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Foreword

When Srikantha Phani and Mahmoud Hussein asked me if I would write a foreword
to their book, I was at first a bit hesitant as I was very busy working on a new book
(Extending the Theory of Composites to Other Areas of Science, now submitted for pub-
lication with chapters coauthored by Maxence Cassier, Ornella Mattei, Mordehai Mil-
grom, AaronWelters and myself ). But then, when I saw the high quality of the chapters
submitted by various people, I was happy to agree.
In 1928 the doctoral thesis of Felix Bloch established the quantum theory of solids,

using Bloch waves to describe the electrons. Following this, in 1931–1932, Alan Her-
ries Wilson explained how energy bands of electrons can make a material a conductor,
a semiconductor or an insulator. Subsequently there was a tremendous effort directed
towards calculating the electronic properties of crystals by calculating their band struc-
ture; that is, through solving Schrödinger’s equation in a periodic system. So it is rather
surprising that it took until the late 1980s for similar calculations to be done for wave
equations in man-made periodic structures (with the exception of the layered materials
that Lord Rayleigh in 1887 had shown exhibited a band gap). Subsequently there was
exponentially growing interest in the subject, as illustrated by the graph in the exten-
sive “Photonic and sonic band gap andmetamaterial bibliography” of Jonathan Dowling
[1], which he maintained until 2008. Now there seems to be a similar migration of ideas
from people who have studied topological insulators in the context of the quantum 2D
Hall effect to the study of similar effects in man-made periodic structures where there
is some time-symmetry breaking. In the context of elasticity this time-symmetry break-
ing can be achieved with gyroscopic metamaterials [2] and, most significantly, waves
can only travel in one direction around the boundary.
This book sheds light on the dynamics of lattice materials from different perspec-

tives. As I read through it, connections with other work (sometimes mine) came to
mind. I suspect this is probably a reflection of my background, as the writer (or writ-
ers) may have been exposed to different schools of thought than myself, but I believe
the cross-pollination of ideas is always beneficial to the advancement of science. There-
fore I hope the collection of remarks I have made here will lead the reader (if they have
the time to explore the references I have given) on some excursions of the mind that
complement those provided by the authors of the individual chapters.
Chapter 1 provides the setting for the book, giving a brief but excellent introduction to

lattice materials. Maxwell’s rule for determining the stiffness of a structure is discussed
and, as the authors mention, Maxwell realized this is only a necessary condition for a
structure to be stiff.The exact condition is nontrivial to determine, but in a 2D structure
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one can play the “pebble game” to resolve the question [3]. Maxwell’s counting rule has
been generalized for periodic lattices [4]. Perhaps there is a generalization (maybe an
obvious one) of the “pebble game” to periodic 2D lattices, but I have not fully explored
the literature. The possible motions of kinematically indeterminant periodic arrays of
rigid rods with flexible joints are of considerable interest to me, and the case in which
the macroscopic motions are affine is described in the literature [5, 6], and references
therein.
Pasini and Arabnejad’s Chapter 2 provides an excellent survey of homogenization

methods for the elastostatics of lattice materials. This is still very much an active area
of research. It is an important one, because not only do the homogenized equations
govern the macroscopic response but also, as emphasized by Pasini and Arabnejad, the
solution of the so-called cell-problem (that is needed to calculate the effective moduli)
can provide useful estimates of the maximum fields in the material, which are helpful
in knowing if plastic yielding or cracking might occur. While Pasini and Arabnejad’s
review concentrates on periodic lattice materials, it is worth mentioning that, curiously,
for random composites the justification of successive terms in the asymptotic expan-
sions, such as their Eq. (2.12), requires successively higher dimensions of space [7, and
references therein]; while 2D and 3D composites are those of practical interest, one
may of course think of composites in higher dimensions too. Also, it is important to
remember that with high-contrast linear elastic materials one can theoretically achieve
almost any homogenized response compatible with the natural constraint of positivity
of the elastic energy [8]: non-local interactions in the homogenized equations can be
achieved with dumbbell shaped inclusions where the diameter of the bar is so small that
it does not couple with the surrounding medium except in the near vicinity of the bar.
These results are only in the framework of linear elasticity, because such bars can easily
buckle when the dumbbell is under compression. Some beautiful examples of exotic
elastic behavior, which go beyond that of Cosserat theory, are given by Seppecher,
Alibert, and Dell Isola [9].
Chapter 3, by Phani, gives a great introduction to the elastodynamics of lattice mate-

