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Preface

This book is intended to present the basic principles and potential applications of passive
and active vibration damping technologies. The presentation encompasses a mix
between the associated physical fundamentals, governing theories, and optimal design
strategies of various configurations of vibration damping treatments. Utilization of smart
materials to augment the vibration damping of passive treatments is the common thread
that is pursued, in depth, throughout the book.
The focus has been on developing a deeper understanding of the science behind var-

ious phenomena that govern the control of structural vibration using appropriate damp-
ing techniques. It is my intention, in writing this book, to explain in a simple yet
comprehensive manner such scientific basics with particular focus on viscoelastic damp-
ingmaterials and themeans for controlling passively and actively their energy dissipation
characteristics. The book was developed throughout the years during my teaching of var-
ious classes on passive and active vibration and noise control. My research in these areas
has enriched my teaching and broadened my understanding of these topics. I have tried
to blend simple theory with basic engineering practice to enable the students and practi-
cing engineers to understand the science and apply it with confidence. My guide in this
effort has been the saying of Albert Einstein:

“Why does this applied science, which saves work and makes life easier, bring us so
little happiness? The simple answer runs: Because we have not yet learned to make
sensible use of it”.

So, in this book, I have attempted applying the theories to various applications, intro-
ducing a wide variety of examples and presenting detailed computer simulations, to
make the implementation real and practical.
The book includes 12 chapters divided into two parts. The first part is devoted to out-

lining the basics of vibration damping and this coverage is divided into six chapters. In
the second part, various configurations of advanced vibration damping treatments are
presented in four chapters that include applications to different structural systems. Part
I starts with an introductory chapter on the field of passive and active vibration damping,
followed by Chapter 2 that covers the classical models of viscoelastic damping materials.
Chapter 3 presents the important characterizationmethods of viscoelastic materials both
in the frequency and time domains. Advanced modeling techniques of viscoelastic mate-
rials are covered in Chapter 4. These methods, which include the Prony series, Gola–
Hughes–MacTavish, augmented-temperature field, and fractional derivative methods,
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are presented to enable modeling the dynamics of structures treated with viscoelastic
materials by using the finite element method in both the time and frequency domains.
The use of modal strain energy as a metric for predicting the modal loss factor of struc-
tures treated with damping materials and for optimal design of damping treatments is
discussed in Chapter 5. Estimation of the energy dissipation characteristics of various
configurations of passive and active damping treatments is described in Chapter 6 for
rods, beams, and plates. Part II presents in Chapter 7 the application of passive and active
constrained layer damping treatments to beams, plates, and shells. Chapter 8 deals with
modeling of various advanced damping treatments such as: stand-off, functionally
graded, active piezoelectric damping composites, and magnetic damping treatments.
In Chapters 9 and 10, shunted piezoelectric and periodic treatments are described,
respectively, as undamped treatments that behave as conventional damping treatments
with potentially tunable characteristics. Chapter 11 presents a wide variety of passive and
active nanoparticle damping composites and Chapter 12 looks at the problem of power
flow in damped structural systems.
The book has a large number of numerical examples to reinforce the understanding of

the theories covered, provide means for exercising the knowledge gained, and emphasize
the learning of strategies for the design and application of active and passive vibration
damping systems. The examples are supported by a set of MATLAB software modules
to enable the designers of vibration damping systems extend the theories presented to
various applications.
Each chapter of the book will end with a number of problems that cover the different

aspects of theoretical analysis, design, and applications of vibration damping technologies.
In this multi-prong coverage approach, the book is targeted to senior undergraduate

students, graduate students, researcher, and practicing engineers who are interested in
gaining an in-depth exposure to the field of vibration damping. The presentation and
supporting tools associated with the book will enable the readers of having hands-on
experience to the analysis, design, optimization, and application of this exciting technol-
ogy to a wide range of situations.
Writing this book would have been virtually impossible without the tireless support of

