasting Area concerning the use of Frequencies by the Broadcasting Service in the VHF and UHF Bands (Stockholm1961) and the African VHF/UHF Broadcasting Conference (Geneva 1963). The frequency ranges at that time were Band I: 41–68 MHz, Band III: 162–230 MHz, Band IV: 470–582 MHz and Band V: 582–960 MHz.

In Tables 2.1 and 2.2, the numbers after the channel number indicate the starting RF of the channel, for example, channel 21 starts at 470 MHz; the number of the channel in bold indicates the last channel in the row. Table 2.1 details the broadcasting designation bands mainly in ITU Region 1²; these channels are used in Western Europe, Africa, and many Asian countries.

Table 2.2 details the broadcasting designations used mainly in ITU Region 2; the channels are used in North America, most of Latin America, South Korea, Taiwan and the Philippines. It is important to note that the TV channel separation is 6 MHz, not as in Table 2.1.

At 698–890 MHz, in the Americas, in ITU Region 2, the mobile service is co-primary with broadcasting. Taking into account cognitive radio systems (CRSs) and White Spaces, the coexistence

¹Amateur radio is a valuable volunteer emergency communications service and public resource.

²The ITU RF allocations are different in the three Regions (see Figure 6.1): Europe, Africa, the Middle East, west of the Persian Gulf, including Iraq, the former Soviet Union and Mongolia (Region 1); the Americas (Region 2); and the rest of Asia (Region 3).

	0		
Band	RF (MHz)	TV channels' number, starting at (MHz)	TV channel separation
Band I	47–68	2 :47 (MHz), 3:54; 4 :61 (MHz)	
Band II	87.5-108*	FM channels; 100 kHz channel separation	7 MHz
Band III	174-230	5 :174, 6:181; 7:188; 8:195; 9:202; 10:209; 11:216;	
		12:223 (MHz)	
Band IV	470-582**	21 :470; 22:478; 23:486; 24:494; 25:502; 26:510;	8 MHz
		27:518; 28:526; 29:534: 30:542; 31:550; 32:558;	
		33:566; 34 :574 (MHz)	
Band V	582-862***	35 :582; 36:590; 37:598; 38:606; 39:614; 40:622;	
		41:630; 42:638; 43:646; 44:654; 45:662; 46:670;	
		47:678; 48:686; 49:694; 50:702; 51:710; 52:718;	
		53:726; 54:734; 55:742; 56:750; 57:758; 58:766;	
		59:774; 60:782; 61:790; 62:798; 63:806; 64:814;	
		65:822; 66:830; 67:838; 68:846; 69 :854 (MHz)	

 Table 2.1
 Designation of VHF/UHF broadcasting bands, mainly in the ITU Region 1

Notes:

*87.5–108 MHz: FM radio broadcasting is known as Band II internationally.

** The UK defines Band IV as 470-614 MHz, and Band V as 614-854 MHz.

*** Including land mobiles except aeronautical, as first digital-dividend at 790–862 MHz and as second digital-dividend at 694–790 MHz.

 Table 2.2
 Designation of VHF/UHF broadcasting bands, mainly in the ITU Region 2

Band	RF (MHz)	TV channels, number starting at (MHz)
Band I (VHF low) Band II (international) Band III (VHF high) UHF bands	54–88 87.5–108 174–216 470–698	2:54; 3:60; 4:66; 5*:76; 6**:82 (MHz) FM channels; 200 kHz channel separation 7:174; 8:180; 9:186; 10:192;11:198; 12:204; 13:210 (MHz) 14:470; 15:476; 16:482; 17:488; 18:494; 19:500; 20:506; 21:512; 22:518; 23:524; 24: 530; 25:536; 26:542; 27:548; 28:554; 29:560; 30:566; 31:572; 32:578; 33:584; 34: 590; 35:596; 36:602; 37:608; 38:614; 39: 620; 40:626; 41:632; 42:638; 43:644; 44:650; 45:656; 46:662; 47:668; 48:674; 49:680; 50:686; 51 :692 (MHz)

Notes:

* Channel 5 starts at 76 MHz and not 72 MHz.

** Channel 6: 82–88 MHz; analog TVs' audio operates at 87.75 MHz, and can be received as a normal 88.1–107.9 MHz FM radio.

of mobile and broadcasting services is difficult; therefore, TV channels 52–83, starting at 698–884 MHz, are used for Low Power TV and TV translator; see the Federal Code of Regulation (CFR) 47, Part 2 and Part 74, subpart G. Furthermore, channel 51 is adjacent to the cellular A-Block of the 700 MHz band; therefore, the United States and Canada restrict broadcasting on that channel; see Federal Communications Commission (FCC) Public Notice DA-11-1428A1 and Industry Canada Advisory Letter – Moratorium on the Use of Television Channel 51.