rials. I especially like their use of simple mass-spring models. My coauthors and I find
mass-spring models, with the addition of rigid elements, to be very helpful in explain-
ing concepts such as negative effective mass, anisotropic mass density, and (when the
springs have some viscous damping) complex effective mass density [10, 11]. In fact it is
possible (with the framework of linear elasticity) to give a complete characterization of
the possible dynamic responses of multiterminal mass-spring networks [12]. The pre-
sentation by Phani of the deformationmodes associated with the branches in the disper-
sion diagram in Figures 3.13–3.17 is beautiful, and sheds a lotmore light on the behavior
than is contained in dispersion curves, which frequently is all most scientists present.
Also, I would mention that a dramatic illustration of the directionality of wave propaga-
tion is in phonon focussing [13]. If at low temperatures one heats a crystal from below
by directing a laser at a point on the surface, then the distribution of heat on the top sur-
face (as seen by the height of liquid helium on the surface that, due to the fountain effect,
flows towards the heat) has amazing patterns, due to caustics in the “slowness” surface
associated with the direction of elastic wave propagation in crystals that is governed
simply by the elasticity tensor of the crystal. The elastic waves carry the heat (phonons).
It is worth remarking that, subsequent to pioneering work by Bensoussan, Lions, and
Papanicolaou in Chapter 4 of their book [14], there has been a resurgence of interest in
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high-frequency homogenization at stationary points in the dispersion diagram, which
may be localminima ormaxima, or even saddle points [15–21].Thewave is amodulated
Bloch wave and modulation satisfies appropriate effective equations.Themost interest-
ing effects occur when one has a saddle point: then the effective equation is hyperbolic
and there are associated characteristic directions.Onemay also employ homogenization
techniques for travelling waves at other points in the dispersion diagram [22–26].
Chapter 4, by Krattiger, Phani, and Hussein examines wave propagation in damped

lattice materials, both for passive waves and driven waves. One rarely sees dispersion
diagrams with damping, but of course for many materials damping is a significant fac-
tor.Their dispersion diagramswith drivenwaves (Figures 4.2 and 4.4) have an interesting
and complex structure. It is interesting that some periodic materials with damping can
have trivial dispersion relations, with a dispersion diagram equivalent to that of a homo-
geneous dampedmaterial [27, 28]: this happens when themoduli are analytic functions,
not of the frequency, but of the complex variable x1 + ix2, where i =

√
−1 and for a 2D

material x1 and x2 are the Cartesian spatial coordinates. Closely related materials were
discovered by Horsley, Artoni, and La Rocca, who realized they would not reflect radi-
ation incident from one side, whatever the angle of incidence [29].
In Chapter 5 by Manktelow, Ruzzene, and Leamy we encounter the exciting topic of

wave propagation in nonlinear lattice materials. The study of nonlinear effect in com-
posites is largely a wide-open area of research: there are so many interesting and novel
directions that could be explored, and it is a certainty that surprises await. One surprise
we found is as follows [30]. When one mixes linear conducting composites in fixed pro-
portions, if one wants to maximize the current in the direction of the electric field then
it is best to layer the materials with the layer boundaries parallel to the applied field; by
contrast, in some nonlinear materials we found that the maximum current sometimes
occurs when the layer interfaces are normal to the applied field. Manktelow, Ruzzene,
and Leamy talk about higher harmonic generation in nonlinear materials. Anyone who
has used an inexpensive green lasermay be interested to know that the green light comes
from frequency doubling the infrared light from a neodymium-ion oscillator as it passes
through a nonlinear crystal, and this can pose a danger if the conversion is faulty because
the infrared light can easily damage eyes [31].
Chapter 6 by Casadei, Wang and Bertoldi also deals with nonlinearity, but in the

