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To my family





v

Why I Wrote This Book

My favorite part of the recent American Statistical Association (ASA) state-

ment on the -value [103] is how it starts: “Why do so many people still use

 = 005 as a threshold?” with the answer “Because that’s what they were taught
in college or grad school.” Many problems in understanding and the interpreta-

tion of statistical inference, including the central statistical concept of the -value

arise from the shortage of textbooks in statistics where theoretical and practical

aspects of statistics fundamentals are put together. On one hand, we have several

excellent theoretical textbooks including Casella and Berger [17], Schervish [87],

and Shao [94] without single real-life data example. On the other hand, there

are numerous recipe-style statistics textbooks where theoretical considerations,

assumptions, and explanations are minimized. This book fills that gap.

Statistical software has become so convenient and versatile these days that

many use it without understanding the underlying principles. Unfortunately, R

packages do not explain the algorithms and mathematics behind computations,

greatly contributing to a superficial understanding making statistics too easy.

Many times, to my question “How did you compute this, what is the algorithm,”

I hear the answer, “I found a program on the Internet.” Hopefully, this book will

break the unwanted trend of such statistics consumption.

I have often been confronted with the question comparing statistics with

driving a car: “Why do we need to know how the car works?” Well, because

statistics is not a car: the chance of the car breaking is slim, but starting with

the wrong statistical analysis is almost guaranteed without solid understanding

of statistics background and implied limitations. In this book, we look at what

is under the hood.

Each term I start my first class in statistics at Dartmouth with the following

statement:

“Mathematics is the queen and statistics is the king of all sciences”

Indeed, mathematics is the idealistic model of the world: one line goes through

a pair of points, the perimeter of a polygon converges to 2 when the number
of edges goes to infinity, etc. Statistics fills mathematics with life. Due to an

unavoidable measurement error, one point turns into a cloud of points. How does

one draw a line through two clouds of points? How does one measure  in real life?

This book starts with a motivating example “Who said ?” in which I suggest
to measuring  by taking the ratio of the perimeter of the tire to its diameter.

To the surprise of many, the average ratio does not converge to  even if the

x
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measurement error is very small. The reader will learn how this seemingly easy

problem of estimating  turns into a formidable statistical problem. Statistics is

where the rubber meets the road. It is difficult to name a science where statistics

is not used.

Examples are a big deal in this book (there are 442 examples in the book). I

follow the saying: “Examples are the expressway to knowledge.” Only examples

show how to use theory and how to solve a real-life problem. Too many theories

remain unusable.

Today statistics is impossible without programming: that is why R is the

language statisticians speak. The era of statistics textbooks with tables of dis-

tributions in an appendix is gone. Simulations are a big part of probability and

statistics: they are used to set up a probabilistic model, test the analytical an-

swer, and help us to study small-sample properties. Although the speed of com-

putations with the for loop have improved due to 64-bit computing, vectorized

simulations are preferable and many examples use this approach.

Regarding the title of the book, “Advanced Statistics” is not about doing

more mathematics, but an advanced understanding of statistical concepts from

the perspective of applications. Statistics is an applied science, and this book is

about statistics in action. Most theoretical considerations and concepts are either

introduced or applied to examples everybody understands, such as mortgage

failure, an oil spill in the ocean, gender salary discrimination, the effect of a drug

treatment, cancer distribution in New Hampshire, etc.

I again turn the reader’s attention to the -value. This concept falls through

the crack of statistical science. I have seen many mathematical statisticians who

work in the area of asymptotic expansions and are incapable of explaining the

-value in layman’s terms. I have seen many applied statisticians who mostly

use existing statistical packages and describe the -value incorrectly. The goal of

this book is to rigorously explain statistical concepts, including the -value, and

illustrate them with concrete examples dependent on the purpose of statistics ap-

plications (I suggest an impatient reader jump to Section 7.10 and then Section

8.5). I emphasize the difference between parameter- and individual-based statis-

tical inference. While classical statistics is concerned with parameters, in real-life

applications, we are mostly concerned with individual prediction. For example,

given a random sample of individual incomes in town, the classical statistics is

concerned with estimation of the town mean income (phantom parameter) and

the respective confidence interval, but often we are interested in a more practical

question. In what range does the income of a randomly asked resident belong

with given probability? This distinction is a common theme of the book.

This book is intended for graduate students in statistics, although some sec-

tions are accessible for senior undergraduate statistics students with a solid math-

ematical background in multivariate calculus and linear algebra along with some

courses in elementary statistics and probability. I hope that researchers will find

this book useful as well to clarify important statistical concepts.
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Chapter 1

Discrete random variables

Two types of random variables are distinguished: discrete and continuous. Theo-

retically, there may be a combination of these two types, but it is rare in practice.

This chapter covers discrete distributions and the next chapter will cover contin-

uous distributions.

1.1 Motivating example

In univariate calculus, a variable  takes values on the real line and we write

 ∈ (−∞∞) In probability and statistics, we also deal with variables that take
values in (−∞∞) Unlike calculus, we do not know exactly what value it takes.
Some values are more likely and some values are less likely. These variables are

called random. The idea that there is uncertainty in what value the variable takes

was uncomfortable for mathematicians at the dawn of the theory of probability,

and many refused to recognize this theory as a mathematical discipline. To convey

information about a random variable, we must specify its distribution and attach

a probability or density for each value it takes. This is why the concept of the

distribution and the density functions plays a central role in probability theory

and statistics. Once the density is specified, calculus turns into the principal tool

for treatment.

Throughout the book we use letters in uppercase and lowercase with different

meaning:  denotes the random variable and  denotes a value it may take. Thus

 =  indicates the event that random variable  takes value  For example, we

may ask what is the chance (probability) that  takes value  In mathematical

terms, Pr( = ) For a continuous random variable, we may be interested in

the probability that a random variable takes values less or equal to  or takes

values from the interval [ +∆]

A complete coverage of probability theory is beyond the scope of this book —

Advanced Statistics with Applications in R, First Edition. Eugene Demidenko.
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2 Chapter 1. Discrete random variables

rather, we aim to discuss only those features of probability theory that are useful

in statistics. Readers interested in a more rigorous and comprehensive account of

the theory of probability are referred to classic books by Feller [45] or Ross [83],

among many others.

In the following example, we emphasize the difference between calculus, which

assumes that the world is deterministic, and probability and statistics, which

assume that the world is random. This difference may be striking.

Example 1.1 Who said ? The ratio of a circle’s circumference to its diameter
is  To test this fact, you may measure the circumference of tires and their

diameters from different cars and compute the ratios. Does the average ratio

approach  as the number of measured tires goes to infinity?

Perhaps to the reader’s surprise, even if there is a slight measurement error of

the diameter of a tire, the average of empirically calculated ’s does not converge

to the theoretical value of ; see Examples 3.36 and 6.126. In order to obtain a

consistent estimator of  we have to divide the sum of all circumferences by the

sum of all diameters. This method is difficult to justify by standard mathematical

reasoning because tires may come from different cars.

This example amplifies the difference between calculus and probability and

statistics. The former works in an ideal environment: no measurement error, a

unique line goes through two points, etc. However, the world we live in is not

perfect: measurements do not produce exactly a theoretically expected result,

points do not fall on a straight line, people answer differently to the same question,

patients given the same drug recover and some not, etc. All laws of physics

including the Newton’s free fall formula () = 052 (see Example 9.4) do not
exactly match the empirical data. To what extent can the mismatch can be

ignored? Do measurements confirm the law? Does the Newton’s theory hold?

These questions cannot be answered without assuming that the measurements

made (basically all data) are intrinsically random. That is why statistics is needed

every time data are analyzed.

1.2 Bernoulli random variable

The Bernoulli random variable is the simplest random variable with two out-

comes, such as yes and no, but sometimes referred to as success and failure.

Nevertheless, this variable is a building block of all probability theory (this will

be explained later when the central limit theorem is introduced).

Generally, we divide discrete random variables into two groups with respect

to how we treat the values they take:

• Cardinal (or numerical). The variables take numeric values and therefore
can be compared (inequality  is meaningful), and the arithmetic is al-

lowed. Examples of cardinal discrete random variables include the number
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of children in the family and the number of successes in a series of indepen-

dent Bernoulli experiments (the binomial random variable). If a random

variable takes values 0, 1, and 2 then 1− 0 = 2 − 1; the arithmetic mean
is meaningful for the cardinal random variables.

• Nominal (or categorical). These variables take values that are not numeric
but merely indicate the name/label or the state (category). For example, if

we are talking about three categories, we may use quotes “1,” “2,” or “3”

if names are not provided. An example of a nominal discrete random vari-

able is the preference of a car shopper among car models “Volvo,” “Jeep,”

“VW,” etc. Although the probabilities for each category can be specified,

the milestone probability concepts such as the mean and the cumulative

distribution function make no sense. Typically, we will be dealing with car-

dinal random variables. Formally, the Bernoulli random variable is nominal,

but with only two outcomes, we may safely code yes as 1 and no as 0. Then
the average of Bernoulli outcomes is interpreted as the proportion of having

a yes outcome. Variables may take finite or infinite number of values. An

example of a discrete random variable that may take an infinite number of

values is a Poisson random variable, discussed in Section 1.7. Sometimes,

it is convenient to assume that a variable takes an infinite number of values

even in cases when the number of cases is bounded, such as in the case of

the number of children per family.

An example of a binary (or dichotomous) random variable is the answer to

a question such as “Do you play tennis?” (it is assumed that there are only two

answers, yes and no). As was noted earlier, without loss of generality, we can

encode yes as 1 and no as 0. If codes the answer, we cannot predict the answer —

that is why  is a random variable. The key property of  is the probability that

a randomly asked person plays tennis (clearly, the probability that a randomly

asked person does not play tennis is complementary). Mathematically we write

Pr( = 1) =  The distribution of a binary random variable  is completely

specified by . An immediate application of the probability is that, assuming

that a given community consists of  people, we can estimate the number of

tennis players as 

We refer to this kind of binary variable as a Bernoulli random variable named

after the Swiss mathematician Jacob Bernoulli (1654—1705). We often denote

 = 1−  (complementary probability), so that Pr( = 0) =  A compact way

to write down the Bernoulli probability of possible outcomes is

Pr( = ) = (1− )1− (1.1)

where  takes fixed values, 1 or 0. This expression is useful for deriving the
likelihood function for statistical purposes that will be used later in the statistics

part of the book.
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The next example applies the Bernoulli random variable to a real-world prob-

lem.

Example 1.2 Safe driving. Fred is a safe driver: he has a 110 chance each
year of getting a traffic ticket. Is it true that he will get at least one traffic ticket

over 20 years of driving?

Solution. Many people say yes. Indeed, since the probability for one year is

1/10, the probability that he will get a traffic ticket over 20 years is more than

1 and some people would conclude that he will definitely get a ticket. First,

this naive computation is suspicious: How can a probability be greater than 1?

Second, if he is lucky, he may never get a ticket over 20 years because getting a

ticket during one year is just a probability, and the event may never occur this

year, next year, etc. To find the probability that Fred will get at least one ticket,

we use the method of complementary probability and find the probability that

Fred gets no ticket over 20 years. Since the probability to get no ticket each year is

1−110 the probability to get no tickets over 20 years is (1−110)20 Finally, the
probability that Fred gets at least one ticket over 20 years is 1− (1− 110)20 =
1 − (910)20 = 088 In other words, the probability to be ticket-free over 20
years is greater than 10%. This is a fun problem and yet reflects an important

phenomenon in our life: things may happen at random and scientific experiments

may not be reproducible with positive probability.

Problems

1. Check formula (1.1) by examination. [Hint: Evaluate the formula at  = 0
and  = 1]

2. Demonstrate that the naive answer in Example 1.2 can be supported by

the approximation formula 1 − (1 − ) '  for small  and   1 (a)
Derive this approximation using the L’Hôpital’s rule, and (b) apply it to

the probability of getting at least one ticket.

3. Provide an argumentation for the infinite monkey theorem: a monkey hit-

ting keys at random on a computer keyboard for an infinite amount of time

will almost surely type a given text, such as “Hamlet” by William Shake-

speare (make the necessary assumptions). [Hint: The probability of typing

the text starting from any hit is the same and positive; then follow Example

1.2.]

1.3 General discrete random variable

Classical probability theory uses cardinal (numeric) variables: these variables take

numeric values that can be ordered and manipulated using arithmetic operations
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such as summation. For a discrete numeric random variable, we must specify the

probability for each unique outcome it takes. It is convenient to use a table to

specify its distribution as follows.

Value of  1 2 3 · · · −1 

Probability 1 2 3 · · · −1 

It is assumed that  are all different and the  events { =   = 1  }
are mutually exclusive; sometimes the set {} is called the sample space and
particular  the outcome or elementary event. Without loss of generality, we

will always assume that the values are in ascending order, 1  2  · · ·  

Indeed, if some  are the same, we sum the probabilities. As follows from this

table,  may take  values and

Pr( = ) =   = 1 2  

sometimes referred to as the probability mass function (pmf). Since  are prob-

abilities and {} is an exhaustive set of values, we have
X
=1

 = 1  ≥ 0

For  = 2 a categorical random variable can be interpreted as a Bernoulli

random variable. An example of a categorical random variable with a number of

outcomes more than two is a voter’s choice in an election, assuming that there are

three or more candidates. This is not a cardinal random variable: the categories

cannot be arranged in a meaningful order and arithmetic operations do not apply.

An example of a discrete random variable that may take any nonnegative

integer value, at least hypothetically, is the number of children in a family. Al-

though practically this variable is bounded (for instance, one may say that the

number of children is less than 100), it is convenient to assume that the num-

ber of children is unlimited. It is customary to prefer convenience over rigor in

statistical applications.

Sometimes we want to know the probability that a random variable  takes a

value less or equal to . This leads to the concept of the cumulative distribution

function (cdf).

Definition 1.3 The cumulative distribution function is defined as

() = Pr( ≤ ) =
X
≤


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The cdf is a step-wise increasing function; the steps are at {  = 1 2  }
The cdf is convenient for finding the probability of an interval event. For example,

Pr(   ≤ ) = ()− ()

where  and  are fixed numbers ( ≤ ). We will discuss computation of the
cdf in R for some specific discrete random variables later in this chapter.
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Figure 1.1: The probability mass function (pmf) and the cumulative distribution

function (cdf) of a typical discrete distribution. Note that the cdf is discrete from

the left and continuous from the right.

The pmf and the respective cdf of a typical discrete distribution are shown

in Figure 1.1. At each jump the cdf is continuous from the right (indicated by a

filled circle) and discrete from the left (indicated by an arrow). This means that

lim() =  () when  approaches  from above (  ), but lim() 
 () when  approaches  from below (  ).

Problems

1. (a) Prove that the cdf is a non-decreasing function on (−∞∞). (b) Prove
that the cdf approaches 1 when →∞ and approaches 0 when → −∞

2. Express  in terms of cdf.

3. Express the continuity of a cdf at  using notation lim↓.

1.4 Mean and variance

Expectation or the mean value (mean) is one of the central notions in probability

and statistics. Typically, it is difficult to specify the entire distribution of a

random variable, but it is informative to know where the center of the distribution
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lies, the mean. The arithmetic average of observations as an estimator of the

mean is one of summary statistics characterizing the center of the distribution of

a random variable. Another summary statistic, variance, will be discussed in the

next section.

We use  to denote the expectation of a random variable. For a discrete

random variable  that takes value  with probability  = Pr( = ) the
mean is defined as

() =
X
=1

 Pr( = ) =
X
=1

 (1.2)

The mean, () can be interpreted as the weighted average of {  = 1 2  },
where the weights are the probabilities. It is easy to see that for a Bernoulli ran-

dom variable, the mean equals the probability of occurrence (success), () = 

Indeed, as follows from the previous definition of the mean, () = 1× + 0×
(1 − ) =  This explains why it is convenient to assume that a dichotomous

random variable takes the values 0 and 1
Following standard notation, the Greek letter  (mu) is used for the mean;

when several random variables are involved, we may use notation  to indicate

that the expectation is of the random variable 

The mean acts as a linear function: the mean of a linear combination of

random variables is the linear combination of the means; in mathematical terms

() = () (+ ) = ()+( ) The first property is easy to prove;
the proof of the second property requires the concept of the bivariate distribution

and is deferred to Chapter 3.