Section 2.2 on broadcasting is divided into sound (audio) and video (TV) broadcasting; the text starts with analog and continues with digital. The RF L band 1,452–1,492 MHz is the worldwide allocation to broadcasting; Europe uses it for T-DAB, see ERC Report 25 and ETSI EN 302 077. North America uses this band for Mobile Aeronautical telemetry; see CFR 47, Part 2.

2.2.2 Broadcasting Video and Audio Delivery

Video and audio broadcasting are received off-air from terrestrial or satellite transmitters, delivered by cables such as fiber optics and coaxials, and distributed via IP-based delivery platforms. The video return-channel on cable TV, the Internet protocol television (IPTV) and direct broadcast satellite (DBS)³ enable interactive services, such as on-demand multimedia. Similar to the audio signal, there is a growing tendency to deliver video content to any device, anywhere; a digital TV signal can be transmitted from the broadcasting tower, overlaid on cellular long-term evolution (LTE) infrastructure (through which the signaling is provided), to deliver video content directly to mobile devices such as tablets and smartphones, without the need for dedicated built-in receivers. Figure 2.1 depicts the video and audio broadcasting networks. Table 2.3⁴ details the specific properties of different radio communication delivery methods.

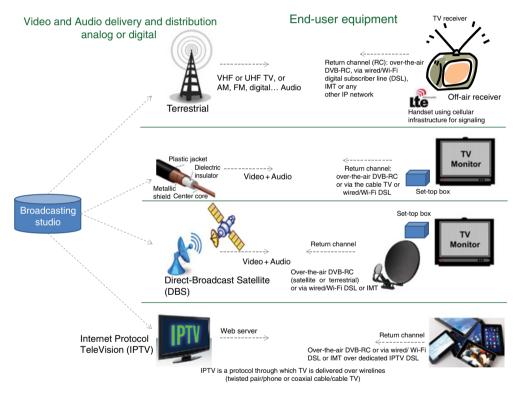
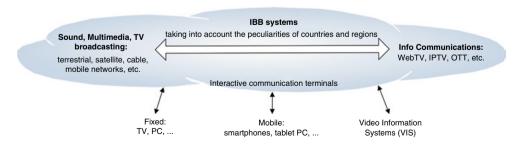


Figure 2.1 Broadcasting delivery and distribution. (See insert for color representation of the figure.)

Integrated Broadcast-Broadband (IBB) systems integrate traditional broadcasting (terrestrial, satellite, cable) and broadcasting in mobile networks as well as other types of broadcasting, taking into account the peculiarities of countries and regions. Figure 2.2⁵ depicts the media and

⁴With many updates, Table 2.3 uses data from Report ITU-R BT.2302 Table 1.

³There should be a solid state power amplifier (SSPA) of 1-6 W connected to the feed. The return-channel bit rate at DBS is usually low. The return-channel can be external to the satellite, such as an Internet connection.


⁵See also Recommendation ITU-R BT.2037 and Report ITU BT.2267.

Technology	Advantages	Disadvantages
Wire communication	All types of content and information services; the highest data transmission rate; hundreds of channels; robustness against RF interference; data security; bidirectional data transmission; no RF human hazards	Very expensive to build and operate the communication links due to specific rural conditions; high requirements to routing nodes and upper-level communication channels; impossible to serve mobile subscribers
Mobile communication	All types of content and information services; possible to serve mobile subscribers; portable receiver equipment; very suitable for on-demand content delivery; built-in bidirectional data transmission	Great demand for radio spectrum, limited radio link bandwidth, degraded communication when user peak load; immune to RF interference; expensive to build and operate the infrastructure; increases human exposure to RF
Satellite communication and broadcasting	Very efficient delivery of the same content to the whole country, to large regions, covers up to 40% of the world; "clean radiation" with minimal RF human hazards	Small bandwidth per subscriber when delivering individual content; low efficiency of local content transmission; shortage of and high cost of satellite channels; expensive bi-directional subscriber equipment and complex installation of broadcast subscriber equipment; immune to RF interference
Terrestrial broadcasting	Low cost of transmission network infrastructure, low cost of receiving devices, very efficient delivery of the same content to medium and small territories	Small bandwidth per subscriber when delivering individual content, limited number of available radio channels, one-direction transmission (downlink); difficult to install stations; no direct return channel*;RF human hazards in the vicinity of transmitters

 Table 2.3
 Properties of different broadcasting radio communication deliveries

Note:

* DVB-RCT (Digital Video Broadcasting – Return Channel Terrestrial) does not yet provide direct interactive terrestrial TV; the return channel for (voting, quizzes, etc.) operates via the Internet.