context of buckling creating a pattern transformation that can be used to tune the prop-
agation of elastic waves.This is fantastic work, and in an entirely new direction. Buckling
instabilities are well known in Bertoldi’s group: they created the Buckliball a structured
sphere that remains approximately spherical, but much reduced in size, as it buckles
[32]. Much remains to be explored in this area: one especially significant result that I
have found is that materials that combine a stable phase with an unstable one could
have a stiffness greater than diamond in dynamic bending experiments [33]. It had been
hoped that one could get stiffnesses dramatically higher than that of the components
in stable static materials too [34], but this was ruled out when it was realized that the
well-known elastic variational principles still hold even when some of the components
are in isolation unstable (that is, they have negative elastic moduli) [35] .
I found interesting the work in Chapter 7 of Smith, Cantwell, and Guan on the impact

and blast response of lattice materials. A feature of their experiments is that the stress
has a plateau as the lattice structure is crumpled. This is exactly what one needs if the
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aim is tominimize themaximum force felt by an object colliding with the structure, sub-
ject to the constraint that the object should decelerate over a fixed distance.We recently
encountered similar questions when trying to determine the optimal non-linear rope
for a falling climber [36].The answer turned out to be a “rope” with a stress plateau, like
a shape memory wire (and with a big hysterisis loop to absorb the energy). It is pretty
amazing to see the progress that has been made recently with impact-resistant com-
posites: a good example is the composite metal foam of Afsaneh Rabiei, which literally
obliterates bullets [37].
Pentamode materials, as discussed by Norris in Chapter 8, are a class of materials

close to my heart. When we invented them, back in 1995 [38], we never dreamed they
would actually be made, but that is exactly what the group of MartinWegener did, in an
amazing feat of 3D lithography [39]. Their lattice structure is similar to diamond, with
a stiff double-cone structure replacing each carbon bond. This structure ensures that
the tips of four double-cone structures meet at each vertex. This is the essential feature:
treating the double-cone structures as struts, the tension in one determines uniquely the
tension in the other three.This is simply balance of forces.Thus the structure as a whole
can essentially only support one stress, but that stress can be any desired symmetric
matrix if the pentamode lattice structure is appropriately tailored. Water is a bit like a
pentamode, but unlike water, which can only support a hydrostatic stress, pentamodes
can support any desired stress matrix, in other words, a desired mixture of shear and
compression.They are the building blocks for constructing any desired elasticity matrix
C∗ that is positive definite. Elasticity tensors of 3D materials are actually fourth-order
tensors, specifically linear maps on the space of symmetric matrices, but using a basis
on the 6D space of symmetric matrices, they can be represented by a 6-by-6 matrix
as is common in engineering notation. Expressing C∗ in terms of its eigenvectors and
eigenvalues,

C∗ =
6∑

i=1
𝜆ivi ⊗ vi. (1)

The idea, roughly speaking, is to find six pentamode structures, each supporting a stress
represented by the vector vi, i = 1, 2,… , 6. The stiffness of the material and the necks
of the junction regions at the vertices need to be adjusted so each pentamode structure
has an effective elasticity tensor close to

C(i)
∗ = 𝜆ivi ⊗ vi. (2)

Then one successively superimposes all these six pentamode structures, with their lat-
tice structures being offset to avoid collisions. Additionally, one may need to deform
the structures appropriately to avoid these collisions [38], and when one does this it is
necessary to readjust the stiffness of the material in the structure to maintain the value
of 𝜆i. Then the remaining void in the structure is replaced by an extremely compliant
material. Its presence is just needed for technical reasons, to ensure that the assump-
tions of homogenization theory are valid so that the elastic properties can be described
by an effective tensor. But it is so compliant that essentially the effective elasticity tensor
is just a sum of the effective elasticity tensors of the six pentamodes; in other words,
the elastic interaction between the six pentamodes is neglible. In this way we arrive at
a material with (approximately) the desired elasticity tensor C∗. Now, Andrew Norris
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and the group of MartinWegener have become the leading experts on pentamodes and
their 2D equivalents, which strictly speaking should be called bimodes. One important
observation that Norris makes (see his Eq. (8.5)) is that if a pentamode is macroscopi-
cally inhomogeneous then the stress field it supports should be divergence-free in the
absence of body forces such as gravitational forces. The new and important ingredient
in the chapter of Norris is the analytic inclusion of bending effects, to better analyse the
elements of the effective elasticity tensor.
Chapter 9, by Krattinger and Hussein, uses a reduced number of modes in a Bloch

