

Carbon Nanotubes and Nanosensors

Vibrations, Buckling, and Ballistic Impact

- Isaac Elishakoff Kevin Dujat Giuseppe Muscolino Simon Bucas Toshiaki Natsuki Chien Ming Wang
- Demetris Pentaras Claudia Versaci Joel Storch Noël Challamel Yingyan Zhang Guillaume Ghyselinck

Carbon Nanotubes and Nanosensors

Carbon Nanotubes and Nanosensors

Vibration, Buckling and Ballistic Impact

Isaac Elishakoff, Demetris Pentaras, Kevin Dujat Claudia Versaci, Giuseppe Muscolino, Joel Storch Simon Bucas, Noël Challamel, Toshiaki Natsuki Yingyan Zhang, Chien Ming Wang, Guillaume Ghyselinck

First published 2012 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd	John Wiley & Sons, Inc.
27-37 St George's Road	111 River Street
London SW19 4EU	Hoboken, NJ 07030
UK	USA
www.iste.co.uk	www.wiley.com

© ISTE Ltd 2012

The rights of Isaac Elishakoff, Demetris Pentaras, Kevin Dujat, Simon Bucas, Claudia Versaci, Giuseppe Muscolino, Joel Storch, Noël Challamel, Toshiaki Natsuki, Yingyan Zhang, Chien Ming Wang, Guillaume Ghyselinck to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Carbon nanotubes and nanosensors : vibration, buckling, and ballistic impact / Isaac Elishakoff ... [et al.]. p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-345-6

 Nanotubes--Impact testing. 2. Nanotubes--Elastic properties. 3. Detectors--Testing. I. Elishakoff, Isaac. TA418.9.N35C357 2011

620.1'15--dc23

2011043131

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-345-6

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY

Table of Contents

Preface	xi
Chapter 1. Introduction	1
1.1. The need of determining the natural frequencies and buckling loads of CNTs	8
1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection.	8
1.3. Beam model of MWCN1	9 10
Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes	13
2.1. Background	13
2.2. Analysis	15
2.3. Simply supported DWCNT: exact solution	15
2.4. Simply supported DWCNT: Bubnov–Galerkin method	18
2.5. Simply supported DWCNT: Petrov–Galerkin method	20
2.6. Clamped-clamped DWCNT: Bubnov–Galerkin method	23
2.7. Clamped-clamped DWCNT: Petrov–Galerkin method	25
2.8. Simply supported-clamped DWCNT	27
2.9. Clamped-free DWCNT	30
2.10. Comparison with results of Natsuki <i>et al.</i> [NAT 08a]	33
2.11. On closing the gap on carbon nanotubes	34
2.11.1. Linear analysis.	34
2.11.2. Nonlinear analysis	40
2.12. Discussion	45

Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes	47
3.1. Background	47
3.2. Analysis	48
3.3. Simply supported TWCNT: exact solution	49
3.4. Simply supported TWCNT: approximate solutions	51
3.5. Clamped-clamped TWCNT: approximate solutions	54
3.6. Simply supported-clamped TWCNT: approximate solutions.	57
3.7. Clamped-free TWCNT: approximate solutions	60
3.8. Summary	63
Chapter 4. Exact Solution for Natural Frequencies	
of Clamped-Clamped Double-Walled Carbon Nanotubes	65
4.1. Background	65
4.2. Analysis	67
4.3. Analytical exact solution.	72
4.4. Numerical results and discussion	77
4.4.1. Bubnov–Galerkin method	81
4.5. Discussion	82
4.6. Summary	83
Chapter 5. Natural Frequencies of Carbon Nanotubes Based	
on a Consistent Version of Bresse–Timoshenko Theory	85
5.1 Background	85
5.2. Bresse–Timoshenko equations for homogeneous beams.5.3. DWCNT modeled on the basis of consistent	86
Bresse–Timoshenko equations	88
5.4. Numerical results and discussion	91
Chapter 6. Natural Frequencies of Double-Walled Carbon	
Nanotubes Based on Donnell Shell Theory	97
6.1 Background	97
6.2. Donnell shell theory for the vibration of MWCNTs.	99
6.3 Donnell shell theory for the vibration of a simply	
supported DWCNT.	100
6.4. DWCNT modeled on the basis of simplified	
Donnell shell theory	103
6.5. Further simplifications of the Donnell shell theory	105
6.6. Summary	107

109
109 111 112 114 116 117 119 121 131 131 135 137
137
139
139 140 144
149 150 152 159 165 170 176 178 178 178 179 182