1.4.1 Mechanical interpretation of the mean

The mean can be interpreted as the center of mass using the notion of torque in

physics. Imagine a stick with  masses of weights  attached at  locations,

{  = 1 2  } See Figure 1.2 for a geometric illustration. We want to find
the support point,  where the stick is in balance; thus  is the center of mass

(center of gravity). From physics, we know that a weight  located at  with

respect to  creates the torque ( − ) The stick is in balance if the sum of

these torques is zero:
X
=1

( − ) = 0 (1.3)

This balance condition leads to the solution

 =

P
=1 P
=1

 (1.4)

For the example depicted in Figure 1.2, the balance point (center of masses) is

 = 438

 =
1× 5 + 2× 5 + 3× 5 + 4× 2 + 5× 1 + 6× 2 + 7× 4 + 8× 1 + 9× 4

5 + 5 + 5 + 2 + 1 + 2 + 4 + 1 + 4

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One can interpret solution (1.4) as the weighted average because we may rewrite

 =
P

=1  where  is the relative weight. As with probability,   =


P
=1  In a special case when weights are the same,  = const we arrive

at the arithmetic mean,  =
P

=1  In summary, the mean is the balance

point, or the center of gravity, where probabilities {  = 1 2  } act as the
relative weights at locations {  = 1 2  }. A similar interpretation of the

mean as a center of the gravity is valid for two and three dimensions.

1 2 3 4 5 6 7 8 9

Balance

Mean = 4.38

Figure 1.2: Mechanical interpretation of the mean using hanging weights: the bal-

ance is where the resultant torque is zero,
P

=1(−) = 0 For this example,
the support point is  = 438 The mean is the center of gravity.

The mean is meaningful only for cardinal/numeric random variables, but the

mean is not the only way to define the center of the distribution. There are other

characteristics of the center, such as mode or median. Sometimes, depending on

the subject and the purpose of the study, they may offer a better interpretation

than the mean. The mode is defined as the most frequent observation/value: the

mode is  for which Pr( = ) = max  Hence one can refer to the mode as the
most probable value of the random variable. The mode is applied for categorical

random variables where the mean does not make sense, such as when reporting

results of the poll among presidential candidates. In another example, we know

that the most frequent number of children in American families (mode) is 2 and
the average (mean) is 22. In other words, 2 is the most probable number of
children in the family. If you invite a family with children, you expect to see two
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kids, not 22.
The median is defined as the value  for which the probability of observing

   is equal to the probability of observing    The median does not apply

to categorical random variables because it requires ordering.

Sometimes, the weighted mean emerges naturally as a conditional probability,

the following is an example.
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National rate = 49 murders per million

Figure 1.3: Murder rates in the United States by state. The national murder rate

is the weighted mean with the th weight equal to the number of people living in

state .

Example 1.4 National murder rate. Figure 1.3 shows the number of mur-

ders per million people in the District of Columbia and all 50 states of the United

States. (a) Express the national murder rate as the weighted mean. (b) Interpret

the national murder rate as a conditional probability.

Solution. (a) By definition, the murder rate,  is the number of murders

divided by the number of people living in the state (state population),  =
1 2  51. We associate  with the probability that a random person from state

 will be murdered. If  denotes the state population (in millions), the number of

murders is  and the total number of murders in the country is
P51

=1  To

compute the national murder rate, we need to divide the total number of murders

by the total number of people in the United States,

 =

P51
=1 P51
=1 

=
51X
=1



where  = 
P51

=1  is the proportion of people living in state  Using this

formula and data presented in Figure 1.3, the national murder rate is  = 49



10 Chapter 1. Discrete random variables

murders per million. Looking back into formula (1.2), one can interpret  as

probabilities. Therefore one can interpret  as the probability of murdering of a

random person in the United States. Note that it would be incorrect to compute

the national murder rate as the simple average,
P51

=1 51 If less-populated
states have high murder rates their contribution would be the same as large

states. (b) Now we formulate the problem as a conditional probability. Define

Pr(|) = Pr (random person will be murdered | person lives in state ) = 

Pr() = Pr (random person from US lives in state ) = 

Using the law of total probability Pr() =
P

=1 Pr(|) Pr() where  do

not overlap and
P

=1 Pr() = 1 the probability of being murdered in US is
 =

P51
=1  as before. ¤

The following two examples illustrate that sometimes using the mean as a

measure of center of the distribution makes perfect sense, but sometimes it does

not.

Example 1.5 Town clerk mean. The arithmetic average of house prices is a

suitable average characteristic for a town clerk who is concerned with the total

amount to collect from the residents.

Solution. Suppose there are  houses in town with prices {  = 1 2  }
When reporting the average house price, town officials prefer to use the arithmetic

average:

 =
1



X
=1



Indeed, if  is the property tax rate, the town collects 
P

=1  dollars and 

is the average property tax in the town.

Example 1.6 Buyer’s house median. A real estate agent shows houses to a

potential buyer. What is a suitable average house price for the buyer, the mean

or the median?

Solution. While the mean price makes sense for a town or state official (the

property tax is proportional to the mean), it is not useful for the buyer who is

thinking of the chance of affording a house he/she likes. Instead, the median

means that 50% of the houses he/she saw will have price lower than the median

and 50% of the houses will have higher price. In this case, the median has a much

more sensible interpretation from the buyer’s perspective. ¤

Another situation where the mean and median (or mode) depends on the

subject of application is the salary distribution in a company. For the company’s
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CEO, the mean, which is the ratio of the personnel cost to the number of em-

ployees, is the most meaningful quantity because it directly affects the profit =

revenue minus cost (including cost of labor). For an employee, the median (or

maybe the mode) is the most informative parameter of the company salary dis-

tribution because he or she can assess if he/she is underpaid. In general, mean

has a meaningful interpretation if and only if the sum of observations or mea-

surements has an interpretation. This is the case for both examples: the total

wealth of properties and the total labor cost are what the town and the CEO are

concerned with, respectively. ¤
In the previous discussion, we compared mean with median. The following

example underscores the difference between median and mode.

Example 1.7 Mode for the manager of a shoe store and median for a

shoe buyer. Explain why mode is a more appropriate characteristic of the center

of the shoe-size distribution for the manager of a shoe store but median is more

appropriate for a shoe buyer.

Solution. The manager is concerned with the most popular shoe size because

it tells him/her about the order to make from a shoe factory. The buyer wants

to know if the store has the sufficient stock of the popular shoe size. ¤
In conclusion, we should not stick with the mean as the most popular and the

easiest parameter to characterize the center of the distribution. We must also

consider the median or the mode, depending on the application.
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Figure 1.4: The distribution of the number of children in 100 families. According

to the mean you are expected to see 24 children.

Example 1.8 Number of children in the family. You are invited for dinner

to a family and you want to bring presents to each child (you do not know the
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number of children). To make an educated guess on how many presents to buy

you find on Internet data on the number of children in 100 families, see Figure

1.4. How many presents do you buy?

Solution. The typical number of children in the family is 2, the mode. Ac-
cording to the mean you expect to see 24 children, a somewhat uncomfortable
number. See Example 1.17 where the number of toys is solved assuming that the

number of children in the family follows a Poisson distribution. ¤
The following example illustrates that some random variables do not have

finite mean.

Example 1.9 St. Petersburg paradox. The game involves a single casino

player and consists of a series of coin tosses. The pot starts at $1 and casino

doubles the pot every time a head appears. When a tail appears, the game ends

and the player wins whatever is in the pot. What would be a fair price to pay the

casino for entering the game?

Solution. We define as the dollar amount paid to the player. With probabil-

ity 1/2, the player wins one dollar; with probability 1/4 the player wins $2, with

probability 1/8 the player wins $4, and so on. Thus, Pr( = 2−1) = 12 for
the number of tosses,  = 1 2  We calculate the expected value to determine
a fair price for a player to pay as

() =
1

2
× 1 + 1

4
× 2 + 1

8
× 4 + · · · =

∞X
=1

1

2
2−1 =

∞X
=1

1

2
=∞

The player should pay $∞ to make the game fair to the casino.

1.4.2 Variance

Another milestone concept of probability and statistics is variance. Variance is

the expected value of the squared distance from the mean, or symbolically,

var() = ( − )2

Usually we use the Greek letter 2 (sigma-squared) to denote the variance. We

write 2 = 2 = var Variance reflects the spread of the random variable around

the mean: the larger the spread/scatter, the larger the variance. The same

caution should be used for the variance as for the mean because the variance

is the mean of squared distances. Although convenient from the computational

standpoint, it may not appropriate for a particular application.

If  is a discrete random variable, (−)2 can be viewed as another discrete
random variable, so its expectation can be computed as

2 =
X
=1

( − )2 (1.5)
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In the following theorem we provide an alternative computation of the variance.

Theorem 1.10 The following formula holds:

2 = (2)− 2 (1.6)

Proof. Expanding ( − )2 in (1.5), we obtain

X
=1

( − )2 =
X
=1

(2 − 2 + 2) =
X
=1

2  − 2
X
=1

 + 2
X
=1



But
P

=1 
2
  = (2) and

P
=1  =  Because

P
=1  = 1 we finally

obtain 2 = (2)− 2× + 2 = (2)− 2 ¤
Sometimes (2) is called the noncentral second moment and 2 is called

the central second moment. These moments are connected as shown in formula

(1.6). We shall see later that formula (1.6) holds for continuous random variables

as well.

To illustrate formula (1.6), we derive the variance of the Bernoulli random

variable, we first find (2) = 0×Pr( = 0) + 1×Pr( = 1) =  Then, using

the fact that () =  the variance of the Bernoulli variable is var() = (1−)
Using formula (1.6) we obtain an explicit expression for the variance, as an

alternative formula to (1.5),

2 =
X
=1

2  −
Ã

X
=1



!2
 (1.7)

Variance is always nonnegative and equals to zero if and only if  takes one

value, the mean value.

It is easy to prove that var(+ ) = 2var() where  and  are numbers.

In Chapter 3 we prove that if  and  are independent random variables, then

var( +  ) = var() + var( )
Standard deviation (SD) is the square root of variance,  =

√
var SD also

reflects how random variable deviates from the mean. In contrast with the vari-

ance, SD does so on the original scale, compared with the variance, which is more

convenient for interpretation. For example, if  is measured in feet, variance is

measured in square feet but SD is measured in feet as well. For this reason, SD

is often reported in applications to specify the scatter of the variable.

The mean and the variance of a discrete random variable are computed by the

same formulas (1.2) and (1.5) when the number of outcomes is infinite,  =∞

The probability distribution completely specifies. Mean and SD are integral

features — where the random variable values concentrate and how wide the spread

is.

The expected value is often used in finance to quantify the expected return,

and variance is used to quantify the risk (volatility); the following is a typical

example. Here we use the fact that the variance of the sum of two independent

random variables equals the sum of two variances.
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Example 1.11 Grant problem. A person applies for a large grant in amount

$100K with the probability of getting funded 15 There is an alternative: to apply
for two small grants in amount of $50K each with the same probability of funding

(it is assumed that the probabilities of funding are independent). What strategy

is better?

Solution. We define the expected return (funding) as the sum of possible

amounts weighted with respect to their odds/probabilities. Let  define the bi-

nary random variable that takes value 100 with probability 15 and 0 with proba-
bility 45 Then the expected return in the first strategy is 1005+0×(45) = 20
Similarly, the second strategy leads to the expected return 505+505 = 20 Thus
in terms of the expected funding, the two strategies are equivalent. Now we look

at these options from the risk perspective (this is typical for finance calcula-

tions). Clearly, between two strategies with the same expected return, we choose

the strategy with a smaller risk/variance. Using formula (1.5) the variance of

the large grant is (0 − 20)2 × (45) + (100 − 20)2 × (15) = 1600 Since getting
funded from two small grants is independent, the total variance is twice the vari-

ance from each grant, 2 × £(0− 10)2 × (45) + (50− 10)2 × (15)¤ = 800. We
conclude that, although the two options are equivalent in terms of the expected

return, the second option is less risky. This fact, known as diversification, is

the pillar of financial decision making and investment risk management analysis.

We will return to the problem of diversification when considering the optimal

portfolio selection in Section 3.8.

Problems

1. Introduce a function () = ( −)2 (a) Express this function through
var and  (b) Prove that this function takes the minimal value at  = 

(c) Find minimum of 

2. Prove that the mean is a linear function of scale, () = () where
 is a constant. Prove that variance is a quadratic function of scale,

var() = 2var()

3. Plot the cdf of a Bernoulli random variable.

4. Prove that () = () for a positive 

5. How would you report the average grade in class: mean, mode, or median?

Justify using the concept of the students’ standing in the class.

6. (a) What would state officials report in the summary statement: mean,

median, or mode of income? (b) If state officials want to attract new

business to the area, what would they appeal to: mean, mode, or median

of company revenue? Explain.
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7. Suppose that in Example 1.9 the pot increases by % What would be the
fair price to enter the game?

8. Generalize the grant problem to an arbitrary number of grants with equal

probability.

1.5 R basics

The R programming language will be used throughout the text, so we introduce

it at the very beginning.

R is a public domain statistical package. It is freely available for many com-

putational platforms, such as Windows, Macintosh and Unix at

http : wwwr− projectorg

The goal of this section is to give the reader the very basics of R programming.

More detail will be given throughout the book. A comprehensive yet succinct

description of R is found at

https://cran.r-project.org/doc/manuals/R-intro.pdf

There are two ways to use R: command line and script (function). We use

the command line when a single-formula computation is needed, like a scientific

calculator. When computations involve several steps, we combine them in a

script. A distinctive feature of R is the assignment operator -. We however

prefer the usual = symbol.

For example, to compute 2 × 2 we write after  (the command prompt)

2*2and press Enter. We can store the result using an identification (name

of a variable), sayfour-2*2. This means that computer computes 2 × 2 and
stores the result in variable named four. Other operations are +, -, /, ^.

Many standard mathematical functions are available: log, log10, exp, sin,

cos, tan, atan. Vectors and matrices are easy to handle in R. For example,

to create a ten-dimensional vector of ones, we issue one10-rep(1,10). Then

one10 is a vector with each component 1; to see this we type one10 and press

Enter. Function rep is a special function of R, which is short of repetition. It

has two arguments and in general form is written as rep(what,size). If you do

not want to assign special values to components of a vector, use NA, which means

that component values are not available.

Similarly, one can create a matrix. For example, mat.pi.20.4-matrix(pi,

nrow=20,ncol=4) will create a 20× 4 matrix with the name mat.pi.20.4 with
all entries  (. may be a part of a name). Again, to see the results, you type

mat.pi.20.4 and press Enter. It is easy to see the history of the commands

you issued using arrow keys ↑ or ↓  Thus, instead of retyping mat.pi.20.4, you
pick the previous command and remove the unwanted parts.
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R distinguishes lowercase and uppercase, thus mat.pi.20.4 and mat.Pi.20.4

mean different things.