mode expansion to treat the vibration of plates within a frequency range of interest.
Expanding on the ideas of structural mechanics, where one splits a structure into sub-
structures, conducts amodal analysis on each of these, and then links themodes through
interface boundary conditions, they develop a similar procedure at the unit-cell level
for very efficiently calculating the band structure, which they call “Bloch mode synthe-
sis.” I very much like the word “platonic crystal” [40] – crafted after the terms photonic
crystals, phononic crystals, and plasmonic crystals – which RossMcPhedran coined for
such studies of the propagation of flexural waves through plates with periodic structure.
The term has caught on in Australia, France, New Zealand and the UK (where Ross is a
frequent visitor) but not yet in the U.S.
Chapter 10 by Bilal and Hussein deals with topology optimization of lattice materi-

als. Their pixel-based designs remind me very much of the digital metamaterials of my
colleague Rajesh Menon (also produced by topology optimization, but in the context
of electromagnetism rather than elasticity), which have been incredibly successful, for
example resulting in the world’s smallest polarization beam-splitter [41]. The field of
topology optimization has seen some amazing achievements, producing stuctures with
fascinating and sometimes unexpected geometries that optimize performance in some
respect. In particular, the group of Ole Sigmund in Denmark is well known for mas-
tering this art, and recently they have used it for acoustic design [42]; the next wave of
symphony halls will probably use the technique in their designs.
Chapter 11 presents work by Yilmaz and Hulbert on the dynamics of locally reso-

nant and inertially amplified lattice materials. Nano-sized silver and gold metal spheres,
that are resonant to light account for the beautiful colors of the Roman Lycurgus cup
[43], and many stained glass windows gain their colors from such local resonances [44].
Resonant arrays of metallic split rings may lead to artifical magnetism [45], with the
effective magnetic permeability taking negative values in appropriate frequency ranges
[46]. Low-frequency spectral gaps were noticed by Zhikov [47, 48]. Negative effective
mass densities, due to local resonances, were discovered in 2000 [49], although it was
not until later that the experiments were correctly interpreted [50]. In periodic arrays
of split cylinders, negative magnetic permeability can be related to the negative effec-
tive mass density in antiplane vibrations, due to the fact that both are governed by the
Helmholtz equation [51]. The generation of band gaps through inertial amplification is
nicely explained through essentially 1Dmodels by Yilmaz and Hulbert in Section 11.3.1:
the key aspect is that small macroscopic movements cause large amplitude movements
of the internal masses. They then explore both 2D and 3D lattices. One would suspect
that nonlinear effects could be very important in these models, even for quite small
amplitudes of vibrations, although I do not know whether this has been explored.
Chapter 12 by Steeves, Hibbard, Arya, and Lausic provides an absolutely superb

introduction to 3D printing, with a step-by-step explanation of the processes involved,
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highlighting the advantages of metal-coated polymer structures. In Figure 12.2 the
improvement of adding a metal coating does not look particularly dramatic, until you
realize there is a different scale (on the right-hand side of the graph), so in fact the
improvement is about an order of magnitude in the tensile stress of the structure can
support. Estimates for the elastic properties are obtained and the problem of optimizing
the band gap to be as wide as possible, and at the desired frequencies, is discussed.
There has been a lot of numerical work on optimizing band gaps. What I find most
interesting is that it is possible to derive upper bounds on the width of band gaps that
are sharp when the contrast between phases is low [52].
That ends my foreword, and now I hope the reader will go on and thoroughly enjoy

the book.

Graeme. W. Milton
Salt Lake City, Utah
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Preface

A lattice material may be viewed as an enlarged and carefully tuned crystal, artificially
constructed to function precisely as desired in engineering applications. It is formed
from a spatially periodic network of interconnected rods, beams, plates or other slen-
der structures. The ability to tailor the unit-cell architecture of a lattice material makes
it possible to attain superior mechanical, elastodynamic and acoustic properties for
numerous industrial applications – properties that may not be achievable using con-
ventional materials. Naturally inspired by concepts from crystal physics, the methods
and analysis techniques used in the study of lattice materials directly apply to periodic
materials in general, including phononic crystals and elastic metamaterials that exhibit
local resonances and/or other unique features.
In this book, we have sought to provide a comprehensive coverage of the emerging

