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Preface

I would like to describe a field, in which little has been done, but in which
an enormous amount can be done in principle. This field is not quite the same
as the others ... Furthermore, a point that is most important is that it would
have an enormous number of technical applications. What I want to talk
about is the problem of manipulating and controlling things on a small scale.

Richard Feynman

Carbon nanotubes (CNTs) were discovered by Sumio Iijima of the NEC
Corporation in the early 1990s. Since then, extensive research activities on
CNTs have been initiated around the world. This interest is attributed to the
extraordinary mechanical properties and unique electrical properties of
CNTs and their potential applications. Meyyappan [MEY 05] remarked
that “the breadth of applications for carbon nanotubes is indeed wide
ranging: nanoelectronics, quantum wire interconnects, field emission
devices, composites, chemical sensors, biosensors, detectors, etc ... The
community is beginning to move beyond the wonderful properties that
interested them in CNTs and are beginning to tackle real issues associated
with converting a material into a device, a device into a system, and so on”.
In a broader sense, Liu et al. [LIU 06] stressed that “nanotechnology is
making, and will continue to make, an impact in key areas for societal
improvement”.

For the reader who is new to the world of nanotechnology, we quote from
the book by Rogers ef al. [ROG 08]: “The ‘nano’, from which this relatively
new field derives its name, is a prefix denoting 10”°. ‘Nano’ comes from
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nanos, a Greek word meaning dwarf. In the case of nanotechnology, it refers
to things in the ballpark that are one-billionth of meter in size. While in
graduate school in 1905, Albert Einstein took experimental data on the
diffusion of sugar in water and showed that a single sugar molecule is about
one nanometer in diameter ... Nobel laureates, novelists, and news anchors
alike tell us on a daily basis that nanotechnology will completely change the
way we live. They have promised us microscopic, cancer-eating robots
swimming through our veins! Self-cleaning glass! Digital threads! Electronic
paper! Palm-sized satellites! The cure for deafness! Molecular electronics:
Smart dust!”.

This book deals with specific aspects of CNTs only, namely their
vibrations, buckling, impact buckling, and nanosensors. For vibration and
buckling analyses, we use the classical Bernoulli-Euler theory of beams.
However, as it turned out recently, long CNTs may pose health risks that are
similar to those found in asbestos, with possible diseases such as
mesothelioma or cancer of the lining of the lungs as well as adverse effects on
the male reproductive system. Since long CNTs are harmful whereas short
CNTs are not, we must use the short CNTs along with the theory that is
appropriate for the short CNTs. Specifically, we use Bresse—Timoshenko
theory for short CNTs because when the length to diameter ratio is relatively
small, transverse shear deformation and rotary inertia must be accounted for.
We use a consistent and simple version of Bresse—Timoshenko theory that
has been recently developed by the first author. This analysis leads to simple
expressions for natural frequencies. A theory of nanosensors is presented to
identify the possibility of attached virus or bacterium. Both long and short
CNTs may be regarded as nanosensors.

This promise of “the next big idea of nanotechnology” virtually forces us
to contribute, at least in some small manner, to the noble goals above. This
book deals with CNTs. We owe our gratitude to many scientists around the
world. It is our pleasure to record appreciation to several individuals with
whom we discussed our findings (as listed in alphabetical order): Professor
Sondipon Adhikari, University of Swansea, United Kingdom; Professor
Romesh Batra and Dr. S.S. Gupta of the Virginia Polytechnic Institute and
State University, USA; Professor Qing Chen of Peking University, People’s
Republic of China; Professor Jean-Michel Claverie of Institut de
Microbiologie de la Méditerannée, France; Professor Moshe Eisenberger of
the Technion-Israel Institute of Technology, Israel; Dr. Rivka Gilat,
University of Ariel, Israel; Professor Lin Guo and Professor L.D. Li of the



Preface  xiii

Beijing University of Aeronautics and Astronautics, People’s Republic of
China; Professor George Kardomateas, Georgia Institute of Technology,
USA; Professor Fred van Keulen and Professor Gary Steele of the Delft
University of Technology, The Netherlands; Professor Michael Link of the
Gesamthochschule Wuppertal, Germany; Professor Nicola Pugno of the
Politecnico di Torino, Italy; Professor Gabor Stepan, Professor Tibor Tarnai,
and Professor Lajos Pomazi of the Budapest University of Technology and
Economics, Hungary; Professor X. Frank Xu of Stevens Institute of
Technology, USA; last but not least our thanks go to Professor Gopal
Gaonkar, Professor Theodora Leventouri, and Professor Hassan Mahfuz of
the Florida Atlantic University, USA.

Naturally, none of above researchers bears any responsibility for the
contents of this book. We are extremely indebted to Mr. Clément Soret of
Institut Frangais de Mécanique Avancée for his painstaking work of
introducing numerous corrections to the text that were detected by the
authors, and especially by Joel Storch. We are also grateful to Mr. Yohann
Miglis of the Florida Atlantic University for kindly preparing the author and
subject indexes.

We will be most grateful to the readers if they will be so kind as to
communicate to us their constructive comments on both the content of this
multi-continental effort and on possible extensions and cooperations.
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