Figure 2.2 Terrestrial, satellite, cable and broadcasting in mobile networks. Source: ITU Figure 1 in Report ITU-R BT.2295. Reproduced with permission Note: OTT, over-the-top technology.

the means for transmission and reception of information and interactive services of sound, multimedia and television broadcasting.

For terrestrial, satellite and IPTV broadcasting delivery, the reception mode affects the adopted standard and transmitted power; the reception is either fixed or mobile. The reception modes are portable outdoor, portable indoor and mobile. The technical parameters to be evaluated are: field-strength usually expressed in dB(μ V/m) and for digital broadcasting bit error rate (BER) for different code rates after different decoding stages. Fixed TV is usually received in horizontal polarization and sound is received in vertical polarization, as cars tend to use a vertical whip vertically polarized.

2.2.3 Terrestrial Sound (Audio)

Extensive sound broadcasting services, both public and private, exist throughout the world, and have provided sound programs for listeners for more than 90 years (the BBC has been in operation since 1922). Terrestrial delivery offers mobile reception, particularly in cars, that is both cost-effective and reliable for the content providers. Propagation features below 30 MHz are ideal for wide area or directive long distance coverage, free from the constraints of other methods. Although audio modulation (AM) radio in the low frequency (LF), medium frequency (MF) and high frequency (HF) bands has provided penetration and extended coverage for regional, national and international sound broadcasting since the 1930s, it has suffered a decline in recent years, due to high electricity costs and poor audio quality, relative to frequency modulation (FM) radio and digital audio broadcasting (DAB). Unlike TV, sound broadcasting has always used similar modulation techniques throughout the world, such as AM or FM and similar, if not identical, frequency bands, also enabling radio mass production and leading to a receiver that could be used worldwide, for the benefit of the listener. However, the channel separations vary in the different ITU Regions: for AM Medium Waves 10 kHz in ITU Region 2, but 9 kHz in Regions 1 and 3.

Long waves (LF) operate from 153 to 279 kHz, with 9 kHz channel spacing generally used. LF radio is used for radio broadcasting only in ITU Region 1 (Europe, Africa, and northern and central Asia) and is not allocated elsewhere; the ITU Radio Regulations allocation is 148.5–255 kHz. Medium waves (MF) operate from 531 to 1,611 kHz in ITU Regions 1 and 3, with 9 kHz spacing, and 540 to 1610 kHz in ITU Region 2 (the Americas), with 10 kHz spacing. ITU Region 2 also authorizes the extended AM broadcast band, between 1,610 and 1,710 kHz. The ITU Radio Regulations allocations are 526.5–1,606.5 kHz in ITU Regions 1 and 3 and 525–1,705 kHz in Region 2. MF carry the "AM radio" that most people listen to. Short waves (HF) operate from approximately 2.3 to 26.1 MHz, divided into 14 broadcast bands.

2.2.3.1 Analog Sound

FM radio was first used in monaural form in 1940; in 1960, FM stereo was introduced. The most prevalent wireless terrestrial sound in the world today is still the frequency modulation (FM) radio, operating worldwide at 87.5–108 MHz. The excessive use of this VHF/FM frequency band causes congestion in most countries, increases the level of interference and limits the number of programs which can be transmitted. Actually, the FM success has delayed the introduction of digital audio broadcasting.

The RF FM signal consists of a carrier frequency modulated by the sound signal to be transmitted, after pre-emphasis.⁶ In West European countries and the United States, the maximum deviation is ± 75 kHz; in the former USSR and in some other European countries, it is ± 50 kHz; see Recommendation ITU-R BS.450. Emissions exceeding the maximum deviation may interfere with adjacent channels. In frequency planning, channels are assigned in such a way that the carrier frequencies, which define the nominal placement of the RF channels within the band, for both monophonic and stereophonic transmissions, are integral multiples of 200 kHz in America,⁷ of 100 kHz in Europe and of 50 kHz in Italy.