field of the dynamics of latticematerials. Co-written by a selection of leading researchers
in the field, spanning three continents, the book gently introduces key concepts and fun-
damental theories in the discipline, while also boldly considering, often in considerable
depth, the state of the art.
The topics covered include elastostatics (Chapter 2) and elastodynamics (Chapter 3),

the effects of damping (Chapter 4), nonlinearity (Chapter 5), instabilities (Chapter 6)
and impact loads (Chapter 7); exotic dynamics such as pentamodes (Chapter 8); model
reduction (Chapter 9) and optimization (Chapter 10); metamaterial concepts including
local resonance and inertial amplification (Chapter 11); and nano lattices (Chapter 12).
Guided by an introductory chapter (Chapter 1), a systematic and unified synthesis of
these topics pertaining to lattice materials is provided to help the reader consolidate
concepts across the chapters.
The book is suitable for and accessible to graduate students and research scientists

with backgrounds in dynamics, vibrations, and acoustics; mechanics and strength of
materials; and condensed matter physics and materials science. It serves as a useful
reference to researchers based in academia and practitioners in industrial research lab-
oratories and design centers. It may also be used as a textbook for graduate courses on
the mechanics of lattice materials, or a more focused course on wave propagation in
periodic materials.
Many people have contributed to this book, directly or indirectly. First and foremost,

colleagues and contributors to each chapter are acknowledged for their insightful pre-
sentations and diligent responses to requests from the editors. While credit for success
goes to the contributing authors and their tireless efforts, the editors are responsible for
any lingering typos or unintended omissions.Wewould like to extend our special thanks
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to Prof. GraemeMilton for his scholarly and insightful foreword. Credit also goes to the
Wiley publishing team, especially to Paul Petralia for his initiative and sustained leader-
ship, and to NandhiniThandavamoorthy for her hard work and patience during the var-
ious stages of the evolution of this project. SP would like to acknowledge the funding for
his research from the Natural Sciences and Engineering Research Council (NSERC) of
Canada through its various programs, the assistance fromhis graduate students Behrooz
Yousefzadeh, Lalitha Raghavan, Prateek Chopra and Ehsan Moosavimehr, and the sup-
port from his family members, particularly Ananya and Krishna. MIH, on his part,
acknowledges funding for his research from several United States federal agencies, par-
ticularly the National Science Foundation, numerous seed grants from the University
of Colorado Boulder, and the generous support provided through his H. Joseph Smead
Faculty Fellowship. In addition to his student co-authors, Dimitri Krattiger and Osama
Bilal, MIH is also grateful to current or former doctoral students Bruce Davis, Michael
Frazier, Romik Khajehtourian, Clémence Bacquet, Hossein Honarvar, Alec Kucala, and
Mary Bastawrous, and former postdoctoral fellow Lina Yang, for their assistance at the
CU-Boulder Phononics Laboratory. Dimitri’s efforts in creating the lattice image used
on the front cover is much appreciated. Most of all, MIH is grateful to family members
Alaa and Ismail (Jr.) in Boulder and Heba, Nahla, Iziz and Ismail (Sr.) in Cairo, Egypt.
The overarching goal of this book is to spur fundamental and applied research in the

design, manufacturing, and utilization of latticematerials and structures across not only
numerous existing applications, but also applications that are yet to be conceived.

February 2017 A. Srikantha Phani
Vancouver, British Columbia

Mahmoud I. Hussein
Boulder, Colorado
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1.1 Introduction

Theword “lattice” implies a certain ordered pattern characterized by spatial periodicity,
and hence symmetry. In crystalline solids, for example, atoms are arranged in a spa-
tially periodic pattern or a lattice. Such a crystal lattice is specified by a unit cell and
the associated basis vectors defining the directions of tessellation [1, 2]. Spatially repet-
itive patterns are not unique to atomic length scales. They appear over a wide range of
length scales, spanning several disciplines and areas of application; see Figure 1.1 for a
representative list. Carbon nanotubes [3] and single-layer graphene sheets [4] are peri-
odic materials with nanoscale features. Microelectromechanical systems (MEMS) for
radio frequency applications use microscale periodic architectures to form mechani-
cal filters [5]. Biomedical implants such as cardiovascular stents are periodic cylindrical
mesh structures [6, 7]. At macro and mega scales, periodic structural construction is
widely used in composites in materials engineering [8, 9], turbomachinery in aerospace
engineering [10, 11], and bridge and tower structures in civil engineering [12]. Air-
craft surfaces typically use a skin-stinger configuration in the form of a uniform shell,
reinforced at regular spatial intervals by identical stiffener/stingers. Similarly, rib-skin
aircraft structural components, used in tails and fins, comprise two skins (plates) inter-
connected by ribs [13]. Interested readers are referred to the book by Gibson and Ashby
[14] for further studies on lattice materials and the reviews by Mead and by Hussein
et al. [15, 16] on the dynamics of periodic materials in general.
In a closely related research discipline, periodic materials are referred to as phononic