If a and b are two one-dimensional arrays (vectors) of the same size, a*b

computes the vector whose values are the component-wise products. The same

rule holds for matrices of the same dimensions. In contrast to the component-

wise multiplication, the symbol %*% is used for vector/matrix multiplication. For

example, if A is a × matrix and a is an -dimensional vector (the boldface is

used throughout the book to indicate vectors and matrices), then A%*%a computes

a vector Aa of dimension . If B is a  ×  matrix, then A%*%B computes an

×  matrix. Function t is used for vector/matrix transposition. For example,

if A is a  × matrix, t(A) is A0 If a is a vector, then t(a)%*%a, sum(a^2),
and sum(a*a) all give the same result. There are a few rules when adding or

multiplying matrices and vectors that do not comply with mathematics but are

convenient from a computational standpoint. For example, if A is a × matrix

and a is an -dimensional vector, then A+a is acceptable in R and computes a

matrix with columns that are columns of matrix A plus a. If a is an-dimensional

vector, then A+a computes a matrix with rows that are rows of A plus a. When A is

a square matrix operation is on columns. The same rule works for multiplication

(or division). For example, if A is a  ×  matrix and a is an -dimensional

vector, then A*a produces a  ×  matrix with the th row as the product of

the th row of matrix A times  It is important that a is a vector, not the

result of A%*%b that produces a  × 1 matrix. To make A%*%b a vector, use
as.vector(A%*%b).

1.5.1 Scripts/functions

Typically statistical computations involve many lines of code you want to keep

and edit. In this case, you want to write user-defined scripts (functions). Func-

tions have arguments and a body. For example, if you want to create a function

by the name my1, you would type my1-function(){}. This means that so far

this function has no arguments in ( ) and no body in { }. To add this, we type

my1-edit(my1) and a text editor window appears where we can add operators.

It is good style to use comments in your program. In R everything after # is a

comment up to the next carriage return.

For example, let us say we want to write a program that multiplies two user-

defined numbers. We start with program creation twoprod-function(){} and

then add the text using command twoprod-edit(twoprod).

Here is a version of the R program:

twoprod-function(t1,t2)

{

prod-t1*t2

return(prod)

}
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Here t1 and t2 are the arguments. The user can use any numbers. For exam-

ple, if one enters on the command line twoprod(0.3,24), the answer should be

7.2. Another, more explicit way to run the function is to use twoprod(t1=0.3,t2

=24). A convenient feature of R is that one can define default values for the ar-

guments. For example, one may use t1=10 as default. Then the function should

be

twoprod-function(t1,t2=10)

{

prod-t1*t2

return(prod)

}

To compute 24 × 10 it suffices to run twoprod(t1=2.4), but this does not
mean that t2=10 always. You still can use any t2 even though the default is

specified. Each function should return something, in this case the product of

numbers. To run a function, it has to have ( ) even if no arguments are specified;

otherwise, it prints out the text of the function.

1.5.2 Text editing in R

You have to use a text editor to edit functions (R codes). The default text editor

in R is primitive — it does not even number the lines of the code. For example,

when R detects errors in your code you may see a message like this:

Error in .External2(C_edit, name, file, title, editor) :

unexpected ’,’ occurred on line 521

use a command like

x - edit()

to recover

This means that you have to count 521 lines yourself! There are plenty of

public domain Windows text editors used by programmers worldwide, such as

notepad++ or sublime. For example, to make notepad++ your R editor, you

have to add the line (for Windows PC)

options(editor="c:\\Program Files (x86)\\Notepad++\\notepad++.exe")
to the file Rprofile.site, which, for example, is located in the folder

C:\Program Files\R\R-3.2.2\etc\.
Alternatively, you may issue this command in the R console every time you

start a new session. The notepad++ software can be downloaded from the site

https://notepad-plus-plus.org/. Here we assume that the program notepad

++.exe is saved in the folder c:\\Program Files (x86)\\Notepad++ and you
use R-3.2.2 version of R; you have to make slight modifications otherwise. The

sublime editor can be downloaded from https://www.sublimetext.com/3.
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1.5.3 Saving your R code

We strongly recommend saving your code/function/script as a text file every time

you run it. For example, assuming that you have a Windows computer and you

want to save your function myfun in the existing folder/directory, C:\StatBook,
your first statement in this function may look like this dump("myfun","C:\\Stat
Book\\myfun.r"). Note that double backlashes are used. If you want to read
this function, issue source("C:\\StatBook\\myfun.r") in the R console. Saving
as a text file has a double purpose: (i) You can always restore the function in the

case you forgot to save the R session. (ii) You can keep the R code in the same

folder where other documents for your project are kept. Throughout the book,

all R codes are saved in the folder C:\\StatBook\\.
If you work on a Mac computer, the syntax is slightly different: single forward

slashes are used, and there is no reference to the hard drive letter. For example,

to save myfun, you use dump("myfun","/Users/myname/StatBook/myfun.r")

with the source command being modified accordingly.

1.5.4 for loop

Repeated computation expressed in a loop is the most important method in

computer programming. The simplest example of the loop is

for(i in 1:10)

{

#body of the loop

}

which repeats operators between { and } ten times by letting i=1, i=2, ..., i=10.

Here 1:10 creates a sequence of numbers from 1 to 10. There is a more general

way to create sequences seq(from=,to=,by=) or seq(from=,to=,length=). For

example, s1-seq(from=1,to=10,by=1) and s2-seq(from=1,to=10,length=

10) both produce the same sequence from 1 to 10. Let us write a program that

computes the sum of all even numbers from 2 to , where  is user-defined.

First, we specify the function and edit it: twonsum-function(){}; twonsum

-edit(twonsum). The code may look like this:

twonsum-function(n)

{

sn-0 # initialization

nseq-seq(from=2,to=n,by=2)

for(n in nseq)

{

sn-sn+n # summation

}

return(sn)

}

If there is only one operator in the loop body, the braces are not required, so
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a shorter version is

twonsum-function(n)

{

sn-0 # initialization

nseq-seq(from=2,to=n,by=2)

for(n in nseq)

sn-sn+n # summation

return(sn)

}

This function can be significantly shortened because there is a built-in summation

function sum(x), where x is a an array. Similarly, prod(x) computes the product.

Thus, twonsum function can be shortened as sum(seq(from=2,to=n,by=2)).

1.5.5 Vectorized computations

Many, but not all, loop operations can be vectorized. Then, instead of loops we

use operations with vectors. The vectorized versions usually are more compact

but sometimes require matrix algebra skills. More importantly, the vectorized

approach is more efficient in R — loops are slower, but they may need less RAM.

Vectorized operations are faster because they are written in C or FORTRAN. Using

the C language, vectorized computations pass the array pointer to C, but the

loop communicates with C at every single iteration. Some vectorized operations,

like romSums, colMeans, etc., are already built in.

Compute the mean, variance, and SD of a discrete random variable specified

by -dimensional vectors of values and probabilities.

mvsd-function(x,p)

{

# x is the vector of values

# p is the vector of probabilities

n-length(x) # recover size

mux-sum(x*p) # mean

ex2-sum(x^2*p) #E(X^2)

s2x-ex2-mux^2 # alternative variance

sdx-sqrt(s2x) # SD

return(c(mux,s2x,sdx)) # return the triple

}

For example, if we run mvsd(x=c(0,1),p=c(.25,.75)) it will give us 0.75000

0.1875000 0.4330127. Indeed, since we specified a Bernoulli distribution, we

should have () = 075 var() = 025 × 075 = 01875 SD =
p
var() =

0433 R has mean, var and sd as built-in functions with a vector as the ar-
gument. For example, if a-c(0.1,0.4,0.5) then mean(a) and sd(a) return

0.33333 and 0.2081666, respectively. Summation, subtraction, and multiplica-

tion of vectors with the same length are component-wise and produce a vector of
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the same length.

To illustrate the built-in vectorized function consider the problem of comput-

ing the SD for each row of a  × matrix  where  is big, say,  = 500000
as in genetic applications. Of course, we could do a loop over 500 000 rows and
even use the mvsd function. The following is a much faster version.

SDbig=function(X)

{

mrow=rowMeans(X) #averaging for each row across columns

mrow2=rowMeans((X-mrow)^2)

SDs=sqrt(mrow2)

return(SDs)

}

We make two comments: (i) rowMeans returns a vector with length equal to

the number of rows in matrix X, and each component of this vector is the mean

in the row across columns. (ii) Although X is a matrix and mrow is a vector, R

does not complain and subtracts mrow from each row when we compute X-mrow.

Five vectorized computations for double integral approximation are compared

in the following example.

Example 1.12 Comparison of five vectorized computations. Use vector-

ized computations for numerical approximation of the double integral

 =

Z Z
2+21

e−(3
2−4+22)

Solution. The exact integral value can be obtained by rewriting the integral

in a form suitable for symbolic algebra software, such as Maple or Mathematica:

 =

Z 1

−1

ÃZ √
1−2

−√1−2
e−(3

2−4+22)

!
 = 1374

To approximate the integral, we replace the integral with the sum of integrand

values over the grid for  and  Let the grid for  and  be an array from −1 to
1 of length=N (the rectangular grid must contain the integration domain). First,
compute the  × matrix M of values 32 − 4 + 22 and second, compute
the sum of values e−(32−4+22) multiplied by the step in each grid for which
2+2  1 The R code is found in the file vecomp.r and the time of computation
by each algorithm is shown in the following table.

Double Single Matrix

Method loop loop algebra rep expand.grid outer

job job=1 job=2 job=3 job=4 job=5 job=6

Time (s) 19 4 3 6 7 5
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The first method (job=1) uses the brute-force double loop matrix computation

and fills in the matrix M in an element-wise fashion, instead of a vectorized algo-

rithm. The second algorithm (job=2) is a vectorized algorithm using a single loop

over the  grid and filling in the matrix M row by row. The vectorized algorithm

in job=3 uses matrix algebra to compute matrix M asM =3x210 − 4xy0 + 21y20
where x y, and 1 are  × 1 vectors (1 is a vector of ones). The fourth al-
gorithm (job=4) computes M on the grid of values ( ) for   = 1  
using the rep function with two options: (i) to repeat vector x with the option

times=N and (ii) to repeat each element of vector x with the option each=N.

The fifth method (job=5) is similar to the previous one, but instead of the

rep function, another R function, expand.grid, is used (they produce the same

grids for two dimensions). This function is especially convenient with multi-

ple dimension grids, say, for three-dimensional integration. Finally, the sixth

method (job=6) uses a built-in function outer. This function returns a  ×

matrix of values ( ) and is especially convenient for our purposes. Func-
tion  should be specified in R before computing. The time of computation

in seconds is assessed using the date() command. A more precise way to

find the time of computation is by calling the Sys.time() function before and

after the operation and taking the difference. Not surprisingly, double loop

takes a long time. Although the third method is the fastest, it may be dif-

ficult to generalize to nonlinear functions and integrals of higher dimension.

The R function that implements the five methods can be accessed by issuing

source("c:\\StatBook\\vecomp.r"). A few remarks on the script: (i) It is easy
to lose the R code; it is a good idea to save the code as a text file in a safe place

on the hard disk. Command dump("vecomp","c:\\StatBook\\vecomp.r")saves
the R code/object in the folder c:\\StatBook under the name vecomp.r with the
full name c:\\StatBook\\vecomp.r. (ii) In job=6 the command sum(M[x2y21])
computes the sum of elements of matrix M for which condition x2y21 holds. An

advantage of these integral approximations is that any domain of integration may

be used if expressed as an inequality condition. The condition should be a matrix

with the same dimension as matrix M. The double integral  is approximated in

Example 3.60 via simulations.

apply

Besides rowMeans and the like, such as colMeans, colSums, rowSums, or pmax, R

has a built-in capability to do vectorized computations in general way. Here we

illustrate this feature by the apply function. This function has three arguments:

X, MARGIN, and FUN. The first argument, X, specifies a matrix. The second argu-

ment, MARGIN, specifies row or column, and the third argument, FUN, specifies

the function to be performed in the vectorized fashion. For example, instead of

SDbig, one can use apply(X,1,sd). If the second argument is 2, it returns SD

of the columns. Of course, one could use other functions for FUN, such as sum,
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Figure 1.5: This plot is the result of function my1sr(). This function returns

1.031, an approximate solution to the equation cos() = 2.

max, etc. Note that this is the easiest example of apply; there are others, more

sophisticated examples of this function as well as other vectorized functions, such

as lapply and tapply. The function specified in FUN may be any function of the

row data and may return a vector. See Example 6.88 where apply is used for

vectorized simulations.

Example 1.13 Apply command. Fill a 100 by 12 matrix using numbers from

1 to 1200 and compute (a) the normalized matrix (subtract the mean and divide

by SD in each row) using apply, and (b) two numbers in each row such that 25%

and 75% of the data is less than those numbers (the first and third quartiles).

Solution. The matrix is filled with integers from 1 to 1200 using command
X=matrix(1:1200, ncol=12). (a) To normalize the matrix, we write a function

with a vector argument that may be thought of as a typical row of the matrix:

normal=function(x) (x-mean(x))/sd(x). Now the normalized matrix is com-

puted as apply(X,1,FUN=normal). (b) First, the function orders the array of

numbers in each row and then picks the (34)th element: tdqurt=function(x)
{xo=x[order(x)]; n=length(xo);c(xo[n/4],xo[3*n/4])}. Note that the call

apply(X,1, FUN=tdqurt) returns a matrix 2 by 100.
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1.5.6 Graphics

Versatile graphics is one of the most attractive features of R. A picture is worth a

thousand words and a good graph may likely become the endpoint of your statisti-

cal analysis. Let us start with an example of a graphical solution of a transcendent

equation, cos =  where  is a positive user-defined parameter. Specifically,

we want to (i) plot two functions, 1 = cos and 2 =  on an interval where

they intersect and (ii) find the point of intersection. Since 1 is a decreasing

function and 2 is an increasing function on (0 2) we plot these functions on
this interval. In this function, alpha is the used-defined parameter with default

value 3. The graphical output of the R function my1sr is shown in Figure 1.5.

This function can be accessed by issuing source("c:\\StatBook\\my1sr.r").
The command indmin-which.min(abs(y1-y2)) returns the index for which

the absolute difference between function values is minimum.

We make several comments:

1. In the plot function, the first argument is an array of -values, and the sec-

ond argument is an array of the corresponding -values; the arrays/vectors

should have the same length. The second argument of the function type

specifies the type of plot. For example, type="l" will produce lines and

type="p" will produce points; xlab and ylab are the axis labels; main

specifies the title of the plot.

2. We add the line to the plot using function lines. As with the plot function,

the first and second arguments are the x- and y- values; lwd specifies the

line width (regular width is 1). The line style can be specified as well (see

below), with default lty=1.

3. A legend is a must in almost all plots to explain what is plotted. The first

argument is the x-coordinate and the second argument is the -coordinate

of the upper-left corner of the legend rectangle; the third argument is the

message in the legend, which, in our function, consists of two words; lty

specifies the line style: 1 is solid, 2 is dotted, and 3 is dashed.

4. In this code, which.min returns the index with the minimal value. In our

case, this built-in function returns the index where two lines are close to

each other.

5. Parameters cex and pch control the type of the point and its size. The

default values are cex=1(small) and pch=0 (empty circle); cex=2 produces

a circle of the size twice large as the default.

6. Title combines text and numbers using the paste command. Text and

characters need quotes; \n forces text to the next line.
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Figure 1.6: The probability plot of English letters in a typical English text and

“Call of the Wild” by Jack London. The distribution of letters in this novel will

be further studied in Example 7.66.

In the following example, we illustrate how two discrete distributions can be

visually compared in R.

Example 1.14 Frequency of English letters in a Jack London novel.

Write an R function that plots the frequency of English letters in a typical text

and the frequency of letters in “The Call of the Wild” by Jack London side by

side. Do the frequencies look similar?

Solution. The text file Jack_London_Call_of_the_Wild_The_f1.char con-

tains Call of the Wild character by character. The frequency of English letters

in a typical text, as the average over a large number of English texts, can be

found on the Web. The R code is found in the file frlJLET.r, which creates

Figure 1.6. We make a few comments: (i) It is useful to save the R code in a

text file using the dump command every time we run the function. It is easy to

restore the function later by issuing source("c:\\StatBook\\frlJLET.r"). (ii)
The char file is uploaded using the built-in function scan; option what="" means

that letters are characters. (iii) The operator ch[ch==freqlet[i,1]] returns a

part of array ch for which the condition ch==freqlet[i,1] holds, or in other

words, it returns characters specified by freqlet[i,1].