9.8.5. Conclusions	190
9.9. Virus sensor based on single-walled carbon nanotube treated	
as Bresse–Timoshenko beam.	190
9.9.1. Introduction	190
9.9.2. Analysis.	191
9.9.3. Results.	197
9.9.4. Mimivirus	200
9.10. Conclusion	201
Chapter 10. Some Fundamental Aspects of Non-local Beam	
Mechanics for Nanostructures Applications.	203
10.1. Background on the need of non-locality	204
10.2. Non-local beam models	209
10.2.1. Beam mechanics and Eringen's non-local model	209
10.2.2. Beam mechanics and gradient elasticity model	212
10.2.3. How to connect gradient elasticity with non-local	
integral models?	216
10.3. The cantilever case: a structural paradigm	218
10.3.1. Introduction	218
10.3.2. Eringen's integral model	219
10.3.3. Gradient elastic beam	221
10.3.4. Non-local elastic beam based on strain energy	
functional with squared non-local curvature	224
10.3.5. New non-local elastic beam model based on strain	
energy functional with mixed local and non-local curvatures	225
10.4. Euler–Bernoulli beam: Eringen's based model	231
10.4.1. Buckling of non-local Euler–Bernoulli beams	231
10.4.2. Vibrations of non-local Euler–Bernoulli beams	233
10.5. Euler–Bernoulli beam: gradient elasticity model	234
10.5.1. Buckling of gradient elasticity Euler–Bernoulli beams	234
10.5.2. Vibrations of gradient elasticity Euler–Bernoulli beams	235
10.6. Euler–Bernoulli beam: hybrid non-local elasticity model	236
10.6.1. Buckling of hybrid non-local Euler–Bernoulli beams	236
10.6.2. Vibrations of hybrid non-local Euler–Bernoulli beams	237
10.7. Timoshenko beam: Eringen's based model	238
10.7.1. Buckling of non-local Engesser Timoshenko beams	238
10.7.2. Buckling of non-local Haringx Timoshenko beams	240
10./.3. Vibrations of non-local Timoshenko beams	242
10.8. 1 moshenko beam: gradient elasticity model	244
Engesser's theory.	244

10.8.2. Buckling of gradient Timoshenko beam with	
Haringx's theory	246
10.8.3. Vibrations of gradient Timoshenko beam	247
10.8.4. Some other Timoshenko gradient elasticity beam models.	249
10.9. Timoshenko beam, hybrid non-local elasticity model	251
10.9.1. Buckling of the hybrid Engesser's non-local	
Timoshenko beam	251
10.9.2. Vibrations of the hybrid non-local Timoshenko beam	252
10.10. Higher order shear beam: Eringen's based model	254
10.10.1. Buckling of non-local higher order shear beam	254
10.10.2. Vibrations of non-local higher order shear beam	257
10.11. Higher order shear beam, gradient elasticity model	259
10.11.1. Buckling of gradient Engesser higher order shear beam.	259
10.11.2. Vibrations of gradient higher order shear beam	260
10.12. Validity of the results for double-nanobeam systems	262
10.12.1. Buckling of non-local double-nanobeam systems	262
10.12.2. Vibrations of non-local double-nanobeam systems	265
10.12.3. Buckling of gradient double-nanobeam systems.	266
10.12.4. Vibrations of gradient double-nanobeam systems	267
Chapter 11. Surface Effects on the Natural Frequencies of Double-Walled Carbon Nanotubes	269
	269
11.2. Analysis	2/1
11.2.1. Non-local Bresse-Timosnenko beam theory	274
11.2.2. Van der Waals Interaction forces	274
11.2.5. Natural vibration of DWCN18	213
11.2.4. Free vibration of embedded DWCN1S	270
11.5. Results and discussion	219
11.4. Surface effects on buckling of nanotubes	200
11.5. Summary	209
Chapter 12. Summary and Directions for Future Research	291
Appendix A. Elements of the Matrix A	297
Appendix B. Elements of the Matrix B	299
Appendix C. Coefficients of the Polynomial Equation [7.116]	301
Appendix D. Coefficients of the Polynomial Equation [9.25]	303

Appendix E. Coefficients of the Polynomial Equation [9.35]	305
Appendix F. Coefficients of the Polynomial Equation [9.40]	307
Appendix G. Coefficients of the Polynomial Equation [9.54]	311
Appendix H. Coefficients of the Polynomial Equation [9.63]	313
Appendix I. Coefficients of the Polynomial Equation [9.67]	315
Appendix J. An Equation Both More Consistent and Simpler than the Bresse–Timoshenko Equation	319
Bibliography	325
Author Index	399
Subject Index	415

Preface

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. This field is not quite the same as the others ... Furthermore, a point that is most important is that it would have an enormous number of technical applications. What I want to talk about is the problem of manipulating and controlling things on a small scale.