crystals [17, 18], where strong analogies are drawn with their electromagnetic
counterpart, photonic crystals. While there is a significant overlap between lattice
materials and phononic crystals [19, 20], the former category is mostly associated with
low-density construction and utilization in structural mechanics applications, whereas
the latter is mostly connected to applications in applied physics, including filtering [21],
waveguiding [22], sensing [23], imaging [24], and, more recently, vibrational energy
harvesting [25], thermal transport management at the nanoscale [26], and control
of wall-bounded flows [27]. Another class of artificial materials that possess unique

Dynamics of Lattice Materials, First Edition. Edited by A. Srikantha Phani and Mahmoud I. Hussein.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure 1.1 Periodic materials and structures across different length scales and disciplines. (MEMS:
microelectromechanical systems.)

wave-propagation properties is referred to as acoustic/elastic metamaterials [28].These
are similar to phononic crystals, with the added feature of local resonators – small
oscillating substructures integrally embedded within, or attached to the medium of
the host material [29, 30]. However, unlike lattice materials and phononic crystals,
periodicity is not a necessity for metamaterials. In addition to controlling sound
and vibration, locally resonant “nanophononic metamaterials” have been shown to
reduce thermal conductivity [31]. A recent book [32] and review article [16] provide
historical background, the state of the art in the analysis and design of phononic crystals
and metamaterials, together with their applications. In recent years, a new research
community has formed around this discipline, now more broadly termed phononics,
which incorporates the study and manipulation of “sound” waves in general and across
the various spatial and temporal scales [33, 34].
The dynamic response of lattice materials, and structures, and by association

phononic crystals and metamaterials, is the overarching theme of the book. We begin
with a brief overview of periodic materials and structures, with emphasis on lattice
materials, which are considered a new class of periodicmaterials. A formal classification
is presented, followed by a discussion of manufacturing techniques and applications. A
link to phononic crystals and acoustic/elastic metamaterials – also a new development
in periodic materials – is presented when appropriate. We conclude this introductory
chapter with an overview of the book.

1.2 Lattice Materials and Structures

A lattice material is defined as a spatially periodic network of structural elements, such
as rods, beams, plates, or shells, whose constituent length scales are generally larger than
the load-deformation length scales1; see Figure 1.2 for example. It possesses a spatially
ordered pattern specified by a unit cell and associated tessellation directions (lattice
basis vectors). The unit cell itself is an interconnected network of structural elements.
Let us consider a network of flexural beams as an example. The material constituent
of each beam can be a single homogeneous isotropic material (such as steel or alu-
minum) or a hierarchical anisotropic composite. Thus lattice materials, in the form of
an interconnected spatially periodic network of composite beams, can be viewed as
discrete multiscale materials with hierarchy. The ability to fabricate a spatially peri-
odic network of beams using advanced manufacturing methods has spurred interest
in lattice materials; see Fleck et al. [35] for a recent review. When viewed as a porous

1 This condition does not necessarily hold for lattice metamaterials where the size of unit-cell may be
smaller than the deformation length scales.
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(a) (b)

Figure 1.2 Lattice materials formed from a periodic network of beams: (a) ultralight nanometal truss
hybrid lattice; (b) pentamode lattice.

solid, or a hybrid material (of fluid and metal) [36], the high-porosity limit yields a net-
work of beams while the low-porosity limit leads to a continuum with pores. Most of
the discussion and examples covered in this book are focused on material configura-
tions at the high-porosity end of this range, although the ideas are usually relevant to
low-porosity configurations as well.