The RF bandwidth explains the FM channel separation: 50–200 kHz. The bandwidth of the carrier signal, which is frequency modulated by a continuous signal, is approximated by Carson's bandwidth rule⁸:

$$bw = 2(\Delta f + f_m)$$

where *bw* is the total significant (98%) bandwidth, Δf is the peak frequency deviation FM signal from the center frequency, and f_m is the highest modulating signal frequency. Defining the ratio $\Delta f/f_m$ as the modulation index β , $\Delta f = \beta f_m$ and $bw = 2(\beta f_m + f_m) = 2(1 + \beta)f_m$.

The human ears are sensitive to audio signals 20–15,000 Hz; for $\beta = 5$ and maximal modulating frequency of 15 kHz, the modulated (peak deviation) monaural signal swings to 5 × 15 kHz = 75 kHz above and below the RF carrier. Therefore, the American maximum deviation $\Delta f = 75$ kHz and $f_m = 15$ kHz, $bw = 2(\Delta f + f_m) = 2(75+15)$ kHz = 180kHz; it is close to the common 200 kHz channel bandwidth.

In stereo FM audio radio, there are three standard modulating signals (see Figure 2.3): a 19 kHz pilot carrier to enable FM stereo receivers to detect and decode the stereo left (L) and right (R) channels; L + R in the range 50–15,000 Hz, similar L – R in the range 23–53 kHz (a double-sideband suppressed carrier (DSBSC) AM centered at 2×19 kHz). The modulating (multiplexing) signal includes a 57 (3×19) kHz subcarrier that carries the radio data system (RDS)⁹ and radio broadcast data system (RBDS)¹⁰ signals. The stereo baseband signal is backwards compatible with FM monophonic receivers. A monophonic receiver simply demodulates the L + R signal and delivers it to the listener. Figure 2.3¹¹ depicts the FM stereo baseband signal, which is modulated on the FM carrier (88–108 MHz).

As the peak stereo modulating has circa 53 kHz information (RDS/RDBS is neglected due to the low modulation), using Carson's rule $bw = 2(1 + \beta)f_m = 2(1 + \beta)53$ kHz = $(1 + \beta)106$ kHz. In order to keep the total bw around 200 kHz, β is approximately 1. Depending on power, peak deviation and β , adjacent (in location and frequency) FM stations need RF separation up to 400 kHz; this request is difficult to implement, due to the scarcity of FM radio frequencies.

¹⁰RBDS is the official name used for the US version of RDS; the two standards are only slightly different.

 $^{^{6}}$ FM radio is inherently a noisy medium; the noise has triangular distribution: louder at higher frequencies. To overcome it, FM broadcast uses pre-emphasis and de-emphasis. The pre-emphasis characteristic of the emitted sound signal is equivalent to the admittance-frequency curve of a parallel resistance-capacitance circuit having a time constant of 50 µs in Europe and Australia or 75 µs in the USA. At the receiver site, after the discriminator block, a low-pass de-emphasis filter attenuates at the same amount the higher frequencies noise of the message (the base band).

 ⁷ So, some American FM radio receivers, with odd center frequency channel-spaced every 200 kHz, cannot operate in Europe.
 ⁸ FCC Memorandum Opinion and Order DA 12-1507 is an example of using Carson's (1922) rule.

⁹RDS has been the standard in Europe and Latin America since the early 1990s. RDS is a communications protocol for embedding small amounts of digital services in conventional FM radio broadcasts. The 57 kHz subcarrier carries several types of low-bandwidth text information transmitted, including time, alternative frequency, station identification and program information.

¹¹Figure 2.3 uses data also from Liang, Tan and Kelly, *Introduction to FM-Stereo-RDS Modulation* and Frequency Modulation Tutorial (Der).

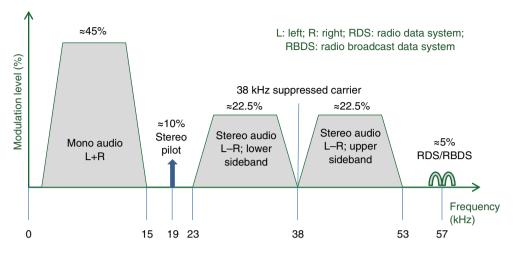


Figure 2.3 FM stereo composite baseband signal, before modulating the FM carrier

The signal-to-noise ratio (*snr*) for mono signals equals $3 \times \beta^2 (\beta + 1)$. This *snr* equation illustrates the trade-off that exists between message signal quality (*snr*) and FM transmission bandwidth: to get higher coverage, increase the transmitted power or increase β (but the *bw* increases). If the *snr* at the input of the FM discriminator is less than a threshold, clicks and crackling are generated, this is the threshold effect or capture effect. The FM threshold is the minimum *snr* yielding FM improvements.