Richard Feynman

Carbon nanotubes (CNTs) were discovered by Sumio Iijima of the NEC Corporation in the early 1990s. Since then, extensive research activities on CNTs have been initiated around the world. This interest is attributed to the extraordinary mechanical properties and unique electrical properties of CNTs and their potential applications. Meyyappan [MEY 05] remarked that "the breadth of applications for carbon nanotubes is indeed wide ranging: nanoelectronics, quantum wire interconnects, field emission devices, composites, chemical sensors, biosensors, detectors, etc ... The community is beginning to move beyond the wonderful properties that interested them in CNTs and are beginning to tackle real issues associated with converting a material into a device, a device into a system, and so on". In a broader sense, Liu *et al.* [LIU 06] stressed that "nanotechnology is making, and will continue to make, an impact in key areas for societal improvement".

For the reader who is new to the world of nanotechnology, we quote from the book by Rogers *et al.* [ROG 08]: "The 'nano', from which this relatively new field derives its name, is a prefix denoting 10^{-9} . 'Nano' comes from

nanos, a Greek word meaning dwarf. In the case of nanotechnology, it refers to things in the ballpark that are one-billionth of meter in size. While in graduate school in 1905, Albert Einstein took experimental data on the diffusion of sugar in water and showed that a single sugar molecule is about one nanometer in diameter ... Nobel laureates, novelists, and news anchors alike tell us on a daily basis that nanotechnology will completely change the way we live. They have promised us microscopic, cancer-eating robots swimming through our veins! Self-cleaning glass! Digital threads! Electronic paper! Palm-sized satellites! The cure for deafness! Molecular electronics: Smart dust!".

This book deals with specific aspects of CNTs only, namely their vibrations, buckling, impact buckling, and nanosensors. For vibration and buckling analyses, we use the classical Bernoulli-Euler theory of beams. However, as it turned out recently, long CNTs may pose health risks that are similar to those found in asbestos, with possible diseases such as mesothelioma or cancer of the lining of the lungs as well as adverse effects on the male reproductive system. Since long CNTs are harmful whereas short CNTs are not, we must use the short CNTs along with the theory that is appropriate for the short CNTs. Specifically, we use Bresse-Timoshenko theory for short CNTs because when the length to diameter ratio is relatively small, transverse shear deformation and rotary inertia must be accounted for. We use a consistent and simple version of Bresse-Timoshenko theory that has been recently developed by the first author. This analysis leads to simple expressions for natural frequencies. A theory of nanosensors is presented to identify the possibility of attached virus or bacterium. Both long and short CNTs may be regarded as nanosensors.

This promise of "the next big idea of nanotechnology" virtually forces us to contribute, at least in some small manner, to the noble goals above. This book deals with CNTs. We owe our gratitude to many scientists around the world. It is our pleasure to record appreciation to several individuals with whom we discussed our findings (as listed in alphabetical order): Professor Sondipon Adhikari, University of Swansea, United Kingdom; Professor Romesh Batra and Dr. S.S. Gupta of the Virginia Polytechnic Institute and State University, USA; Professor Qing Chen of Peking University, People's Republic of China; Professor Jean-Michel Claverie of Institut de Microbiologie de la Méditerannée, France; Professor Moshe Eisenberger of the Technion-Israel Institute of Technology, Israel; Dr. Rivka Gilat, University of Ariel, Israel; Professor Lin Guo and Professor L.D. Li of the Beijing University of Aeronautics and Astronautics, People's Republic of China; Professor George Kardomateas, Georgia Institute of Technology, USA; Professor Fred van Keulen and Professor Gary Steele of the Delft University of Technology, The Netherlands; Professor Michael Link of the Gesamthochschule Wuppertal, Germany; Professor Nicola Pugno of the Politecnico di Torino, Italy; Professor Gabor Stepan, Professor Tibor Tarnai, and Professor Lajos Pomazi of the Budapest University of Technology and Economics, Hungary; Professor X. Frank Xu of Stevens Institute of Technology, USA; last but not least our thanks go to Professor Gopal Gaonkar, Professor Theodora Leventouri, and Professor Hassan Mahfuz of the Florida Atlantic University, USA.

Naturally, none of above researchers bears any responsibility for the contents of this book. We are extremely indebted to Mr. Clément Soret of Institut Français de Mécanique Avancée for his painstaking work of introducing numerous corrections to the text that were detected by the authors, and especially by Joel Storch. We are also grateful to Mr. Yohann Miglis of the Florida Atlantic University for kindly preparing the author and subject indexes.

We will be most grateful to the readers if they will be so kind as to communicate to us their constructive comments on both the content of this multi-continental effort and on possible extensions and cooperations.

Isaac Elishakoff	Boca Raton, USA
Demetris Pentaras	Limassol, Cyprus
Kevin Dujat	Aubière, France
Claudia Versaci	Messina, Italy
Giuseppe Muscolino	Messina, Italy
Joel Storch	Los Angles, USA
Simon Bucas	Aubière, France
Noël Challamel	Rennes, France
Toshiaki Natsuki	Shinsu, Japan
Chien Ming Wang	Singapore
Yingyan Zhang	Penrith, Australia
Guillaume Ghyselinck	Alès, France

January 2012