many students, colleagues, and friends who have enriched my life in many ways. These
contributions are apparent throughout the book. In particular, I would like to mention
the invaluable inputs and contributions from Professors Wael Akl and Adel Al Sabbagh
of Ain Shams University in Cairo, Egypt. Also, thanks are due to Prof. Osama Aldraihem
of King Saud University in Saudi Arabia for his collaborations over the years and con-
tributions to Chapter 11 and Prof. Massimo Ruzzene of Georgia Tech for many years
of very fruitful collaborations.
Thanks are also due to my colleagues and former students who have pioneered the

field of active vibration damping and control including: Dr. Mohamed Raafat, Dr.
Soon-Neo Poh of the NSWCCenter, Prof. Jeng-Jong Ro at Da-Yeh University in Taiwan,
Dr. Tung Huei Chen of the NSWC Center, Dr. Chul-Hue Park at Korea Institute for
Robot Industry Advancement (KIRIA), Dr. Charles Kim at NASA-Goddard, Dr. Zheng
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List of Symbols

Symbol Meaning Units

a Dimension of a plate side m

a Dilatation or contraction scaling parameter of
wavelets
Area

—

m2

A Magnetic potential Ampere

AATF Affinity of the ATF model (=−∂fATF/∂z) Nm−2 K−1

[A∗
r ] The correspondence concentration factors

of phase, r
—

b Dimension of a plate side m

b Translation parameter of wavelets s

B Input state-space matrix —

B Magnetic induction Tesla

B∗,0 Characteristics complex length of passive
treatments

m

B0 The magnetic flux density Tesla

BF The structural susceptance matrix m (Ns)−1

[B∗
r ] The correspondence concentration factors

of phase, r
—

c The sound speed m s−1

cc The critical damping coefficient ( = 2 km) Ns m−1

cd Damping coefficient of dissipative element Ns m−2

[c∗] Complex stiffness matrix Nm−2

[c∗r ] Complex stiffness matrix of phase, r Nm−2

C Measurement state-space matrix
Capacitance

—
Farad

CG Control parameter —

CS Strain-free capacitance Farad
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Symbol Meaning Units

CT Stress-free capacitance Farad

dij Piezo-strain constants in the i and j directions due to
applied electric field in the k direction

mV−1

D Energy dissipated during a full vibration cycle of the
viscoelastic material

Nm

D Denominator of a transfer function —

D Nano-particle diameter m

Da Distance between neutral axis of entire sandwiched
beam and piezo-actuator

m

Di Electrical displacement along the ith direction Coulombm−2

D∗
t Complex bending stiffness (= Dt(1 + iηB)) Nm2

[Di] Stiffness matrix relating the stress and strain vectors Nm−2

e Electron charge (=1.60217662 × 10−19 Coulombs) Coulomb

e Power flow error Nm s−1

e31 Piezoelectric charge/strain constant (=d31 sE11) m3 (N V) −1

E Young’s modulus Nm−2

Ei Electrical field along the ith direction Vm−1

En Total energy (En = PE + KE) Nm

E(t) Relaxation modulus Nm−2

E Storage modulus Nm−2

E Loss modulus Nm−2

E∗ Complex relaxation modulus Nm−2

E0 Equilibrium modulus Nm−2

Ei Relaxation strength Nm−2

E∞ Instantaneous modulus of GMM
Un-relaxed or high frequency modulus of elasticity

Nm−2

EiAi Longitudinal rigidity N

EiIi Flexural rigidity Nm2

EQ Product of elastic modulus and first moment of area Nm2

f Frequency rad s−1, Hz

fATF Helmholtz free energy density of the ATF model Nm−2

F Force N

Fc Control force N

Fm Magnetic forces N

{F} Force and moment vector N, NM

g The shear factor of constrained damping treatments —

g31 The piezoelectric voltage constant (=d31/ε33) m V−1

G Storage modulus in shear Nm−2

G Loss modulus in shear Nm−2
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Symbol Meaning Units