1.2.1 Material versus Structure

A spatially periodic network of structural elements, such as beams, can be viewed both
as a material and a structure for the following reasons. In engineering applications,
employing a truss lattice of beams as a core in a sandwich panel, the length of each
lattice beam is of the order of the thickness of the panel, and the thickness of each beam
is typically an order of magnitude less. When the deformation processes of interest are
at a length scale much larger than the individual beam length, a spatially periodic net-
work of beams is termed a “lattice material” and has its own effective properties. At
length scales of the order of the individual beam length, a spatially periodic network of
beams behaves as a structure, such as a frame in a building or a truss in a bridge. Thus
principles of structural mechanics can be applied to the design of lattice materials [37].
Another avenue for distinguishing between material and structure is in terms of the
number unit cells, as well as the internal unit-cell symmetry. It is generally recognized
that a for a finite system to exhibit material characteristics, at least a handful of unit cells
are needed [38, 39]. In addition, a finite structure based on a repetition of a unit cell with
symmetrical internal features is more likely to respond to dynamic loading in a manner
consistent with the dispersion band structure of a material theoretically consisting of an
infinite number of this unit cell [40, 41].

1.2.2 Motivation

The development of lattice materials is motivated by a desire to design multifunctional
materials and structures that are not only light and stiff but also possess a desirable
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vibroacoustic response and thermal-transport properties, among other features. The
need to overcome the limitations of metal foams [42, 43] has propelled the development
of lattice materials, a process that has benefited from insights already acquired through
studies of cellular solids [37, 44–48]. Similarly, accumulated research on the dynam-
ics of periodic materials and structures (such as aircraft components and conventional
composite materials) has provided a valuable knowledge base to build on for the study
of wave-propagation characteristics in lattice materials. The following list provides an
incomplete but indicative summary of efforts and motivations for current research in
lattice materials.

1. Design lightweight and stiff/strong structures with optimal lattice core formultifunc-
tional applications [49–52]. In this line of research, ongoing efforts aim to tailor the
effective stiffness and strength of the truss lattice core to achieve high performance
with the lowest possible density. The discovery of new unit-cell geometries using
topology optimization and other computational methods is a promising avenue for
further improvements [53, 54].

2. Advance mathematical modeling and analysis of complex lattice structures. This
involves developing homogenization techniques for lattices [55, 56] and in-depth
studies on the influence of damping [57–59] and nonlinearities [60–62] on the
dispersive behavior of lattices.

3. Develop lattice unit-cell structures with tunable elastodynamic [63–65] and stability
[66] properties.

4. Develop lattice-styled metamaterials based on periodic micro-architectures with
extraordinary dynamic (acoustic and/or elastic) effective properties, not achievable
using conventional materials [67, 68].

5. Create innovative nanostructured lattice materials based on periodic architectures
for mechanical [50, 69, 70] and thermal [26, 31, 71] applications.

1.2.3 Classification of Lattices andMaxwell’s Rule

Lattices can be classified based on their geometric or their mechanical deformation
properties. Geometry-based classification is universally accepted in mathematics and
solid-state physics. In 2D, planar lattices are classified into two categories: regular and
semi-regular [72]. Regular lattices are obtained by tessellating a single, regular, polygonal
unit cell to fill a plane. Here, a regular polygon is defined to be equiangular (all angles are
equal) and equilateral (all lengths are equal). Square, triangle, and hexagon are the only
plane-filling regular polygons, so there are only three regular planar lattices: square lat-
tice, triangular lattice, and hexagonal lattice. In contrast to regular lattices, semi-regular
lattices are obtained by tessellating a unit cell, containing more than one regular poly-
gon, to fill a plane.There are only eight such semi-regular lattices; see Cundy and Rollett
[72] for more detail. Kagome or triangular-hexagon lattice is a semi-regular lattice that
is widely used in weaving baskets and in architectural construction. A detailed classifi-
cation of 3D lattices and polyhedra can be found in the literature [72, 73].
Lattices can also be classified into bending- or stretching-dominated categories

[37, 73] on the basis of their rigidity. A bending-dominated lattice responds to
external loads by cell-wall bending, whereas a stretching-dominated lattice deforms
predominantly by stretching. Bending-dominated lattices are less stiff and strong than