We conclude that, on average, the frequencies of the letters in a typical English

text match those of a famous Jack London novel; however, for some letters such as

“d” and “h,” the discrepancy is noticeable. Later we shall test that the frequencies

of letters in the novel are the same as in a typical English text using the Pearson

chi-square test. The entropy of English texts is computed in Section 2.15.
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1.5.7 Coding and help in R

Coding in R, as any other programming language, may be a frustrating experience

even for a mature programmer. There are two types of error messages: syntax

and run-time errors. Syntax errors are displayed after the window with the code is

closed. Unfortunately, while R reports the line where the error may be, (i) the ac-

tual error may be not in this line but below or above, and (ii) the built-in editor in

R does not number lines. More sophisticated text editors can be used to get line

numbers. Examples include Rstudio (official site https://www.rstudio.com)

and Notepad++ (official site https://notepad-plus-plus.org). In fact, Rstudio

provides a different Graphical User Interface (GUI) for R with multiple windows

for the command line, graphs, etc.

There is no unique advice to understand why your code does not work when

you get run-time errors. Printing out values of variables or arrays may help to

figure out what is going on and where exactly the error occurs.

It is easy to lose the code in R. I recommend saving the R code in a text file

via the dump command as in the code frlJLET in Example 1.14. To restore this

code, issue source("c:\\Stat Book\\frlJLET.r") in the R console.
To get help on a known function, say, legend issue ?legend on the command

line. Documentation is the Achilles’ heel of R. You are likely to find that the

help too concise and sometimes without examples. Typically, options are not

explained well. Google it!

Problems

1. Write an R function with argument x that computes e using Taylor series
expansion 1 +

P∞
=1 

! and compare with exp(x). Report the output
of your function with x=-1 and compare it with exp(-1). [Hint: Use for

loop until the next term is negligible, say, eps 10^-7.]

2. Write an R function with n and m as arguments, matrix dimensions. Gener-

ate a matrix, say, matrix(1:(n*m),ncol=m). Compute a vector of length

n as the sum of values in each row using rowSums. Do the same using

the function apply. Then use sum with a loop over rows and compare the

results.

3. Modify function vecomp to approximate integral
R R

2++22(1 + 2
2 +

2)−1 [Hint: The true value is 2.854; use grid for  from −2 to 1 and
for  from −32 to 32.]

4. Modify Example 1.13 to compare apply with the traditional for loop

in terms of computation time using a large matrix X (use date() before

and after computation. A more accurate time can be computed using the

Sys.time() call.
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5. Demonstrate that apply is equivalent to colMeans, rowMeans, colSums,

and rowSums, but slower. [Hint: Use the for loop to obtain the time in the

order of minutes.]

6. Write a formula for a straight line that goes through two points and verify

this formula graphically using R code. The code should have four arguments

as coordinate of the first and second point. Use points to display the points.

[Hint: The equation of the straight line that goes through points (1 1)
and (2 2) is ( − 1)(2 − 1) = (− 1)(2 − 1)]

7. Find the minimum of the function  + e− graphically where  and 

are positive user-defined parameters. Plot the function and numerically

find where it takes a minimum using the which command. Display the

minimum point using points and display the minimal value. Find the

minimum analytically by taking the derivative, and compare the results.

8. Rearrange the plot in function my1sr starting with the most frequent letter

’e’. [Hint: Use [order(-numfr)] to rearrange the rows of the freqlet

matrix.]

9. In the analysis of letter frequency, capital letters were reduced to lowercase

using the tolower command. Does the conclusion remain the same if only

lowercase letters are compared (without using tolower)?

10. Find a text on the Internet and save it as a txt file. Use the for loop

over the words and the loop over the number of characters in the word

(nchar). Then use substring to parse words into characters, compute the

frequencies, and plot them as in Figure 1.6 using green bars.

11. (a) Confirm by simulation the results of Example 1.11 using the for loop.

(b) Use vectorized simulations. [Hint: Use X=runif(n=1)0.2 to generate

a Bernoulli random variable.]

12. (a) Is the probability of having a boy and a girl in the family the same as

having two boys or two girls? (b) Use vectorized simulations to confirm the

analytical answer. [Hint: Generate Bernoulli random variables as in the

previous problem.]

1.6 Binomial distribution

The binomial distribution is the distribution of successes in a series of independent

Bernoulli experiments (trials). Hereafter we use the word success just for the

occurrence of the binary event and failure otherwise. More precisely, let {  =
1 2  } be a series of independent identically distributed (iid) Bernoulli random
variables with the probability of success in a single experiment  meaning that
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Pr( = 1) =  Consequently, the probability of failure is Pr( = 0) = 1 − 

Note that sometimes the notation  = 1−  is used.

Table 1.1. Four R functions for binomial distribution (size= prob=)

R function Formula Returns Explan.

dbinom(x,size,prob)
¡



¢
(1− )− (1.8) x = 

pbinom(q,size,prob)
P

=0

¡



¢
(1− )− (1.10) q = 

rbinom(n,size,prob) 12 
iid∼ ( ) rand numb n = 

qbinom(p,size,prob)
P

=0

¡



¢
(1− )− =  quantile p = 

We want to find the probability that in  independent Bernoulli experiments,

 successes occur. Since  = 1 encodes success and  = 0 encodes failure,
we can express the number of successes as the sum,  =

P
=1 We use

the notation  ∼ B( ) to indicate that  is a binomial random variable

with  trials and the probability of success  in a single trial. Clearly,  can

take values 0 1    The celebrated binomial probability formula gives the

distribution of  namely,

Pr( = ) =

µ




¶
(1− )−  = 0 1   (1.8)

where the coefficient
¡



¢
is called the binomial coefficient (we say “ choose ”)

and can be expressed through the factorialµ




¶
=

!

!(−)!


We let
¡

0

¢
= 1; obviously,

¡



¢
= 1 An algebraic application of the binomial

coefficient is the expansion of the th power of the sum of two numbers:

(+ ) =
X

=0

µ




¶
− (1.9)

In some simple cases, we do not have to use the binomial coefficient. For example,

the probability that in  experiments there is no one single success is Pr( =
0) = (1− ) Similarly, Pr( = ) =  However, all these probabilities can be

derived from the general formula (1.8).

The binomial distribution is built into R. There are four different functions

for each distribution in R including the binomial distribution. The R function

pbinom computes the cdf, the probability that  ≤ ,

 () = Pr( ≤ ) =
X

=0

µ




¶
(1− )−  = 0 1   (1.10)
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The R function qbinom is the inverse of pbinom and computes  such that

the cdf equals the specified probability. All four R functions for the binomial

distribution are presented in Table 1.1. Arguments may be vectors. For ex-

ample, dbinom(0:size,size,prob) computes probabilities for each outcome

 = 0   where size =  and prob = 

Note that the quantile of a discrete distribution () may be not exactly de-

fined given  due to discreetness of the cdf. The call qbinom returns the smallest

integer for which the cdf is greater or equal to  For example, qbinom(p=0.2,size

=5, prob=0.5) and qbinom(p=0.4,size=5,prob=0.5) return the same 2. In

contrast, pbinom(q=2,size=5,prob=0.5)=0.5.
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(a) Second team is better
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(b) Second team is better unless p=0.5
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(d) Inconclusive comparison

Figure 1.7: Illustration for Example 1.15. Four answers to the question what

team is better based on the number of wins. The second team is better if the

probability of the outcome is smaller for all 0    1

Example 1.15 What team is better? Two teams, say, soccer teams, are

compared. The first team won two out of two games, and the second team won

three out of four games. What team is better? In other words, what team has a

better chance/probability of winning in a single game?

Solution. Before advancing to the solution, we make a couple of assumptions:

(i) The teams did not play against each other, that is, 2/2 and 3/4 are scores of
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the games with other teams. (ii) The probability of winning against other teams

is the same for each team under consideration. These assumptions imply that

the number of wins follows the binomial distribution with Bernoulli probabilities

to win in a single game for team 1 and 2, 1 and 2, respectively. Thus, we ask,

is 1  2 1  2 or is the answer inconclusive?

First, consider the case when two teams won all games played (all wins). Let

the number of games played by the first team be 1 and the number of games

played by the second team be 2. Since all games have been won, one may deduce

that 1 = 1 and 2 = 1, and the naive answer is that the two teams are the same.
However, consider a specific case when 1 = 1 and 2 = 100 Clearly, the second
team should be claimed better. In general, under the “all wins” scenario, the

second team is better if 1  2. Now we derive this intuitive rule by comparing

the probabilities of winning all games. For the first team this probability is 11 

and for the second team this probability is 22  How would probabilities 1 and

2 be related if the teams won all games they played, 1 and 2 respectively? To

find 2 as a function of 1 we need to solve the equation 11 = 22 for 2; that

gives 1 = 
21
2  2 This means that the second team is better, coinciding

with our intuition. We do not have to solve the equation for 1 just plot 
1 and

2 for 0    1 on the same graph; see the upper-left panel in Figure 1.7 with
1 = 2 and 2 = 4 denoted as 2/2 and 4/4, respectively. If the second curve is
below, the second team is better.

Second, consider the case where the first team played 1 games and won all

of them, as before, and the second team played 2 games and won 2 (2  2)
A naive answer is that the first team is better because 1 = 11 = 1 and 2 

22  1 But consider the case when 1 = 2 and 2 = 99 and 2 = 100 In
this case, the second team is better. As in the previous case, find 1 which leads

to the same result of winning for the second team, 11 =
¡
2
2

¢
2
2 (1− 2)

2−2 

If

1 =

∙µ
2

2

¶
2
2 (1− 2)

2−2

¸11
 2

for all 0  2  1 then the second team is better. Again, it is convenient to

plot the curves 1 and
¡
2
2

¢
2(1 − )2−2 on the same graph. If the second

curve is below the first one for all  the second team is better. If 1 = 2 and
2 = 3 2 = 4, the second team is not worse if

¡
4
3

¢
3(1 − )4−3 ≤ 1 for all

0    1 But
¡4
3

¢
= 4!

3!(4−3)! =
4×3!

3!(4−3)! = 4 and indeed 43(1 − )  1 Note
that the inequality becomes an equality when  = 05 Hence the second team
is better unless the chance of winning in each game is 50/50 for both teams; see

panel (b) of Figure 1.7.

Third, in general, we say that the second team is better if its outcome prob-

ability is smaller than the outcome of the first team:µ
2

2

¶
2(1− )2−2 

µ
1

1

¶
1(1− )1−1  0    1



30 Chapter 1. Discrete random variables

The two bottom graphs depict 2 = 4 and 2 = 5 and 2 = 2 and 2 = 3 The
last outcome leads to an inconclusive comparison. We show in Example 3.39 how

to solve the problem of an inconclusive comparison using a noninformative prior

for 

Example 1.16 Birthday problem. What is the probability that at least two

students in a class of 23 students have the same birthday (assume that there are

365 days/year and birthdays are independent)?

Solution. It is reasonable to assume that the birth rate is constant over the

year. Let the students names be John, Catherine, Bill, etc. Instead of finding

the probability that at least two students have the same birthday, we find the

probability that all 23 students have birthdays on different days. The probability

that John and Catherine do not have the same birthday is (365 − 1)365. The
probability that John, Catherine, and Bill do not have birthday on the same day

is (365− 1)(365− 2)3652 etc. Finally, the probability that 23 students have at
least one shared birthday is

1− (365− 1)(365− 2) · · · (365− 22)
36522

 (1.11)

An R code that computes this probability is 1-prod(seq(from=364,to=365-22,

by=-1))/365^22, which gives the answer 0.5072972. Some may find this prob-

ability surprisingly high.

Simulations for the birthday problem

It is instructive to do simulations in R to verify formula (1.11). Imagine that

you can go from class to class with the same number of students and ask if at

least two students have the same birthday. Then the empirical probability is the

proportion of classes where at least two students have the same birthday.

The following built-in R functions are used.

ceiling(x) returns the minimum integer, which is greater or equal to x.

There are two similar functions, round and floor.

unique(a) where a is a vector, returns another vector with the vector’s dis-

tinct (unique) values. For example, unique(c(1,2,1,2,1)) returns a vector with

components 1 and 2.

length(a) returns the length (dimension) of the vector.

Function birthdaysim simulates this survey. The key to this code is the fact

that if a vector has at least two of the same components, the number of unique

elements is smaller than the length of the vector. Using the default value Nexp

= 100,000, this program estimates the proportion to be 0507. It is important
to understand that each run comes with a different number, but all are around

0507, a close match with the theoretical value.
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Unlike theoretical solution (1.11), this simulation program, after a small mod-

ification, allows estimating this probability under the assumption that the distrib-

ution of birthdays is not uniform throughout the year. In fact, data from different

countries confirm that the distribution is not uniform as discussed by Borja [12]:

For many countries in the northern hemisphere, the probability of birth on a spe-

cific day looks like a sinusoid with the maximum around September. For example,

we can model the probability as Pr(birthday = ) = 09 − 02 sin(2365) for
 = 1 2  365 The R function is birthdaysim.sin. Simulations may take sev-
eral minutes (use, say, Nexp=10000 to reduce the time). The probability estimate

is around 0516 slightly higher than under the uniform-birthday distribution. We
make a few comments on the code: (i) cumsum computes the cumulative sum of

an array; this is the shortest way to compute a cdf. (ii) runif(1) generates a

random number on the interval (0,1); the uniform distribution will be covered in

detail in the next chapter.

Problems

1. Derive the formula
P

=0

¡



¢
= 2 from the binomial probability (1.8).

2. Use formula (1.8) to prove that (+ )3 = 3 + 32 + 32 + 3

3. Find  for which the binomial probability is maximum.

4. Erica tosses a fair coin  times and Fred tosses  + 1 times. What is the
probability that Fred gets more heads than Erica. Solve the problem theo-

retically and then write an R function with simulations ( is the argument

of the function). Compare the results. [Hint: Use the fact that the proba-

bility of getting  heads in Fred’s tosses and  heads in Erica’s tosses is

the product of the probabilities. Apply command mean(XY) to compute

the proportion of elements of array X greater than Y.]

5. In the birthday example, estimate the probability using simulations that

exactly two students have the same birthday. (Before computing, what

probability is less, exactly two or at least two?) Plot the theoretical and

empirical (from simulations) probabilities that at least two students have

the same birthday in the class of  students versus . Explain the compar-

ison.

6. Sixteen players of two genders sign up for a tournament. What is the

probability that there will be eight men and women? Provide a theoretical

answer and confirm via simulations.

7. What is the probability that in  fair coin tosses, there will be  head

streaks? Give a theoretical formula and verify by simulations. Use two

methods to compute the theoretical probability: with or without dbinom.

Write R code to compute the simulated probability with the number of
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simulations equal to 1000K. [Hint: Your solution should be one line of

code.]

8. The chance that a person will develop lung cancer in his/her lifetime is

about 1 in 15. What is the probability that in a small village with 100

people, (a) there are no individuals with lung cancer, and (b) there is only

one case? In both cases check your answer with simulations. [Hint: Use

rbinom.]

9. Early mathematicians believed that in a fair coin tossing after a long streak

of heads, a tail is more likely. Here is one of the proofs: make 100 tosses and

consider the longest streak of heads. Tails always occurs after the streak.

Give pros and cons for this statement. Do you agree with this statement?

10. Conjecture: Any nonuniform distribution may only increase the probability

that at least two people have the same birthday. In other words, (1.11) is

the lower bound over all possible distributions of birthdays on 1, 2, ..., 365.

[Hint: Modify function birthdaysim.sin to check using simulations; run

the function with user-defined birthday probabilities within each month.]

1.7 Poisson distribution

Poisson distribution is useful for modeling a distribution of counts. This distri-

bution specifies the probability that a discrete random variable takes value 

where  may be one of 0 1 2 . Simeon Denis Poisson (1781—1840), a famous
and powerful French mathematician and physicist, introduced this distribution.