G∗ Complex modulus in shear Nm−2

GF The structural conductance matrix m (Ns) −1

h Layer thickness m

hP Plank constant (= 6.626 × 10−34) m2 kg s−1

H Magnetic field Ampere m−1

i The “unit” imaginary number = −1 —

I Area moment of inertia m4

I Performance Index —

I Current density Amperes m−2

Ix,y Structural intensity Nm (sm) −1

J∗ Complex creep compliance m2 N−1

Jj Retardation strength Nm−2

J iω Fourier transform of creep compliance m

J Performance index —

J Jacobian matrix —

K, k Stiffness Nm−1

Kd,p Derivative and proportional controller gains —

Kgeo
e Element geometric matrix —

Kg Gain of the controller —

Kv,D Gain of velocity (or derivative) feedback controller Ns m−1

k231 The electro-mechanical coupling factor —

k∗B Complex bending wave number ( = mω2 D∗
t

1 4
) 1 m−1

kr Ratio between derivative and proportional control
gains

—

kx,y Wave numbers in the x and y directions 1 m−1

kr,i Real and imaginary wave numbers 1 m−1

k Dimensionless wave number (=B0k ) —

[K] Stiffness matrix Nm−1

[Ke,s] Elastic and structural stiffness matrices Nm−1

[KI,R,v] Imaginary, real, and VEM stiffness Nm−1

ls Sample thickness m

L Length, Laplace transform, Lagrangian m

L Electrical inductance Henry

LATF Proportionality constant of the ATF model m2 K2 (Ns) −1

L Dimensionless electrical inductance (=L/R2Cs) —

M, m Mass, electron mass kg
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Symbol Meaning Units

Mc,e Control and external moments Nm

M Magnetization Amperes m−1

Mx,y Moments along the x and y directions Nm

Mij Torsion moment in the i-j plane Nm

[M] Mass matrix kg

{Mg} Global magnetization vector Amperes m−1

N Number of mini-oscillators, Number of finite
elements, Numerator

—

Nix, Niθ The longitudinal and tangential forces N

Npx Piezoelectric longitudinal control forces generated
along the x-axis

N

Nx,y Normal forces along the x and y directions N

Nij Shear force in the i-j plane N

[N] Shape function of the finite element model —

pi Internal normal forces per unit length Nm−1

P Axial load m

PF Active power (=real [SP]) Nm s−1

PFi, Fr Instantaneous and reference active power flow Nm s−1

{q} Modal displacement vector mrad

qi Externally applied body forces per unit length Nm−1

{qi,r} Imaginary and real modal displacement vectors —

Q Electrical charge Coulomb

QF Reactive power (=imag [SP]) Nm s−1

Qx,y The shear forces along the x,y directions N

r Scaled attenuation factor —

R Shell radius m

R Electrical resistance ohm

Ra Electrical resistance across filler particle ohm

Rc Contact electrical resistance between two filler
particles

ohm

Rn Eigenvector matrix of the n non-zero eigenvalues Λ —

ΔR Change in piezo-resistance of a conducting polymer ohm

[Ri] Rotation matrix —

s Laplace complex number rad s−1

s Separation distance between adjacent nano-
particles

m

sD11 Compliance, in direction 1, at constant electric
displacement, D

m2 N−1

sE11 Compliance, in direction 1, at constant electric
field, E

m2 N−1
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Symbol Meaning Units

sSH Compliance of the shunted network m2 N−1

[s∗] Overall compliance m2 N−1

[s∗r ] Compliance of the rth phase m2 N−1

[S∗] Eshleby strain tensor —

Se
an Magnetic stiffness matrix of the element Nm−1

SP Complex vibrational power Nm s−1

t Time s

T Temperature C

T Kinetic energy Nm

T(t) A temporal function in, t —

Tc Internal axial tension N

Ti Stress on piezoelectric element along the ith
direction

Nm−2

Tg Glass transition temperature C

[T] Transformation matrix —

[Tk] Transfer matrix for kth cell —

[T ∗
r ] Dilute concentration matrix —

u,v,w Deflections in the x, y, and z directions m

u x,ω Fourier transform of u(x,t) ms

U Potential energy Nm

v, vf Volume fraction —

Vc,s Control and sensor voltages V

Vx,y Shear forces in the x and y directions N

W Energy dissipated of the viscoelastic material Nm

W(x) A spatial function in x —

WD,e Dissipated and elastic energy Nm

Wn Nominal energy Nm

Wpiezo Work done by the piezo-layer Nm

[W ∗
r ] Dilute concentration matrix —

ΔWa, P Dissipated energy due to active and passive damping Nm

ΔWunconstrained Dissipated energy due to unconstrained damping Nm

x,y,z Position m

xe The “shear length” of a constrained damping
treatment

m

X Electrical reactance ohm (Ω)