Stereo FM signals are more susceptible to noise and multipath distortion than are mono FM signals. With a weak signal, FM on mono output sounds better. The narrower bandwidth of the monophonic receiver is the reason: reducing the filtering rejects the stereo L - R lower and upper sidebands; see Figure 2.3. Hence, the monaural baseband bandwidth is 15 kHz, compared to a stereo signal requiring a bandwidth of 53 kHz; at least the noise level kt(bw)f of monaural is lower due to bw, see Section 5.4.1. For the same RF level, the *snr* is greater for monaural as compared to stereo; therefore, the required field-strength for satisfactory service is higher for stereo (see Table 2.4), and the stereo pilot lamp lights up only for strong FM signals.

Recommendation ITU-R BS.412 details the planning standards for terrestrial FM radio sound broadcasting at VHF. Measured at 10 m above ground level, a satisfactory service requires a median field-strength not lower than those given in Table 2.4. Due to interference, the field-strength values that can be protected are generally higher than those of Table 2.4; Table 2.4 adapts BS.412 Table 1, with clarifications.

Areas	FM audio (88–108 MHz)		
	Mono dB (µV/m)	Stereo dB (µV/m)	
Rural	48	54	
Urban	60	66	
Large cities	70	74	

 Table 2.4
 Median field-strength for satisfactory service

Source: Recommendation ITU-R BS.412. Reproduced with permission

Figure 2.4 depicts the protection ratios for FM radio reception. The RF protection ratios are required to give satisfactory monophonic reception, in systems using a maximum frequency deviation of ± 50 kHz, for tropospheric interference; see curve M2 in Figure 2.4. For steady interference (terrestrial non tropospheric), it is preferable to provide a higher degree of protection, shown by the curve M1 in Figure 2.4. The corresponding values for stereophonic systems using a maximum frequency deviation of ± 50 kHz are those given by the curves S2 and S1 in Figure 2.4. For the maximum frequency deviation of ± 75 kHz, similar numbers are found in BS.412 Fig. 1. Interesting note: due to intermodulation, the 50 kHz adjacent stereo channel interferes more than the co-channel.¹² For carrier frequency differences greater than 400 kHz, the protection ratio values should be substantially lower than -20 dB.

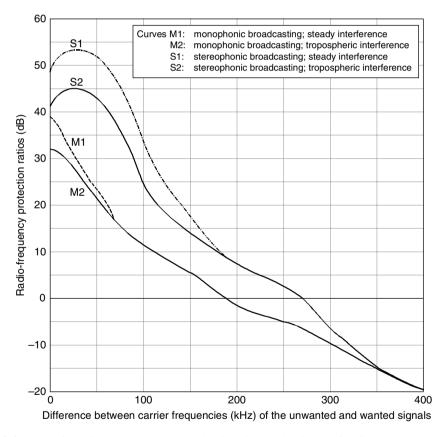


Figure 2.4 Protection ratios to protect FM monophonic and stereophonic reception. Source: Recommendation ITU-R BS.412 Fig. 2. Reproduced with permission

¹²As the stereo signal is modulated on the 38.0kHz suppressed carrier, the interference is most sensitive on that "out of band frequency."

2.2.3.2 Digital Broadcasting Sound

These are the digital terrestrial broadcasting systems (TV and sound): ATSC, DAB, DRM (MW+ HF), DTMB, DVB-T, DVB-H, DVB-SH, DVB-T2, IBOC (HD radio FM), ISDB-T (ISDB-T_{SB} for Sound Broadcasting), T-DMB and AT-DMB.

The introduction of new forms of digital information and entertainment, including satellite radio and Internet streaming of radio programming, presents challenges for analog radio. Analog radio may need to transit to digital broadcasting in order to add new programming and the new features necessary to make radio competitive with new forms of digital entertainment and information. Source and channel coding, digital modulation and advanced signal processing enable digital sound broadcasting (DSB) systems. Like digital TV, DSB offers a better spectrum and power efficiency as well as better performance in multipath environments than analog systems. DSB provides high-quality stereophonic sound of two or more channels to vehicular, portable and fixed receivers. DSB allows a trade-off among quality (data services and bit rates), coverage (derived from emission power), and the number of sound programs available. A common receiver may provide local, sub-national and national terrestrial VHF/UHF network services. DSB advances value-added services with different data capacities. Table 2.5 specifies the field-strength thresholds at an antenna height of 10 m, for RF band III, in Region 1. Table 2.5 adapts BS.1660 Table 1, with clarifications.