We say that the random variable  has a Poisson distribution with a positive

parameter  if

Pr( = ;) =
1

!
e−  = 0 1 2  (1.12)

The presence of the factorial in the denominator (the normalizing coefficient) can

be seen from the following calculus formula: e = 1+ + 1
2!

2+ · · ·+ 1
!

 + · · · .
Using this formula it is clear that the probabilities add to one,

P∞
=0 Pr( =

) = 1 as in the case with all probability distributions. We will use the symbolic
notation  ∼ P() to indicate that  has a Poisson distribution with a positive

parameter  Sometimes  is called the Poisson rate.

In Table 1.2, we show four R functions associated with the Poisson distribu-

tion. As is the case with other built-in distributions in R, these functions take

vector arguments. For example, if lambda is a scalar and x is a vector, then

dpois(x,lambda) returns a vector of the same length as x keeping lambda the

same. If lambda is a vector of the same length as x, this function returns a

vector of probabilities computed using the corresponding pairs of x and lambda.

Even though the support of the Poisson distribution is infinite, there are many

examples when this distribution may serve as a good probabilistic model despite
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the fact that a random variable takes a finite set of values when the upper limit

is difficult to specify: the number of children in the family, the number of peo-

ple visiting a specific website, minutes between consecutive telephone calls, the

number of earthquakes in 10 years, the number of accidents in town, etc.

Table 1.2. Four R functions for Poisson distribution (lambda=)

R function Formula Returns Explan.

dpois(x,lambda) 1
!e
− (1.12) x = 

ppois(q,lambda)
P

=0
1
!e
− cdf q = 

rpois(n,lambda) 12 
iid∼  () rand. numbers n = 

qpois(p,lambda)
P

=0
1
!e
− =  quantile,  p = 

A continuous analog of the Poisson distribution is the gamma distribution;

the two distributions take a similar shape; see Section 2.6. The following is a

continuation of Example 1.8.

Example 1.17 How many toys to buy? Assuming that the number of chil-

dren in the family follows a Poisson distribution with  = 24 how many toys
should one buy so that every child gets a present.

Solution. Strictly speaking, whatever number of toys you buy, there is a

chance that at least one child will not get a toy because theoretically the number

of children is unbounded. As is customary in probability and statistics, we define

a probability, close to 1 that each child gets a present. Let this probability be
 = 09 Then the minimum number of toys to buy is the quantile of the Poisson

distribution with  = 24 and is computed in R as qpois(p=0.9,lambda=2.4)=4.

The Poisson distribution possesses a very unique property: the mean and the

variance are the same,

() = var() = 

To prove this fact, we refer to the definition of the mean of a discrete random

variable:

() =
∞X
=0

 × Pr( = ;)

Using the expression for the probability (1.12) and the fact
P∞

=0
e−
! 

 = 1 we
obtain

() = 

∞X
=1

e−

( − 1)!
−1 = 

∞X
=0

e−

!
 = 

Analogously, one can prove that (2) =  + 2 which, in conjunction with

formula (1.6), gives var() = 
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The binomial and Poisson distributions are relatives. Loosely speaking, the

Poisson distribution is a limiting case of the binomial distribution. This fact is

formulated rigorously as follows.

Theorem 1.18 A binomial distribution with an increasing number of trials, 

and decreasing probability of successes,  = () converges to a Poisson distrib-
ution with parameter,  = lim→∞ ()

Proof. Expressing  through  and  and substituting it into the formula for

binomial probability (1.8), we obtain

Pr( = ) =
!

!(− )!

µ




¶ µ
1− 



¶−

=
!

!(− )!

1



µ
1− 



¶µ
1− 



¶−


From the famous limit lim→∞
¡
1 + 



¢
= e for any fixed  we have

lim
→∞

µ
1− 



¶

= e−

But when  → ∞ we have  → 0 In addition, using Stirling’s formula, it is
possible to prove that !

(−)!
1

→ 1 Therefore,

lim
→∞Pr( = ) =

1

!
e−

the Poisson probability. ¤
As an example, consider the distribution of the number of stolen credit cards a

credit company experiences over the year. The probability that a credit card will

be stolen  ≥ 1 times over the year for a specific customer (binomial variable) is
very small, say,  But the credit company may have many customers,  Then

the average number of stolen cards is  =  Thus, from the Theorem 1.18,

one may infer that the number of stolen cards follows a Poisson distribution. An

advantage of using the Poisson distribution over the binomial distribution is that

the upper limit of stolen cards is not specified (technically speaking, it is infinity).

It is important to estimate  with the assumption that the data on the number of

stolen cards is available for several years — a common statistical problem. As we

shall learn later,  may be estimated simply as an average of the number stolen

cards over the years.

Example 1.19 Raisin in the cookie.  raisins are well mixed in the dough

and  cookies are baked. What is the probability that a particular cookie has at

least one raisin? Provide the exact formula using the binomial distribution and

the Poisson approximation.
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Figure 1.8: Illustration of the distribution of the number of raisins in a cookie

 = 6  = 30

Solution. Let  denote the number of raisins in a cookie. See Figure 1.8 for

an illustration; since the shape of the dough and cookies does not matter, we

depict cookies to have a rectangular shape for simplicity of display. Assuming

that raisins are well mixed and the volumes of cookies are equal there will be 

raisins in the cookie on average with the probability of one raisin  = 1. The
exact distribution of the number of raisins in the cookie  follows a binomial

distribution with probability Pr( = ) =
¡



¢
(1 − )− Thus, the exact

probability that the cookie has at least one raisin is

Pr( ≥ 1) = 1− Pr( = 0) = 1−
µ
1− 1



¶

 (1.13)

If  and  are large, we can approximate the binomial distribution with the

Poisson distribution letting  =  For large  the probability, 1 is small,

and  can be interpreted as the repetition of  experiments with the mean

 =  =  Thus, the probability that a particular cookie has  raisins can

be approximated as

Pr( = ) =
1

!
e−

³ 


´
 (1.14)

Then, the probability that at least one raisin will be in a cookie is Pr(  0) =
1 − Pr( = 0) = 1 − e− We shall show that (1.14) and (1.13) are close

for large  Indeed, using the approximation (1− 1) ' e− and letting

 =  we obtain lim→∞
¡
1− 1



¢
= e− ' e− Thus, for large  both

formulas give close answers. ¤
In applied probability and statistics, we often need to translate a vaguely

formulated real-life question to a rigorously defined problem. Typically, we need

to make some assumptions — the next example illustrates this point.

Example 1.20 Probability of a safe turn. Consider turning from a side

street onto a busy avenue. There are, on average, 10 cars per minute passing your

side street. Assuming that the time between cars follows a Poisson distribution

and it takes five seconds to enter the traffic stream safely, what is the probability

that you will be able to enter without waiting for a break in traffic?

Solution. Let  denote the time in seconds between two passing cars. On

average, the number of seconds between two passing cars is 6010 = 6 Since 



36 Chapter 1. Discrete random variables

follows a Poisson distribution,  ∼ P(6) in order to safely turn on the avenue
right after you come to the intersection, the time between two passing cars should

be   5 Thus, the requested probability is computed as complementary to the
cdf:

Pr(  5) = 1− Pr( ≤ 5) = 1− ppois(q = 5 lambda = 6) = 05543204

Do not make an instant turn unless you are chased by a person who wants to kill

you. See Example 2.17, where we compute the wait required for a safe turn. ¤
An important property of the Poisson distribution is that the sum of indepen-

dent Poisson variables follows a Poisson distribution with the rate equal the sum

of individual rates. Namely, if  ∼ P()  = 1 2   and  are independent,

then
X
=1

 ∼ P
Ã

X
=1



!
 (1.15)

We will prove this property using the moment generating function in Section 2.5

of the next chapter. The next example uses this property.

Example 1.21 No typos. The distribution of the number of typographical er-

rors per 100 pages of a document follows a Poisson distribution with a mean value

4. (a) What is the probability that a 300-page book will have no typos? (b) What

is the probability that it will have more than 5 typos? (c) What is the probability

that a book of 157 pages has no typos? (d) Run simulations that confirm your

analytic answer with  as an argument in the R code.

Solution. (a) Let 1 be the number of typographical errors on the first 100

pages of the book. We know that 1 ∼ P (4)  Analogously, let 2 and 3 be

the number of errors on the next 100 pages and the last 100 pages, respectively.

Assuming that the locations of errors are independent, the number of errors in 300

pages,  = 1 +2 +3 has a Poisson distribution with  = 3× 4 = 12 Now,
to compute the probability that there are no errors on 300 pages, we simply let

 = 0 so the answer is Pr( = 0) = 1
0!e12 12

0 = e−12 = 61× 10−6 Alternatively,
we can compute this probability in R as dpois(0,lambda=12). In the previous

solution, we assume that the distribution of typos follows a Poisson distribution.

Alternatively, one can assume that the distribution of typos follows a binomial

distribution with  = 300 and the probability of typo per page  = 4100 = 125
Then the probability that there will be no typos in 300 pages is (1− 125)300 =
48 × 10−6 (b) The probability that a 300-page book has 5 typos or less is
the cumulative probability and can be computed using ppois function. The

probability that the book has more than 5 typos is the complementary probability,

1-ppois(5,lambda=12). The answer is 0.9872594. (c) The previous solution

used in (a) and (b) only works when the number of pages in the book is multiple

of 100. What if the number of pages in the book is not multiple of 100, like
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157? Then the probability that there are  =  typos on  pages can be

modeled using a Poisson distribution with  = 4100 = 004 Following the
previous argument, the probability that there are no typos in a 157-page book

is (0!e004×157)−1 (004× 157)0 = e−004×157 = 187 × 10−3 (d) Imagine a large
number of books with  pages with the number typos distributed according to

the Poisson distribution P(004) If  counts the number of typos in each book,

the probability that there are no typos is estimated as the proportion of books

with  = 0 The probability of this setup can be estimated using the following
line of code, mean(rpois(n=10000000,lambda=0.04*157)==0), where n is the

number of books/simulations and  = 157 (of course, n and lambda may take
any values). This command gives the result 0.0018742, close to our analytic

answer.

Problems

1. (a) Prove that, for   1 probabilities of the Poisson distribution decrease
with  (b) Prove that for   1 the maximum probability occurs around

− 1 [Hint: Consider the ratio Pr( =  + 1) to Pr( = ).]

2. Explain why the distribution of rare diseases, such as cancer, follows a

Poisson distribution.

3. Find the minimum number of toys in Example 1.17 that ensures each child

gets a toy with probability 99%

4. (a) Write an R program that computes and plots Poisson distributions of

the fertility rates (births per woman) in the United States and India. See

https://data.worldbank.org/indicator/sp.dyn.tfrt.in. [Hint: Use plot with

option type="h" and depict the two bars with different color slightly shifted

for better visibility, use legend.]

5. Prove that for the Poisson distribution, var() =  using formula (1.6).

6. What is the probability that one cookie will have all  raisins?

7. It is well known that the interval mean ±2× SD covers about 95% of the

distribution. Test this statement for the Poisson distribution by gener-

ating observations using the ppois function in R: plot the Poisson prob-

abilities on the -axis versus a grid of values for  on the -axis, say,

lambda=seq(from=.1,to=3,by=.1), and plot the 095 horizontal line.

8. Illustrate Theorem 1.18 by plotting Poisson and binomial probabilities side

by side for large  and small  (make them arguments of your R function).

9. 10% of families have no children. Assuming that the number of children in

the family follows a Poisson distribution, estimate the average number of

children in the family.
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10. What is the probability that a randomly chosen family with the number of

children two or more has children of the same gender? Run simulations to

check the answer. [Hint: Assume a Poisson distribution and use conditional

probability.]

11. Referring to problem 3 from Section 1.2, how many monkeys is required

so that at least one monkey types the novel with probability 09? Use an
approximation similar to that from Example 1.19.

12. (a) Write R code that simulates Example 1.20. (b) Confirm the probability

of a safe turn using simulations.

13. The number of children in the family follows a Poisson distribution with

 = 18 Six families with kids are invited to a birthday party. What is the
probability that more than 15 kids come to the party. Give the answer under

two scenarios: (a) family brings all kids they have, and (b) the probability

that they bring a child is 08 Write a simulation program to check your

answer.

1.8 Random number generation using sample

1.8.1 Generation of a discrete random variable

A general finite-value discrete random variable,  takes values x ={  =
1 2  } with probabilities p ={  = 1 2  } In this section, we address
the problem of generating a random sample from this distribution. In R, this

can be done using a built-in function sample: to generate a random sample of

size 10K we issue sample(x=x, size=10000, replace = T, prob = p). Note

that arrays x and p must have the same length; replace means that values are

drawn with replacement (otherwise, if size is greater than  the sample cannot

be generated).

In the following example, we use the function sample to generate 10,000

Poisson random numbers and test the sample by matching the empirical and

theoretical probabilities. Note that since Poisson random variable is unbounded,

we must truncate the probabilities. Of course, sample is used here solely for

illustrative purposes. A better way to generate Poisson numbers is to use rpois.

Example 1.22 R sample. Generate 10,000 observations from a Poisson distri-

bution with parameter  using sample and compare with theoretical probabilities

by plotting them on the same graph.

Solution. We need to set an upper bound on the outcomes  since the Poisson

distribution is unbounded. For example, we may set max() =  + 5
√
; this

guarantees that the right-tail probability is very small. The R code is found in

file sampP.r. Option replace=T implies that some observations may repeat. We
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may use replace=F (the default option) if distinct observations are required. This

option is used when a subsample with no repeat values is needed (size  ).

For example, if one needs a subsample from a survey of 1,000 families, option

replace=F must be used because otherwise one may get repeated observations as

if the same family was asked twice. Note that the empirical probabilities do not

exactly match the theoretical probabilities (bars) even for a fairly large number of

simulated values, nSim=10000. However sampP(nSim=100000) produces points

landing almost on the top of the bars. ¤

One can sample from a character vector x. For example, sample(x=c("John",

"Tom","Rebecca"),size=100,rep=T,prob=c(.25,.5,.25)) produces an array

of size 100 with components "John","Tom",and "Rebecca". The function sample

is very useful for resampling such as bootstrap — see Example 5.7.

1.8.2 Random Sudoku

Sudoku is a popular mathematical puzzle that originated in France almost two

hundred years ago. The objective is to fill blank cells of a 9× 9 grid with digits
so that each column, each row, and each of the nine 3 × 3 subsquares contains
all of the digits from 1 to 9. We say Sudoku is complete (solved) if there are no
blanks; see Figure 1.9 for some complete Sudoku puzzles. By contrast, a Sudoku

with blank cells are called puzzle Sudoku. The goal of this section is to illustrate

how sample command can be employed to generate and display Sudoku puzzles.

The key to the following theorem is permutation of indices {1 2 3 4 5 6 7 8
9} For example, a permutation vector p = (3 9 5 4 8 7 2 6 1) means that 1 is
replaced with 3, 2 is replaced with 9, etc. In words, this operation may be viewed
as index relabeling.

Theorem 1.23 Let A be a complete Sudoku and p be any permutation of {1 2 3
4 5 6 7 8 9} Then B = A(p) is also complete Sudoku.

According to our definition, A(p) leads to another complete Sudoku where 1
is replaced with 2 2 is replaced with 2 etc. We refer the reader again to Figure
1.9 where the daughter Sudoku (B) is derived from the mother Sudoku (A) by the
permutation vector p = (3 9 5 4 8 7 2 6 1) 9! = 362880 daughter Sudokus can
be derived from a mother Sudoku. The connection to sample is that a random

permutation vector can be obtained as sample(1:9,size=9,prob=rep(1/9,9)).

This means that from one mother Sudoku, we can create many other puzzles

(daughter Sudokus) using the sample command.