{X} State vector —

Y —
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Symbol Meaning Units

The geometrical factor of a constrained damping
treatment

YD Electrical admittance at constant electrical
displacement, D

mho

YEL Electrical admittance mho

YF Mobility m (sN) −1

YSH Electrical shunted admittance mho

zi ith internal degree of freedom of the VEM —

ZEL Electrical impedance ohm (Ω)

ZEL Dimensionless electrical impedance (= YD/YEL) —

(ZME)D Mechanical impedance at constant electrical
displacement

Ns m−1

ZME Mechanical impedance Ns m−1

(ZME)SH Mechanical impedance with electrical shunting Ns m−1

ZME Dimensionless mechanical impedance
[=(ZME)SH/(ZME)D]

—

Greek Symbols

Symbol Meaning Units

α Order of the fractional derivative —

α Attenuation factor dBm−1

αn Gain of GHM nth mini-oscillator —

αT Temperature shift factor —

βi The ith relative modulus of the GMM —

β weighting parameter of the Weighted Stiffness
Matrix method (WSM)

—

γ Shear strain, Localization factor, Lamé parameter —

γa, p Shear strain with active and passive treatments —

γATF Effective modulus of the ATF model Nm−2 K−2

Γ(n) Gama function —

Γ Average orientation rad

δ Phase shift due to damping (η = tan δ), rad

δATF Coupling term between the mechanical
displacement and the augmented temperature fields

Nm−2 K−1

Δ The cubic dilation —

ΔATF Relaxation resistance of the ATF model —
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Symbol Meaning Units

{Δ} Deflection vector mrad

ε strain —

ε Strain function of the fractional derivative method —

εA Applied strain —

εC Constrained strain —

εT Uniform transformation strain —

εT33 Permittivity (or dielectric constant) in direction 3 Farad m−1

ε ω Fourier transform of the strain ε(t) s

εr The average strain field in phase r —

[ε0] Uniform elastic strain —

ζ Damping ratio —

ζn Damping ratio of GHM nth mini-oscillator, —

Damping ratio of the nth mode of vibration —

η Loss factor —

ηn Loss factor of the nth mode —

ηv Loss factor of the VEM —

θ Euler angle rad

κ Curvature 1/m

λ Time constant (λ = cd/Es) s

λB Bending wavelength m

Λ Non-zero eigenvalues rad s−1

μ Coefficient of friction, Propagation parameter and
Lamé parameter (=G)

—
Nm−2

μ0 The permeability of space (=4π × 10−7) T mA−1

μr The relative permeability of a magnetic material Henry m−1

ρ Density kg m−3

ρ Resistivity ohm.m (Ω m)

ρi Relaxation time constant s

ρATFi
Relaxation time constant of the ATF model s

σ Stress Nm−2

σr The average stress field in phase, r Nm−2

[σ0] Uniform elastic stress Nm−2

τ Time constant s

τd The dissipative shear stress in the VEM Nm−2

τj Retardation time s

τij Shear stress in the i-j plane Nm−2
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Symbol Meaning Units

υ Poisson’s ratio —

ϕ Transformer turning ratio of piezo-element that
transforms voltage into force = −d31A sE11L

NV−1

ϕ Euler angle rad

ϕ Height of potential barrier between adjacent
particles

eV

ϕ∗
n The complex nth mode shape —

ϕni,r imaginary and real components of the nth mode
shape

—

Φ Magnetic flux Webers

[Φ] Mode shape matrix —

Ψ Shear strain of the stand-off layer rad

Ψ (t) Wavelet function —

ω Frequency rad s−1

ωn Natural frequency rad s−1

Frequency of GHM nth mini-oscillator rad s−1

ωr Reduced frequency (=αTω) rad s−1

ω∗ Dimensionless length of damping treatment (=L/B0) —

Ω Dimensionless frequency for
VEM ( = mh1 G ω),

—

Dimensionless frequency for resistive
shunting (=RCSω)