Frequency band (MHz)	174–230
Minimum equivalent field-strength (dB(µV/m))	35
Location percentage correction factor (50% to 99%) (dB)	13
Antenna height gain correction (dB)	10
Minimum median equivalent field-strength for planning $(dB(\mu V/m))$	58

Table 2.5 Minimum median equivalent field-strength $(dB(\mu V/m))$ for digital sound

Source: BS.1660 Table 1. Reproduced with permission

The field-strength 58 dB(μ V/m) is similar to the FM values 54 (rural) and 66 (urban) dB(μ V/m) in Table 2.4. These are the main standards of digital broadcasting sound on *digital radio mondiale* (DRM); In Band On Channel (IBOC); Integrated Services Digital Broadcasting Terrestrial ISDB-T_{SB} and Terrestrial Digital Audio Broadcasting (T-DAB). Recommendation ITU-R BS.1114 details the systems for terrestrial digital sound broadcasting to vehicular, portable and fixed receivers in the frequency range 30–3,000 MHz. Various digital systems have been developed for terrestrial sound broadcasting; see Report ITU-R BT.2140. Report ITU-R BS.2214 specifies the planning parameters for terrestrial digital sound broadcasting systems in the VHF bands.

2.2.4 Terrestrial Video (Television)

Video broadcasting is a point-to-multipoint TV transmission for public reception, typically from a fixed emitter to fixed and portable receivers. In 2014, TV viewing in the major EU markets (Germany, France, Italy, Spain and the UK) over different delivery platforms, on large TV screens, is around 4 h/day per person, reaching 87% of the population every day; TV delivery via

Wi-Fi at home or in a public place and including the mobile network is increasing: distributed as 80% home Wi-Fi, 10% outside home Wi-Fi, 10% mobile; see EC Report 2014. There are four main types of video broadcasting receivers:

- fixed digital TV and set-top box for fixed reception, using either roof-top antennas or fixed indoor antennas;
- 2. portable TV or radio sets;
- car-installed terminals and mobile hand-held terminals, possibly integrating with cellular functions;
- 4. mobile/portable broadband wireless systems.

Although most home audio systems incorporate a radio receiver, much of the daily listening is on portable, car-installed or mobile hand-held receivers. In contrast, most TV viewing is on fixed receivers, which means that distribution by cable, satellite, and internet (via cable or Wi-Fi) is also widespread. The proportions of off-air, cable and satellite viewing vary greatly between countries. Cable and satellite TV distribution until now has offered a wider range of program content than off-air reception. The balance of advantages could change now as the transition to digital TV progresses. The more extensive digital television broadcasting platforms offer more than 100 mixes of high-definition TV, standard-definition TV and radio channels with either free-to-air or with conditional access distribution.

In many countries, hand-held portable TV receivers have become popular. South Korea has provided nationwide Terrestrial Digital Multimedia Broadcasting (T-DMB) since March 2007, and in Japan, the One-Seg service for handheld receivers using the central segment of the ISDB-T signal started in April 2006; see Report ITU-R BT.2140. Technically, the cellular infrastructure can transmit video streaming to the user terminal, but this concept is far from the original cellular concept of making the best use of a spectrum, with relatively short duration voice and data transmissions, while moving from place to place. With surveys showing that typically more than 70% of broadband and multimedia access through cellular networks is static and within buildings, it is necessary to consider the consequences of cellular downlinks being occupied for extended periods on a multiple one-to-one basis. Moreover, such usage also tends to be highly asymmetrical. The demand on the downlink spectrum then becomes enormous though, while, at the same time, much of the uplink spectrum is underused. If the bulk of future spectrum demand in cellular networks comes from mostly static video streaming, then more attention to the network architecture is needed in order to ensure that cellular networks do not become an inefficient form of broadcasting, which would tend to be the case with frequency division duplexing (FDD). However, there have been successful trials using LTE Broadcast/Multicast: multiple users receiving the same content simultaneously. LTE mobile networks are no longer a purely one-toone medium; they have the capacity to send content to many users simultaneously; LTE networks distribute live and other digital media, offering service differentiation among mobile network operators.

Figure 2.5 depicts the measurement of digital TV adjacent to analog TV¹³; M1 is the analog Video, M4-analog synch, M3-analog sound and M2-digital OFDM.

¹³Measured on 19 September 2006 by the author.