As was mentioned earlier, in a puzzle Sudoku, some cells are blank, and

Sudoku solver needs to fill in the blanks to arrive at a complete Sudoku; see

Figure 1.10. The number of blanks determines how difficult the Sudoku puzzle

is. For example, with only few blanks the Sudoku is easy. Similarly, a Sudoku

with almost all its cells blank is not difficult to solve as well. To create a puzzle
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Figure 1.9: Mother and daughter Sudokus. The daughter Sudoku is created from

the mother Sudoku upon permutation vector p = (3 9 5 4 8 7 2 6 1)

Sudoku from a complete Sudoku, one needs to blank out some cells, for example,

at random locations. Such a puzzle Sudoku is called a random Sudoku. If  is

the number of blank cells, then the number of combinations of empty cells out of

81 is
¡
81


¢
 Therefore the total number of possible empty cells is

81X
=1

µ
81



¶
= 281 = 2417 851 639 229 258 349 412 351

enough to keep a Sudoku lover busy!

The R code for displaying, testing, and generating a random puzzle Sudoku is

found in file sudoku.r. The internal function test.sudoku tests whether a 9× 9
matrix composed of digits from 1 to 9 is a complete Sudoku. It returns 1 if the

Sudoku is complete and 0 otherwise. In the latter case, the number of unique

values in each row or column is less than 9, or the number of unique values in

each small square is less than 9. The internal function display.sudoku plots the

9× 9 square and the digit in each cell. When the cell is blank, it is specified as
missing (NA), and therefore is not displayed.

The sudoku function does three jobs: The option job=1 plots the mother

Sudoku and tests whether it is complete (of course other mother Sudoku may

be used). The option job=2 creates Figure 1.9. To create a random daughter

Sudoku, a random permutation is computed using the sample command (the

result is vector i9). The random number generation is controlled by setrand;

different values of setrand will produce different daughter Sudokus.

The option job=3 produces a puzzle Sudoku. First, it generates a random

daughter Sudoku from the mother Sudoku using a random permutation, and

second, the specified number of cells are blanked. In the Sudoku at left in Figure
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Figure 1.10: Two puzzle Sudokus with different number of blank cells (n empty).

The Sudoku at left is easier than Sudoku at right. This figure is generated by

issuing sudoku(job=3).

1.10, this number is n.blank=30, and in the Sudoku at right, this number is

n.blank=50. Once the number of blank cells is given, the random cells get

blank/missing again using the sample command applied to 81 pairs of digits
( ) where  = 1 2  9 and  = 1 2  9 These 81 pairs are generated using
the rep command with two options times and each. Using this function, random

puzzle Sudokus of various levels of difficulty can be generated.

Problems

1. Use sample to generate binomial random numbers by modifying the afore-

mentioned function sampP. Test the sample by plotting the empirical and

exact probabilities side by side.

2. Generate  = 100000 of  = 5-element arrays (12 ) of Bernoulli
variables with probability  using sample and compute the proportion of

simulated samples when
P

=1(2
2
 − ) = 1 Plot this proportion as a

function of  = 01 02  09 Explain the result. [Hint: Generate 

binary variables and form an  × matrix X; then use rowSums.]

3. Randomly select characters from Example 1.14 and plot the letter fre-

quency in the two samples side by side as in Figure 1.6. Do the frequencies

look alike? [Hint: Generate random characters using random index arrays

ir1=sample(1:N,size= N/2,prob=rep(1/N,N)) and to exclude those in

ir1 as ir2=(1:N)[-ir1] where N=length(ch). ]



42 Chapter 1. Discrete random variables

4. Write an R function that, given two complete Sudokus, tests whether one

Sudoku can be obtained as a permutation of another.

5. Is it true that reflections and transpositions of a complete Sudoku can be

expressed via permutation?

6. (a) Demonstrate that when the number of blank cells is small or close to 81,

Sudoku is easy to solve (by solving yourself). (b) Take any mother Sudoku,

create a random Sudoku with number of blank cells equal 40, and try to

solve it. Is it harder than in (a)?

7. Create a new mother Sudoku by reflection and transposition of 3×3 squares.
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Continuous random variables

Unlike discrete random variables, continuous random variables may take any

value on a specified interval. Usually, we deal with continuous random variables

that take any value on an infinite or semi-infinite interval, denoted as (−∞∞) or
(0∞) respectively. Some continuous random variables, such as uniform or beta-
distributed random variables, belong to an interval. A characteristic property of

a continuous random variable is that Pr( = ) = 0 for any value  Although it
is possible that a random variable is a combination of a discrete and a continuous

variable, we ignore this possibility. Thus, only continuous random variables are

considered in this chapter, with calculus as the major mathematical tool for

investigating of distributions of these variables. Regarding the notation, typically,

random variables are denoted as uppercase, like  and the values it takes or the

argument of the density function as lowercase, . This notation rule will be

followed throughout the book.

2.1 Distribution and density functions

While the cumulative distribution function (cdf) is defined for both types of

variables, the probability density function (pdf), or density function, is defined

only for the continuous type.

2.1.1 Cumulative distribution function

The cumulative distribution function (cdf), or distribution function of a random

variable  is defined as

() = Pr( ≤ ) −∞   ∞ (2.1)

In words, the cdf is the probability that the random variable  takes a value less

than or equal to  where  may be any number. Since the distribution function
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Figure 2.1: Typical distribution functions for discrete and continuous random

variable. Discrete cdf is discontinuous and takes the step  and  On the other

hand, the cdf of a continuous random variable is a continuous function.

is a cumulative probability, it is an increasing function of  and takes nonnegative

values in the interval [0,1].

A cdf has the following properties:

1. The cdf is an increasing function: 1 ≤ 2 implies  (1) ≤  (2)

2. The upper limit of the cdf is 1:  (+∞) = 1 or, more precisely, lim→∞  ()
= 1

3. The lower limit of cdf is 0:  (−∞) = 0 or, more precisely, lim→−∞  () =
0

The first property follows directly from the definition of the distribution func-

tion; the other two properties are obvious. A function  is a distribution func-

tion if it satisfies properties 1, 2, and 3. For any  ≤  the probability that

the random variable belongs to the interval ( ] can be expressed via a cdf as
Pr(   ≤ ) =  () −  () The cdf is defined for discrete or continuous
random variable.

If a discrete random variable takes  distinct values {  = 1 2  } with
respective probabilities {  = 1 2  } the distribution function takes a step
of height  at  This function is continuous from the right but is discontinuous

from the left. For a continuous random variable, the distribution function is

continuous on the entire real line. See Figure 2.1.

The cdf completely defines the distribution of a continuous random variable.

The distribution function is a mathematical concept — in applications, we have

to estimate it by the empirical cdf.
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2.1.2 Empirical cdf

Let random variable  with unknown cdf,  take values 1 2  . We say

that these values are the realization (or observations) of  or a random sample

from a general population specified by cdf  .

The procedure to compute the empirical cdf has two steps:

1. List observations in ascending order, (1) ≤ (2) ≤ · · · ≤ () so that

(1) = min and () = max  {()} are called order statistics.
2. Compute the empirical cdf treating the sample as a discrete random variable

that takes values () with probability 1. This means that the cdf is
computed as b () = 1


#( ≤ ) (2.2)

where sign # means the number of observations equal to or less than .

Sometimes the notation ( ≤ ) is used, where  is an indicator function
with values 0 or 1; then #( ≤ ) =

P
=1 ( ≤ ) We use “hat” (b) to

indicate that this is an estimator of  a common notation is statistics. It

is easy to see that (2.2) can be expressed as a step-wise function with step

 at () This means that the empirical cdf can plotted as  on the

-axis versus () on the -axis.

For each , one can treat the numerator in b () as the outcome of the binomial
random variable with Bernoulli probability  () in  trials, where  is the true

cdf. Since the expected number of successes is  () we have ( b ()) =  ().
We say that the empirical cdf is an unbiased estimator of the true cdf. Moreover,

since var( b ()) =  ()(1− () the empirical cdf approaches  when →∞

In statistics, theses two properties of an estimator are called unbiasedness and

consistency, respectively.

It is easy to plot the empirical distribution function in R using the com-

mand plot() with option type="s" after the original sample is ordered using

the order() or sort() command. This method is illustrated in the following

example.

Example 2.1 Web hits cdf. An Internet company analyzes the distribution of

the number of visitor hits during the day. The dataset compwebhits.dat contains

the times recorded by a computer server for 100 hits during a typical day. Plot

the empirical cdf and interpret its pattern.

Solution. The R code below produces Figure 2.2. First, we order observations.

Second, we create values for the cdf {1 2 1} and finally plot. Sometimes,
we use a continuity correction and plot (− 05) on the -axis,

webhits=function()

{
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dump("webhits","c:\\statbook\\webhits.r")
x-scan("c:\\statbook\\comwebhits.dat") # read the data
x-x[order(x)];n-length(x) # order observations

Fx-(1:n)/n # values for cdf

plot(x,Fx,type="s",xlab="Time of the website hit, h",

ylab="Probability, cdf")

text(17,.2,paste("Number of hits during 24 hours =",n))

}

Looking at the figure, one may notice that b () = 0 for   5 a.m. — people

are sleeping. The intensity of visitor hits picks up at around 8 a.m. as people

wake up. Hits have a steady rate until 3 p.m. and then slow down. Better

insights into the intensity of the hits can be drawn from plotting a histogram; see

the next section.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Em pirica l cd f of the  com pany w ebsite h its

Time of the website hit (h)

P
ro

ba
bi

lit
y

Number of hits = 100

Figure 2.2: Cumulative distribution function of 100 website hits during a typical

day.

2.1.3 Density function

As we mentioned before, Pr( = ) = 0 for a continuous random variable. In

words, the probability that a continuous random variable takes a specific value

is zero. Therefore instead of the point probability, we consider the infinitesimal

probability when the length of the interval goes to zero:

Pr(   ≤ + )


 (2.3)
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Since Pr(   ≤ +) =  (+)− () we define the infinitesimal probability
as

() = lim
→0

 (+ )−  ()


 (2.4)

called the probability density function (pdf), or shortly the density. As follows

from the Fundamental Theorem of Calculus, the pdf is the first derivative of the

distribution function,

() =  0()

and conversely

 () =

Z 

−∞
()

Density has the following properties:

1. () ≥ 0 for all 

2.
R∞
−∞ () = 1

The first property follows from the fact that cdf is an increasing function.

Hence pdf cannot be negative. The second property follows from the fact that

 (∞) −  (−∞) = 1 It is easy to see that (±∞) = 0 because otherwise the
second property would not hold.

The density reaches its maximum at themode. It is fair to refer to the mode as

the most probable value of the random variable because the density at the mode

is maximum. We say that the distribution is unimodal if there is one mode, i.e.

() is (strictly) increasing to the left of the mode and (strictly) decreasing to the
right of the mode. We say that the random variable is symmetric if its density is

symmetric around the mode. The support of the density is where it is positive.

A continuous random variable may be defined on a finite or semi-infinite interval;

we call this interval the support of the density.

Example 2.2 Pdf=cdf. Can the same function be the cdf and the pdf at the

same time?

Solution. Yes. Let () be a cdf and pdf at the same time. Then this function
satisfies the ordinary differential equation (ODE) 0 =  with a solution () = e
Of course, e cannot be a cdf for all  because its values goes beyond 1, but if
 ∈ (−∞ 0) function () = e satisfies the properties of a cdf. Moreover, since
the general solution to ODE 0 =  is of the form e+ where  is any constant,
we conclude that the only function that is both a cdf and a density is of the form

() = e+ on the interval −∞    −. This distribution emerges in Section
2.10 as the limiting distribution of the maximum of observations.
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Problems

1. Why can one treat the numerator in (2.2) as the outcome of the binomial

random variable with Bernoulli probability  () in  trials? [Hint: Use the
indicator function 1( ≤ ) as a Bernoulli random variable.]

2. A linear combination of distributions is called a mixture distribution; see

Section 3.3.2. (a) Prove that if  and  are two cdfs and 0 ≤  ≤ 1 is
a fixed number, then  + (1 − ) is a cdf (mixture). (b) Prove that

a similar statement holds for two densities. (c) In the general case, prove

that
P

=1 () and
P

=1 () are mixture cdfs and densities, where
 and  are component cdfs and densities,  ≥ 0 and

P
=1  = 1

3. Let  be a continuous random variable and  be its strictly increasing cdf.

Prove that random variables  () and 1− () have the same distribution.
[Hint: Prove that the cdf of  () is ]

4. (a) Plot the cdf in Example 2.1 with the continuity correction using a

different color on the same plot. Does it make any difference? (b) Plot

( ((+1))− (()))((+1)−()) versus ()Make a connection to density.

5. Let random variable  have cdf () and density () Find the cdf
and density of  =  +  [Hint: Consider cases when   0 and   0
separately.]

6.  is a cdf. Is   a cdf?

7. Let  and  be cdfs. Is their product a cdf? Does an analogous statement

hold for densities? [Hint: If the answer is positive prove it, otherwise provide

a counterexample.]

8. (a) Is it possible that for two cdfs  ()  () for all ? (b) Is it possible
that that for two densities, ()  ()? (c) Is it true that two cdfs always
intersect? (d) Is it true that two pdfs always intersect?

9. If () is a density with support on the entire line, is () = (2) a density?
The same question but support of  is positive numbers.

10. The density of a random variable is defined as × sin for 0     and

0 elsewhere. Find  and the cdf.

2.2 Mean, variance, and other moments

The mean and variance of a continuous random variable are defined as for a dis-

crete distribution with the sum replaced by an integral. The mean of a continuous
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distribution with density () is defined as

 =

Z ∞

−∞
() (2.5)

and the variance is defined as

2 =

Z ∞

−∞
(− )2()

We often shorten the notation for mean and variance to () and var(), respec-
tively. Sometimes, we use the notation for the standard deviation, SD() = .

The following formula describes the relationship between the mean and variance,

2 = (2)− 2 (2.6)

as the counterpart of (1.7). Since variance is nonnegative, we conclude

|| ≤
p
(2) (2.7)

The mean,  can be interpreted as the center of gravity of a stick with

mass density () similar to the discrete case as discussed in Section 1.4.1. By
definition,  is the center of gravity defined as the point at which the resultant

torque is zero, Z ∞

−∞
(− )() = 0

which leads to definition (2.5).

Example 2.3 Expectation via cdf. Prove that

() = −
Z 0

−∞
 ()+

Z ∞

0
(1−  ()) (2.8)

where  is the cdf of 

Proof . We haveZ ∞

−∞
() =

Z 0

−∞
()+

Z ∞

0
()

Using integration by parts in the first integral, define  =   = () which
implies  =  and  =  () Consequently, the first integral can be expressed
as Z 0

−∞
() =  ()|0−∞ −

Z 0

−∞
 () = −

Z 0

−∞
 ()

In the second integral, let  = − That impliesZ ∞

0
() = −

Z 0

−∞
(−)
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Use integration by parts again by letting  =   = (−) which implies
 =  and  = 1−  (−) Consequently,Z 0

−∞
(−) = (1−  (−))|0−∞ −

Z 0

−∞
(1−  (−)) = −

Z ∞

0
(1−  ())

Combining the two integrals yieldsZ ∞

−∞
() = −

Z 0

−∞
 ()+

Z ∞

0
(1−  ())

The identity (2.8) is proved. ¤
When two random variables are measured on different scales, their variation

is easier to compare using the coefficient of variation (CV):

CV =





Sometimes CV is expressed as a percent to eliminate units. Indeed, CV does

not change when applying the transformation  →  where  is a positive

coefficient. This coefficient naturally emerges in the lognormal distribution; see

Section 2.11.

The mean and variance may not exist for certain distributions. For example,

they do not exist for the Cauchy distribution defined by the density

() =
1



1

1 + 2
 −∞   ∞ (2.9)

Indeed, the integral
R∞
−∞ (1 + 2) does not exist.