—

Subscripts

Symbol Meaning

0 Initial value

d Dissipative

e Electrical

f Friction

H Hysteretic

i Incident wave

o Overall

p Parallel, piezoelectric

r Reflected waves

s Elastic solid, series

sf Strain free
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Symbol Meaning

stf Stress free

S Structural

t Transmitted

v Viscous

Superscripts

Symbol Meaning

∗ Complex conjugate

D Constant electrical displacement

E Constant electrical field

s Constant strain

T Transpose

Operators

Symbol Meaning

|.| Absolute value

. Norm

[.]−1 Inverse of the matrix [.] between the brackets

[.]T Transpose of the matrix [.] between the brackets

d
dx

Differential operator with respect to x

∂

∂x
= ,x

Partial differential operator with respect to x

=
d
dt

First derivative with respect to time

=
d2

dt2
Second derivative with respect to time

δ(.) Variation of the quantity (.) between parentheses

Re (.) Real part

Im (.) Imaginary part
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Abbreviations

ACLD Active constrained layer damping
APDC Active piezoelectric damping composites
ATF Augmented temperature field
BVP Boundary value problem
CLD Constrained layer damping
DMTA Dynamic mechanical thermal analysis
DOF Degrees of freedom
DPM Distributed-parameter model
EAP Electroactive polymers
EDT Engineered damping treatments
EMDC Electromagnetic damping composites
FD Fractional derivatives
FEM Finite element method
FFT Fast Fourier transform
FGM Functionally graded material
GHM Golla–Hughes–MacTavish model
G-L Grunwald–Letnikov approach
GMC Generalized method of cells
HTM Halpin–Tsai method
IDOF Internal degree of freedom of the VEM
IRS Improved reduction system method
KE Kinetic energy
LFA Low frequency approximation method
LMS Least mean square
MCLD Magnetic constrained layer damping
MDR Modal damping ratios
MMA Method of moving asymptote
MR Magnetorheological fluid
MSE Modal strain energy
MTM Mori–Tanaka method
MWCNT Multi-walled carbon nanotubes
NSC Negative stiffness composite
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OC Open circuit
P.E. Potential energy
PCLD Passive constrained layer damping
PVDF Polyvinylidene fluoride
PZT Lead zirconate titanate
R–L The Reimann–Liouville approach
RVE Representative volume element
SAFE Semi-analytical finite element method
SC Short circuit
SCM Self-consistent method
SHPB Split Hopkinson pressure bar
SOL Stand-off layer
TTS Time–temperature superposition
VAMUCH Variational asymptotic method for unit cell

homogenization
VEM Viscoelastic material
WLF Williams–Landel–Ferry formula
WSM Weighted stiffness matrix method
WSTM Weighted storage modulus method
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Part I

Fundamentals of Viscoelastic Damping
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1

Vibration Damping

1.1 Overview

Vibration control is recognized as an essential means for attenuating excessive ampli-
tudes of oscillations, suppressing undesirable resonances, and avoiding premature
fatigue failure of critical structures and structural components. The use of one form
of vibration control or another in most of the newly designed structures is becoming
very common in order to meet the pressing needs for large and light-weight structures.
With such vibration control systems, the strict constraints imposed on present
structures can be met to ensure their effective operation as quiet and stable platforms
for manufacturing, communication, observation, and transportation.

1.2 Passive, Active, and Hybrid Vibration Control

Various passive, active, and hybrid vibration control approaches have been considered
over the years employing a variety of structural designs, damping materials, active
control laws, actuators, and sensors. Distinct among these approaches are the passive,
active, and hybrid vibration damping methods.
It is important to note here that passive damping can be very effective in damping

out high frequency excitations, whereas active damping can be utilized to control low
frequency vibrations as shown in Figure 1.1. For effective control over broad frequency
band, hybrid damping methods are essential.

1.2.1 Passive Damping

Passive damping treatments have been successfully used, for many years, to damp out the
vibration of a wide variety of structures ranging from simple beams to complex space
structures. Examples of such passive damping treatments include:

1.2.1.1 Free and Constrained Damping Layers
Both types of damping treatments rely in their operation on the use of a viscoelastic
material (VEM) to extract energy from the vibrating structure as shown in Figure 1.2.
In the free (or unconstrained) damping treatment, the vibrational energy is dissipated
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by virtue of the extensional deformation of the VEM, whereas in the constrained
damping treatment more energy is dissipated through shearing the VEM (Nashif
et al. 1985).

1.2.1.2 Shunted Piezoelectric Treatments
These treatments utilize piezoelectric films, bonded to the vibrating structure, to convert
the vibrational energy into electrical energy. The generated energy is then dissipated in a
shunted electric network, as shown in Figure 1.3, which are tuned in order to maximize
the energy dissipation characteristics of the treatments (Lesieutre 1998). The electric
networks are usually resistive, inductive, and/or capacitive. Other configurations of

Amplitude

High Active Passive

Low Hybrid

Low High Frequency

Figure 1.1 Operating range of various damping methods.

(a) – Free (b) – Constrained

Passive Constrained Layer

Base Structure 

Viscoelastic Layer

Figure 1.2 Viscoelastic damping treatments. (a) Free and (b) constrained.

Shunted Electric Network

Piezoelectric Film

Base structure

Figure 1.3 Shunted piezoelectric treatments.
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the shunted piezoelectric treatments include the viscoelastic polymer composites loaded
with shunted piezoelectric inclusions introduced by Aldraihem et al. (2007).

1.2.1.3 Damping Layers with Shunted Piezoelectric Treatments
In these treatments, as shown in Figure 1.4, a piezoelectric film is used to passively con-
strain the deformation of a viscoelastic layer, which is bonded to a vibrating structure.
The film is used also as a part of a shunting circuit that is tuned to improve the damping
characteristics of the treatment over a wide operating range (Ghoneim 1995).

1.2.1.4 Magnetic Constrained Layer Damping (MCLD)
These treatments rely in their operation on arrays of specially arranged permanent mag-
netic strips that are bonded to viscoelastic damping layers. The interaction between the
magnetic strips can improve the damping characteristics of the treatments by virtue of
enhancing either the compression or the shear of the viscoelastic damping layers as
shown in Figure 1.5.
In the compression MCLD configuration of Figure 1.5a, the magnetic strips (1 and 2)

are magnetized across their thickness. Hence, the interaction between the strips gener-
ates magnetic forces that are perpendicular to the beam longitudinal axis. These forces
subject the viscoelastic layer to across the thickness loading, which makes the treatment
act like a Den–Hartog dynamic damper. In the shearMCLD configuration of Figure 1.5b,
the magnetic strips (3 and 4) are magnetized along their length. Accordingly, the devel-
oped magnetic forces, which are parallel to the beam longitudinal axis, tend to shear the
viscoelastic layer. In this configuration, theMCLD acts as conventional constrained layer

(a) – Compression MCLD (b) – Shear MCLD

Viscoelastic Layer

Magnetic Field

Base structure 

Magnet 1

Magnet 4Magnet 3

Magnet 2

Magnetic 
Field

Figure 1.5 Configurations of the MCLD treatment. (a) Compression MCLD and (b) shear MCLD.

Base structure Viscoelastic Layer

Piezoelectric Film

Shunted Electric Network

Figure 1.4 Damping layers with shunted piezoelectric treatments.
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damping treatment whose shear deformation is enhanced by virtue of the interaction
between the neighboring magnetic strips (Baz 1997; Oh et al. 1999).

1.2.1.5 Damping with Shape Memory Fibers
This damping mechanism relies on embedding superelastic shape memory fibers in the
composite fabric of the vibrating structures as shown in Figure 1.6a. The inherent hys-
teretic characteristics of the Shape Memory Alloy (SMA), in its superelastic form, are
utilized to dissipate the vibration energy. The amount of energy dissipated is equal to
the area enclosed inside the stress–strain characteristics (Figure 1.6b). This passive
mechanism has been successfully used in damping out the vibration of a wide variety
of structures including large structures subject to seismic excitation (Greaser and Coz-
zarelli 1993).