The th noncentral () and central () moments are defined as

 =

Z ∞

−∞
()  =

Z ∞

−∞
(− )()

In another notation,

 = ()  = (( − ))

The first noncentral moment is the mean and the second central moment is the

variance. We say that the distribution is symmetric if the density is an even

function around , i.e. (− ) = (− ) For symmetric distributions all odd
central moments are zero and the mean and mode coincide.

To characterize how skewed a distribution is, we use the skewness coefficient:

Skewness =
3
3

 (2.10)

This coefficient is scale independent, so random variables can be compared on

the relative scale. If the skewness coefficient is less than zero, we say that the
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Skewed to left, skewness < 0
Long left tail

D
en

si
ty

Symmetric, skewness = 0
Skewed to right, skewness > 0

Long right tail

Figure 2.3: Three types of distributions with respect to the skewness.

distribution is left skewed (long left tail); if the skewness coefficients greater than

zero, we say that the distribution is right skewed (long right tail; see Figure 2.3).

The skewness coefficient is zero for a symmetric distribution, but skewness = 0

does not imply that the distribution is symmetric.

Flat, kurtosis < 0 Normal, kurtosis = 0 Sharp, kurtosis > 0

Figure 2.4: Three types of distributions with respect to kurtosis.

Kurtosis is used to characterize how flat the distribution is and is computed

by the formula

kurtosis =
4
4
− 3 (2.11)

Alternatively, we may say that kurtosis characterizes the sharpness of the density.

This coefficient is scale independent as well. The 3 is subtracted to make the

normal distribution the reference with kurtosis = 0. For densities with a sharp

peak, the kurtosis is positive; for flat densities, the kurtosis is negative. All three

cases are illustrated in Figure 2.4.

We calculate skewness and kurtosis for some continuous distributions later in

this chapter.

The expectation is defined for any function  of the random variable as

(()) =

Z ∞

−∞
()()

Of course, the expectation may not exist.
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Example 2.4 Jensen’s inequality. If  is a convex function ( 00 ≥ 0) then

(()) ≥ (()) (2.12)

If  is a concave function ( 00 ≤ 0) then

(()) ≤ (())

Solution. Since  is convex, we have () ≥ (0) + (− 0)
0(0) for all .

Replace  with  and let 0 =  = ():

() ≥ () + ( − ) 0() (2.13)

Taking the expectation of both sides, we obtain

(()) ≥ (()) +( − ) 0() = (())

The inequality is proved. We prove the inequality similarly for the concave func-

tion.

Remark 2.5 If function  is strictly convex, i.e.  00  0 and Pr( = )  1
(random variable is not a constant), then (2.12) turns into a strict inequality.

This follows from the fact that (2.13) turns into a strict inequality for  6= 

Examples (all functions  are strictly convex):

1. () = 2 : (2)  2()

2. () = ln : (ln)  ln() if   0

3. () = 1 : (1)  1() if   0

Example 2.6 Cauchy inequality. Prove that for any random variables  and

 we have

2( ) ≤ (2)( 2) (2.14)

and the equality holds if and only if  =  where  is a constant (all expecta-

tions are finite).

Solution. Define  =  −  and express the second noncentral moment

through  as

(2) = ( 2)− 2( ) + 2(2)

The right-hand side is a quadratic function of  Since (2) ≥ 0 the discrimi-
nant should be nonpositive, 2( )−(2)( 2) ≤ 0 The equality is true if
and only if the discriminant is zero, which happens if  =  with probability

1. ¤
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We make several comments: The Cauchy inequality is sometimes called the

Cauchy—Schwarz inequality. The Cauchy inequality holds for discrete random

variables as well. Inequality (2.14) can be expressed in terms of any functions 

and :

2(()( )) ≤ (2())(2( )) (2.15)

One may just think of () and ( ) as new random variables. Letting ( ) = 1
we get

|(())| ≤
p
(2())

an analog of inequality (2.7). Also, it is easy to apply the Cauchy inequality to

random variables with the means subtracted:

2[( − )( −  )] ≤ 2
2
  (2.16)

This inequality proves the correlation coefficient takes values within the interval

[−1 1]. Note that this inequality turns into an equality if and only if random
variables are proportionally related,  −  = ( − )

The Cauchy inequality can be rewritten in discrete or integral fashion. The

discrete version is well known in linear algebra as the inequality between the

scalar product and the squared norm,

(x0y)2 ≤ kxk2 kyk2 

where x0y is the scalar (inner, dot) product, or in the index formÃ
X
=1



!2
≤
Ã

X
=1

2

!Ã
X
=1

2

!
 (2.17)

The integral version of the inequality is obtained by expressing the expected

values in (2.15) via integrals,µZ ∞

−∞
()()

¶2
≤
Z ∞

−∞
2()×

Z ∞

−∞
2()

provided the integrals on the right-hand side exist. This inequality can be proved

using the same method as in Example 2.6.

Under mild conditions, it can be proven that a distribution is uniquely defined

by all its moments. We can demonstrate this fact on a discrete random variable:

If a random variable takes  distinct values  the noncentral moments  for

 = 1 2   − 1 uniquely define probabilities  We want to prove that the
system of linear equations given by − 1 equations,

X
=1



 = 
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has a unique solution for  Note that we have −1 equations because
P

=1  =
1 This system of equations has a unique solution for  because its determinant,

called the Vandermonde determinant, is not zero.

The following result illustrates how instrumental calculus is in probability and

statistics.

Example 2.7 Stein’s identity. Let  be a differentiable density of a continuous

random variable  (without loss of generality it is assumed that the support is

the entire line) and  be a differentiable function on (−∞∞) such that (())
is finite. Prove that



£
()(ln ())0 + 0()

¤
= 0

where 0 means derivative.

Solution. Represent the expectation as an integral. Since (ln ())0 =  0()
() we obtainZ ∞

−∞
[()(ln ())0+ 0()]() =

Z ∞

−∞
() 0()+

Z ∞

−∞
0()()

Now we apply integration by parts,
R∞
−∞  = |∞−∞ −

R∞
−∞  by letting

 = () and  =  0() so that  = 0() and  = () This impliesZ ∞

−∞
() 0() = ()()|∞−∞ −

Z ∞

−∞
0()()

Since (())  ∞ we have ()()|∞−∞ = 0 Therefore, the Stein’s identity
follows.

2.2.1 Quantiles, quartiles, and the median

The th quantile,  is the solution to the equation

 () =  0    1

where  is the cdf. In the language of the inverse cdf, we can define the th

quantile as  = −1() The 1
4 quantile is called the lower (or the first) quartile

and is denoted as 14 and the
3
4th quantile is called the upper (or the third)

quartile and is denoted as 34 The median is the
1
2 quantile (or the second

quartile):

 (median) =
1

2
 (2.18)

Percentile is a quantile expressed as a percent: 75th percentile, 25th percentile,
etc. Quantiles and quartiles can be used to characterize the range of the distri-

bution. We may characterize the range of the distribution using 14 and 34
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also called the interquartile range, which indicates that 50% of values fall be-

tween them. In other words, the interval [14 34] contains 50% of the random

variable values.
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Figure 2.5: Quartiles for the webhits data.

Example 2.8 Web hits. Compute and display 14 12 and 34 for the web

hits example. Find the interquartile range.

Solution. The requested quantities are simply computed as x[n/4],x[n/2],

and x[3*n/4], the R function is in the file webhitsQ.r. The interquartile range

interval is [1] 9.21461 13.56446. About 50% of the web hits happen between

9:30 a.m. and 2 p.m. The R function webhitsQ produces Figure 2.5.

2.2.2 The tight confidence range

Quantification of the range of a random variable that represents the general

population is an important task of applied statistics. In many applications, the

standard deviation, , serves as a characteristic of the range, and sometimes

authors use ± to report the scatter of the random variable. Using the interval

±  where  is a constant, silently assumes that data are symmetric around

the mean. When a distribution is not symmetric, a symmetric interval around

the mean is not optimal because the same coverage probability can be obtained

using an interval with a smaller width. Thus, we arrive at the concept of the

tight confidence range. We emphasize the difference between confidence range

and confidence interval in statistics that covers the true unknown parameter, see

Section 7.8.
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Definition 2.9 The th tight confidence range for a random variable  is the

interval [  ] such that (a) Pr(   ≤  ) = , and (b)  −  = min 

The th tight confidence range is the shortest interval that contains values of

the random variable with probability  For example, the interquartile interval

contains 50% of the values but may be not optimal. On the other hand, the 50%

tight confidence range will be optimal because among all intervals which contain

50% of the data it is the narrowest. The following theorem states that the density

values at the ends of the tight confidence range must be the same.

Theorem 2.10 (a) If  has a continuous and differentiable unimodal density 

(the mode belongs to the open support) and [  ] is the th tight confidence range,
then

() = ( ) (2.19)

(b) The th tight confidence range contains the mode, and when  → 0 this
interval shrinks to the mode.

Proof. (a) By the definition of the th tight range interval (   ) we must
have Z 

−∞
()−

Z 

−∞
() =  (2.20)

Find  and  by solving the optimization problem  −  = min under constraint
(2.20). Introduce the Lagrange function

L(  ;) =  − − 

µZ 

−∞
()−

Z 

−∞
()− 

¶


where  is the Lagrange multiplier. The necessary conditions for the minimum

are
L

= −1 + () = 0

L


= 1− ( ) = 0

These equations imply (2.19). Since  is a unimodal equation () =  has two

solutions,  and  for each  ∈ (0max ()) (b) Interval [  ] contains the mode
for each   0 and it shrinks to the mode because  is a continuous function. ¤

The above theorem helps compute the th tight confidence range. To find 

and  we need to solve a system of equations:

 ( )−  () =  () = ( ) (2.21)

where  is the cdf. We will illustrate computation of the tight confidence range

later in the chapter. For symmetric distributions, this interval takes the regular

form ± The tight confidence range is especially advantageous for asymmetric
distributions, such as the gamma distribution in Section 2.6 or the lognormal

distribution in Section 2.11.
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The th tight confidence range can be defined for discrete distributions as well

as (  ) such that Pr(   ≤  ) ≥  and  −  = min  Note that we use the
inequality sign here because one cannot find  and  such that Pr(   ≤  ) = 

due to discreteness of the distribution. Since the probability is a discrete function,

we cannot rely on calculus. Instead, we use direct computation to find  and 

as in the following example.

Example 2.11 Confidence range for the binomial distribution. Write

an R code to compute the 100% tight confidence range for the binomial random

variable.

Solution. The R code is found in the text file tr.binom.r; see Section 1.5.3 to

read the file. To find the optimal range, we use double for loop over m and M. If,

for certain  and we have Pr(   ≤) ≥  we check if the length of the

interval is smaller than the current one. Specifically, if minDIF. If M-mminDIF,

we save  and  as m.opt and M.opt, respectively. For example, the call

 tr.binom(n=100,p=.3,lambda=.75)

[1] 23.0000000 34.0000000 0.7616109

gives the 75% range (23 34) which has the minimal width among all intervals
that contain the binomial random variable with probability equal to or greater

than  In fact, the range (23 34) gives the probability 0762  075. ¤

In applied statistics, we shall use the confidence range to determine the range

of individual values as opposed to the traditional confidence interval that is in-

tended to determine the range of an unknown parameter, such as the mean,

 Example 2.29 illustrates the computation of the tight confidence range for a

distribution of house prices on the real estate market.

Problems

1. Prove that var() ≤ (2) Is it true that ( − ) ≤ () for any
even positive integer ? Specify distributions for which this is true.

2. (a) Prove that |()| ≤ 1(||) for  ≥ 1 (b) Prove that (3) ≥
3() if   0

3. (a) Prove formula (2.6). (b) Derive (2.6) from the Jensen’s inequality.

4. The central moments can be expressed via noncentral moments using poly-

nomial expansion of (−) Provide a recursive formula for the coefficients
of ( − )+1 as a linear combination of 1  +1 [Hint: Use formula
(1.9).]

5. Prove that skewness and kurtosis are scale independent. In other words,

skewness and kurtosis are the same for  and  where   0
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6. Prove that the cdf of the Cauchy distribution with density (2.9) is 1

arctan+

1
2  Find the median and the

1
4 and the

3
4 quantiles. Show that they are sym-

metric around zero. Define the shifted Cauchy distribution and find its cdf.

7. The density of a random variable is defined as (1− 2) for || ≤ 1 and 0
elsewhere. Find  the cdf, the mean, and the median. Plot the density and

cdf in R using mfrow=c(1,2).

8. Express the fourth central moment as a linear combination of noncentral

moments. Express the fourth noncentral moment as a linear combination

of central moments. [Hint: Use formula (1.9).]

9. The support of  is (−1 1). Is it true that the th central moments vanish
when  →∞? Is it true for noncentral moments?

10. Prove that the Poisson distribution is skewed to the right. [Hint: Prove

that the third central moment is positive.]

11. Prove that  (()) is a convex function of   0 where  is a nonnegative
function. Derive the respective Jensen’s inequality.

12.   0 and  is a pdf. Is  a pdf? [Hint: Use Jensen’s inequality.]

13. Plot in R two densities for which median is greater that mode and mode is

greater than median. Describe the distributions for which this is true using

the language of tail.

14. Prove that ( ()) = 12 where  is the cdf of  [Hint: Assume contin-

uous distribution and apply change of variable.]

15. Prove that the minimum of
R 
−∞  ()+

R∞

(1− ()) attains when 

is the median.

16. Let a continuous random variable have a positive continuously differen-

tiable density with unique maximum, or specifically, (ln )0 = 0 has unique
solution, the mode. Is it true that the following inequality holds: mode ≤
median ≤ mean? Prove that this inequality turns into equality for symmet-
ric distributions. Is it true that this inequality holds for densities such that

(ln )00  0? More about this inequality can be learned from Abadir [1].

17. Prove that, for a symmetric distribution, the th tight confidence range

takes the form ± 

18. Write an R program to compute the 100% tight population confidence

range for the Poisson distribution similarly to Example 2.11.
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2.3 Uniform distribution

The uniform (or rectangular) distribution is the simplest continuous distribution.

Following its name, the uniform distribution is categorized by the fact that the

probability of falling within an interval is proportional to its length. We write

 ∼ R( ) to indicate that random variable  has a uniform distribution on

the finite interval ( ) Sometimes, one can encounter the notation  instead of

R The density for this distribution is constant and the cdf is a linear function
(see Figure 2.6), namely,

() =

⎧⎨⎩ 1
− if  ≤  ≤ 

0 elsewhere
  () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
− if  ≤  ≤ 

0 if   

1 if   


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Figure 2.6: Density and cdf for  ∼ R(−1 2) Sometimes this distribution is
called rectangular because of the shape of the density.

The mean is () = (+ )2 Although the result seems obvious, we derive
it formally via integration as follows:

() =
1

− 

Z 



 =
1

− 

1

2
2
¯̄̄̄


=
1

− 

1

2
(2 − 2) =

+ 

2


To be specific, we indicate the distribution of as a subscript in the mathematical

expectation:

∼R()() =
1

2
(+ ) (2.22)

By integration over 2 and using formula (2.6), we obtain the variance and SD:

var() =
(− )2

12
 SD() =

− 

2
√
3

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The uniform distribution on ( ) can be derived from the standard uniform

distribution on (0 1) by simple linear transformation. Symbolically we write

R( ) = +(−)R(0 1) To generate  independent observations fromR( )
use runif(n,min=a,max=b) where the default values are a=0 and b=1.

Example 2.12 Waiting time. The shuttle bus comes every 30 minutes. What

is the expected waiting time if you come to the bus stop at random time? Use

simulations to confirm your answer.

Solution. Clearly, the wait time is less than 30 minutes. The arrival time

can be modeled as a random variable  distributed as R(0 30) As follows from
(2.22),

the expected waiting time = () = 302 = 15 minutes.