1.2.2 Active Damping

Although the passive damping methods described here are simple and reliable, their
effectiveness is limited to a narrow operating range because of the significant variation
of the damping material properties with temperature and frequency. It is, therefore, dif-
ficult to achieve optimum performance with passive methods alone particularly over
wide operating conditions.
Hence, various active damping methods have been considered. All of these methods

utilize control actuators and sensors of one form or another. Themost common types are
made of piezoelectric films bonded to the vibrating structure as shown in Figure 1.7.

(a) – SMA reinforced structure (b) – Superelastic characteristics

Strain

Stress
Hysteresis

Vibrating Structure

SMA Fibers

Figure 1.6 Damping with shape memory fibers. (a) SMA reinforced structure and (b) superelastic
characteristics.

Piezoelectric Sensor

Piezoelectric Actuator

Vibrating Structure

Figure 1.7 Active damping.
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This active control approach has been successfully used in damping out the vibration
of a wide variety of structures ranging from simple beams to more complex space struc-
tures (Preumont 1997; Forward 1979).

1.2.3 Hybrid Damping

Because of the limited control authority of the currently available active control actua-
tors, and because of the limited effective operating range of passive control methods,
treatments that are a hybrid combination of active damping and passive damping treat-
ments have been considered. Such hybrid treatments aim to use various active control
mechanisms to augment the passive damping in a way that compensates for its perfor-
mance degradation with temperature and/or frequency. Also, these treatments combine
the simplicity of passive damping with the effectiveness of active damping in order to
ensure optimal blend of the favorable attributes of both damping mechanisms.
Among the most commonly used hybrid treatments are:

1.2.3.1 Active Constrained Layer Damping (ACLD)
This class of treatments is a blend between a passive constrained layer damping and
active piezoelectric damping as shown in Figure 1.8. Here, the piezo-film is actively
strained in such a manner to enhance the shear deformation of the viscoelastic damping
layer in response to the vibration of the base structure (Baz 1996, 2000; Crassidis
et al. 2000).

1.2.3.2 Active Piezoelectric Damping Composites (APDC)
In this class of treatments, an array of piezo-ceramic rods embedded across the thickness
of a viscoelastic polymeric matrix are electrically activated to control the damping char-
acteristics of the matrix that is directly bonded to the vibrating structure as shown in
Figure 1.9. The figure displays two arrangements of the APDC. In the first arrangement,
the piezo-rods are embedded perpendicular to the electrodes to control the compres-
sional damping (Reader and Sauter 1993) and in the second arrangement, the rods

Base Structure Base Structure

Base Structure

Piezoelectric Actuator Passive Constraining Layer

VEM

VEM

Active Piezo-constraining Layer

Figure 1.8 Active constrained layer damping treatment.
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are obliquely embedded to control both the compressional and shear damping of the
matrix (Baz and Tampia 2004; Arafa and Baz 2000).

1.2.3.3 Electromagnetic Damping Composites (EMDC)
In this class of composites, a layer of viscoelastic damping treatment is sandwiched
between a permanent and electromagnetic layer as shown in Figure 1.10. The entire
assembly is bonded to the vibrating surface to act as a smart damping treatment. The
interaction between the magnetic layers, in response to the structural vibration, subjects
the viscoelastic layer to compressional forces of proper magnitude and phase shift. These
forces counterbalance the transverse vibration of the base structure and enhance the
damping characteristics of the VEM. Accordingly, the electromagnetic damping com-
posite (EMDC) acts in effect as a tunable Den–Hartog damper with the base structure
serving as the primary system, the electromagnetic layer acting as the secondary mass,
the magnetic forces generating the adjustable stiffness characteristics, and the viscoelas-
tic layer providing the necessary damping effect (Baz 1997; Omer and Baz 2000; Ruzzene
et al. 2000; Baz and Poh 2000; Oh et al. 2000).

1.2.3.4 Active Shunted Piezoelectric Networks
In this class of treatments, shown schematically in Figure 1.11, the passive shunted elec-
tric network is actively switched on and off in response to the response of the structure/
network system in order to maximize the instantaneous energy dissipation characteris-
tics and minimize the frequency-dependent performance degradation (Lesieutre 1998;
Tawfik and Baz 2004; Park and Baz 2005; Thorp et al. 2005).