To simulate we imagine that the bus comes at 0:30, 1, 1:30,..,24:00 or on the

minute scale  = {30 60 90  60 × 24} and your arrival can be modeled as
the uniform distribution,  ∼ R(0 1440) Then the average arrival time is
the average distance to the next point in  to the right, which can be com-

puted using ceiling command: X=runif(100000,min=0,max=1440);mean(30

*ceiling((X/30))-X) with the output 15.00843.

Example 2.13 Broken stick. A stick of unit length is broken at random. What

is the probability that a longer piece is more than twice the length of the shorter

piece. Provide a theoretical answer and confirm it by simulations.

Solution. The point where the stick is broken is uniformly distributed along

its length,  ∼ R(0 1) The length of the longer piece,   05 and therefore
 ∼ R(05 1) Since the shorter piece has length 1 − , the length must be

such that   2(1 −) i.e.   23 Using the fact that  ∼ R(05 1)
the asked probability is (1− 23)× 2 = 23

The R code that estimates the probability via simulations is shown below.

longpiece=function(nExp=100000)

{

dump("longpiece","c:\\StatBook\\longpiece.r")
X=runif(nExp)

X.long=X #initialization

X.long[X0.5]=1-X[X0.5] # if X is short take the other part

X.short=1-X.long # by definition

pr=mean(X.long2*X.short) # proportion of experiments

pr

}

This function gives the probability 0.66858, very close to the theoretical

answer. We make several comments on the code: (i) The default number of

experiments/simulations is 100K. (ii) It is a good idea to save the code as a
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text file in a safe place. In fact, it is easy to lose code in R: you may for-

get to save the workspace on exit, your code may be overwritten by another

program, etc.. The dump command saves the program as a text file under the

name c:\\StatBook\\longpiece.r. (iii) X.long[X0.5] means that only com-
ponents of X.long for which X0.5 are used. The same is true for the right-hand

side of the respective line. (iv) Command X.long2*X.short creates a logical

vector with TRUE if the inequality is true and FALSE otherwise. When a numeric

operator such as mean is applied, TRUE is replaced with 1 and FALSE is replaced

with 0, so that mean returns the proportion when the inequality is true.

Alternatively, one can compute the longest and the shortest piece using com-

mands pmax() and pmin(). These commands compute maximum and minimum

in a vectorized fashion, so no loop is required. For example, if v1, v2, and v3 are

vectors of the same length, pmax(v1,v2,v3) returns a vector of the same length

with the th component equal to the maximum of th components of these vectors.

Then the longest and the shortest piece are computed as X.long=pmax(X,1-X)

and X.short=pmin(X,1-X), respectively.

Example 2.14 Kurtosis for the uniform distribution. Find the kurtosis

of the uniform distribution on (0 1)

Solution. The formula for the kurtosis is given by (2.11). Find the fourth

central moment:

4 =

Z 1

0
(− 05)4 =

Z 12

−12
4 = 2

Z 12

0
4 =

1

5× 24 

But 2 = 112 so that kurtosis = 1225 × 24 − 3 = −12 meaning that the
distribution is flatter than normal, as expected. ¤

Below we use the uniform distribution for raison cookies from Example 1.19.

Example 2.15 Raisins in a cookie simulations. Use simulations to confirm

that the probability that one cookie has all  raisins is −(−1)

Solution. Since the probability that there is one raisin in the cookie is 1
the probability that a particular cookie has all the raisins is− Then, the prob-
ability that one cookie has all the raisins is ×− = −(−1) The simulations
presented in the R code simCookie confirm this probability. We put  cookies

side by side and replace them with unit length segments [0 1] [1 2]  [−1]
Then we throw  raisins on the segment [0] at random and observe if all

raisins fell into one unit segment; repeat this process nSim times (see function

simCookie). The variable pr counts the number of simulations when one cookie

has  raisins. The call simCookie() with default values n=3,m=4 gives 0.06304

and the analytical answer is 4−(3−1) = 00625
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Problems

1. Derive a formula for the variance of the uniform distribution. [Hint: Derive

the noncentral second moment and then use formula (2.6).]

2. Find the median and the first and third quartiles of the uniform distribution.

Use qunif function in R to test your answers using  = −2 and  = 3.

3. Use pmax and pmin in function longpiece to compute the longest and the

shortest piece, as suggested above. Test that the new version yields the

same answer.

4. Demonstrate that the distribution of the long and short pieces in the previ-

ous problem is uniform by plotting the empirical cdfs on one graph side by

side using par(mfrow=c(1,2)). Prove that the distributions are uniform.

[Hint: Use the fact that max( 1 − ) ≤  is equivalent to  ≤  and

1− ≤ ]

5. Two ways to get the shortest piece of a stick with two random breaks are

suggested: (1) break the first time at random and brake the shortest piece

at random again, taking the shortest piece and (2) break the stick at two

random places and take the shortest piece. What way produces a shorter

piece on average? Modify the longpiece function to get the answer via

simulations. [Hint: Use pmin; find the shortest piece in the second method

as min(1 2 1− 1 1− 2 |1 − 2|).]

6. (a) Plot the empirical cdf of the shortest piece using the two methods in

the previous problem on the same graph. Use different colors and legend.

Are the distributions uniform? (b) Prove that  ∼ R(05 1) by finding
the theoretical cdf.

7. Find the kurtosis for R( )

8. Two friends come to the bus stop at random times between 1 and 2 p.m. The

bus arrives every 15 minutes. Use simulations to estimate the probability

that the friends end up on the same bus.

9. Modify function simCookie to estimate that a particular cookie (your cookie)

gets all the raisins, derive an analytical answer and compare the results.

[Hint: Use cookie.id as an argument in the R function to specify your

cookie.]

10. Besides  raisins,  chocolate chips are added to the dough. Use simula-

tions to answer the following questions: (a) What is the probability that

at least one cookie gets all raisins and all chocolate chips? (b) What is the

probability that a particular cookie gets all the chips but no raisins?
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2.4 Exponential distribution

The exponential distribution is commonly used for modeling waiting time and

survival analysis. It describes the distribution of a positive continuous random

variable with the cdf defined as  (;) = 1 − e− for  ≥ 0 and 0 for   0
where  is a positive parameter, typically referred to as the rate. See Example

2.18 below for why  is called the rate. The density of the exponential distribution

is derived through differentiation:

(;) = e−  ≥ 0 (2.23)

We use notation  ∼ E() to indicate that  has an exponential distribution

with parameter We bring the reader’s attention to the notation: parameter  is

separated from the argument by a semicolon. The indication that the distribution

depends on  is especially important in statistics where we estimate  using a

sample of observations from this distribution. The density is a decreasing function

of ; see Figure 2.7.
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Figure 2.7: The cdf and pdf of an exponential random variable with the rate

parameter  = 12 The former is computed in R as pexp and the latter as dexp.

The exponential distribution frequently emerges in survival analysis. Then

we interpret  () as the proportion of dead by time  and the complementary
function () = 1 −  () is interpreted as the survival function, so that  ( +
∆) −  () is the proportion who died between  and  + ∆ The mortality
rate is defined as ( (+∆) −  ())∆ the death rate per unit of time. On
the scale of survivors, this rate takes the form

( (+∆)−  ())∆

1−  ()

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the death rate per unit of time per proportion of alive at time  Letting ∆ go
to zero we arrive at the definition of the hazard function,

() =
 0()
1−  ()

=
−0()
()



as the instantaneous relative mortality rate: the proportion of dead among

survivors. For the exponential distribution, the hazard function is constant

() = e−e− =  In words, exponential distribution yields a constant

hazard function.

To find the mean of the exponential distribution, we apply integration by

parts,
R
 =  − R  which after letting  =  and  = e− gives

() = 

Z ∞

0
e− = −× 1


e−

¯̄̄̄∞
0

+




Z ∞

0
e− =

1




An alternative parametrization uses  = 1 so that the density takes the
form (; ) = −1e− Parameter  is called the scale parameter. An advantage
of this parametrization is that  has the same scale unit as  and, moreover,

() =  The rate parametrization is used in R by default.

Repeated integration by parts yields the variance

var() =
1

2
 (2.24)

The exponential distribution is the simplest distribution for positive random

variables and may be applied to model the occurrence of random events for which

the probability drops monotonically. In particular, it may be applied to describe

the time to an event after a meeting arrival, appointment, announcement, or

project launch as in the following example.

Example 2.16 Telephone call. Bill said that he will call after 10 a.m. As-

suming that the time of his call follows an exponential distribution with parameter

 = 110 which decision maximizes your probability of talking with Bill: (a) wait
the first 10 minutes, or (b) wait for the call from 10:10 to 11:00?

Solution. Let  denote the time elapsed before Bill calls. It is believable

that the density of calls is decreasing with time such that the maximum density

occurs right after 10 a.m. ( = 0) Consequently, the exponential distribution is
a good candidate in this case. Specifically, the cdf takes the form

 () = Pr(Bill calls within (10 10+) time interval) = Pr( ≤ ) = 1−e−10
The first probability (a) is Pr( ≤ 10) =  (10) = 1−e−10×01 = 1−1e = 0632
The second probability (b) is Pr(10   ≤ 60) =  (60)− (10) = (1−e−01×60)−
(1 − e−01×10) = 0365 Therefore, it is better to wait the call first 10 minutes
after 10 a.m. than to wait the 50 minutes after 10:10 a.m. ¤
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We prove in Section 3.3 that the exponential distribution is memoryless. The

following example illustrates how to use simulations with the exponential distri-

bution.

Example 2.17 Safe turn wait time. A truck requires 10 seconds to turn at

an intersection onto a busy street. Assuming that the time between two passing

cars follows an exponential distribution with the average time three seconds, what

is the median time required to make a safe turn? Use simulations to find the

answer.

Solution. The R code is realized in function truck.turn. The arguments of

the function with default values are tr.tu=10, car.time=3, Nmax=1000, nSim=

10000. Simulations are carried out using the loop over isim. For each isim we

generate an array of times between two passing cars using command X=rexp(Nmax,

rate=1/ car.time) because the rate,  is the reciprocal of the mean; Nmax is

the maximum number of cars (it should be big enough but is irrelevant). The

command cX=cumsum(X) computes the cumulative time, the time elapsed after

the truck comes to the intersection. Since the truck turns at the first 10-second

gap in traffic, we compute this time as nsec[isim]=min(cX[Xtr.tu]). After

all simulations are done, we plot the cdf and compute the median wait time using

median command. With the default parameters, the truck must wait about one

minute to make a safe turn. ¤
The following example shows the connection between the Poisson and expo-

nential distributions.

Example 2.18 Bathroom break. The number of customers arriving at a bank

per time  follows the Poisson distribution P() where  is the rate of customer
flow. If the bank teller just served a customer and needs to take a bathroom break,

(a) what is the distribution of time until the next customer walks in? (b) Does

he/she have enough time to go to the bathroom if he/she needs five minutes and

two customers arrive every 10 minutes on average?

Solution. First of all, we explain why parameter  can be interpreted as the

rate of customer flow. Because if  denotes the number of customers walking in

during time units  we have () =  Therefore,  = () is the number
of expected customers per minute. (a) The probability that no customers arrive

within  time units can be modeled as Pr( = 0) = ()0

0! e
− = e− Therefore,

the cdf of time until the next customer walks in within  time units is the com-

plementary probability,  () = 1−e− the cdf of the exponential distribution.
(b) In our case, the time unit = 10 minutes, so the probability that no customer

walks in within 5 minute bathroom break is computed by formula above using

 = 2 and  = 12: e−22 = e−1 = 037 ¤
The exponential distribution has an important connection with the chi-square

distribution to be discussed later in Section 4.2.
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Figure 2.8: The densities of time between two consecutive earthquakes in three

regions.

Example 2.19 Earthquake occurrence. Three seismological active regions,

namely, Taiwan, China, and California, have different patterns of earthquake

occurrence. In particular, Wang and Kuo [101] confirmed that the interoccur-

rence (time between two consecutive earthquakes) nearly follows an exponential

distribution with a scale parameter for the three regions of 2465, 649, and 1131,

respectively. (a) Depict the three densities, (b) find the median and the third

quartile (in years), and (c) compute the probability that no earthquake occurs

within one year after a past quake.

Solution. (a) The three densities are depicted in Figure 2.8. (b) The median

is found from the equation 1 − e = 05 and the third quartile is found from
equation 1 − e = 075 This quantile means the time between consecutive
earthquake with probability 075. (c) The probability that no earthquakes occur
within a year is e−365 The results are presented in the following table.

Taiwan China California

Scale,  2465 days 649 days 1131 days

Rate,  0.148 years 0.562 years 0.322 years

Median 4.68 years 1.23 years 2.15 years

3d quartile 7.42 years 1.95 years 3.40 years

Pr(no earthquake within year) 0.862 0.570 0.724
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2.4.1 Laplace or double-exponential distribution

The density of the Laplace or double-exponential (sometimes called biexponen-

tial) distribution is defined as

(;) =


2
e−|| −∞   ∞ (2.25)

with notation  ∼ L().
The cdf is easy to obtain by integration:

 (;) =

⎧⎨⎩ 1
2e

 for   0

1− 1
2e
− for  ≥ 0



see Figure 2.9. This distribution is symmetric, and therefore the mean, mode,

and median are the same, 0. The density does not have a derivative at  = 0
The variance is 22 The density of the shifted Laplace distribution is defined
as (2)e−|−| This distribution is a good model for studying robust statistical
inference; as we shall learn later (Section 6.11), this distribution gives rise to the

median. See Example 6.161 where statistical properties of the mean and median

are compared.
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Figure 2.9: Density and cdf of the Laplace (double-exponential) distribution. The

greater  the higher the density peak, and the steeper the slope of the cdf at zero.

2.4.2 R functions

The exponential distribution has a built-in R function. For example, rexp(n=100,

rate=0.5) will produce 100 random numbers with density e− where  =
05 There are three other functions associated with the exponential distribution:
qexp, pexp, and dexp. For instance, quantiles can be computed as -log(1-p)/

lambda.



68 Chapter 2. Continuous random variables

The Laplace distribution is symmetric; we can use this property to generate

random numbers using the following two lines of code: s=sample(x=c(-1,1),

replace=T,size=n,prob=c(.5,.5)); x=s*rexp(n=n,rate=lambda).

Problems

1. Prove that if ∼ R(0 1) then  = − ln has an exponential distribution.

Write R code to check your answer: simulate 100K uniformly distributed

random numbers and plot the theoretical and empirical cdfs of  on the

same graph.

2. Prove that the only survival function with a constant hazard function is the

exponential survival function, () = e−

3. Justify why  is called the scale parameter. [Hint: How does  change when

the scale of  changes from days to weeks, or from months to years?]

4. Show that the 05 tight confidence range for the exponential distribution is
(0median). [Hint: The conditions of Theorem 2.10 do not hold.]

5. Write an R program to do the following: (a) generate 10K observations from

E(2) using the function rexp; (b) plot the empirical cdf and superimpose
with the theoretical cdf using the pexp function; (c) compute and compare

the first, second, and third quartiles using empirical and theoretical cdfs.

6. Use simulations to reject the conjecture that, for ∼ E() 
¯̄
 − −1

¯̄
=

− [Hint: Plot the “theoretical” and empirical moments on the same graph
for  = 2 3 4 5]

7. In the telephone example, what is a better probability to talk with Bill: (a)

wait the first 5 minutes or (b) wait for the call from 10:10 to 10:40?

8. Derive variance (2.24) using formula (2.6).

9. In Example 2.17, (a) estimate the average wait time and explain why it is

greater than the median time, (b) estimate the probability that it takes less

than 30 seconds for a safe turn, and (c) estimate the median wait time if

the truck driver misses the first gap and turns on the second.

10. Compute the probability that two earthquakes happen within a week in

each three regions.

11. Prove that if  ∼ L() then () = 0 and var() = 22

12. (a) Generate 10K random observations from a shifted Laplace distribution

with  = 2 and  = −1 (b) Plot the empirical and theoretical cdfs on the
same graph.