(a) Perpendicular rods (b) Inclined rods

Piezoelectric rods

VEM

Base structure 

Figure 1.9 Active piezoelectric damping composites. (a) Perpendicular rods and (b) inclined rods.

Electromagnetic Layer Core

Permanent Magnetic Layer Viscoelastic Layer

Base Structure 

Figure 1.10 Electromagnetic damping composite (EMDC).
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1.3 Summary

This chapter has presented a brief description of the main vibration control methods that
have been successfully applied to damping out the vibration of a wide variety of struc-
tures. Analysis and performance characteristics of these vibration damping control
methods will be presented in the remaining chapters.
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2

Viscoelastic Damping

2.1 Introduction

Viscoelastic damping treatments have been extensively used in various structural appli-
cations to control undesirable vibrations and associated noise radiation in a simple and
reliable manner (Nashif et al. 1985; Sun and Lu 1995). In this chapter, particular empha-
sis is placed on studying the dynamic characteristics of such damping treatments and
outlining the different mathematical models used to describe the behavior of these treat-
ments over a wide range of operating frequencies and temperatures. Particular focus is
given to ascertain the merits and drawbacks of the classical models by Maxwell, Kelvin–
Voigt, and Zener (Zener 1948; Flugge 1967; Christensen 1982; Haddad 1995; Lakes 1999,
2009) both in the time and frequency domains.

2.2 Classical Models of Viscoelastic Materials

These models include the of Maxwell, Kelvin–Voigt, and Poynting–Thomson models
(Haddad 1995; Lakes 1999, 2009). In these models, the dynamics of ViscoElastic
Materials (VEMs) are described in terms of series and/or parallel combinations of
viscous dampers and elastic springs as shown in Figure 2.1. The dampers are included
to capture the viscous behavior of the VEM, whereas the springs are used to simulate the
elastic behavior of the VEM.

2.2.1 Characteristics in the Time Domain

The dynamic characteristics of Maxwell and Kelvin–Voigt models in the time domain
are summarized in Table 2.1.

(a) – Maxwell Model (b) – Kelvin-Voigt Model (c) – Poynting-Thomson Model

Figure 2.1 Classical models of VEMs. (a) Maxwell model, (b) Kelvin–Voigt model, and (c) Poynting–
Thomson model.
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One can note that the stress–strain equations of the Maxwell and Kelvin–Voigt mod-
els can generally be written as follows:

Pσ =Qε 2 11

where P and Q are differential operators given by:

P =
p

i=0

αi
di

dt i
andQ=

q

j=0

βj
d j

dt j
2 12

Hence, for Maxwell model, p = 1, q = 1, α0 = 1, α1 = λ, β0 = 0 and β1 = cd while for the
Kelvin–Voigt model, p = 0, q = 1, α0 = 1, β0 = Es and β1 = cd.
The ability of both the Maxwell and the Kelvin–Voigt models to predict the charac-

teristics of realistic VEMwill be determined by considering the behavior under creep and
relaxation loading conditions.

2.2.2 Basics for Time Domain Analysis

The initial and final value theorems of the Laplace transform are essential to the com-
plete understanding of the behavior of viscoelastic models in the time domain. Appendix
2.A summarizes the two theorems and presents the necessary proofs.
Application of these two theorems to Maxwell and Kelvin–Voigt models is summar-

ized in Tables 2.2 and 2.3 when these models are subjected to creep and relaxation

Table 2.1 The dynamic equations of Maxwell and Kelvin–Voigt models.

Model Maxwell model Kelvin–Voigt model

Stresses and
strains of
components

Es

εs

ε

σ σ

εd

cd Es

ε

σ

σs

σ

σdcd

Equilibrium
and kinematic
equations

• Stress σ is same for spring and
damper

• Strain ε is sum of strains of spring
and damper:

σ = σs = σd (2.1)
and
ε = εs + εd (2.3)

• Strain ε is same for spring and
damper

• Stress σ is sum of stresses of spring
and damper:

σ = σs + σd (2.2)
and
ε = εs = εd (2.4)

Constitutive
equations

Spring: σ = Esεs (2.5)
Damper: σ = cdεd (2.7)

Spring: σs = Esε (2.6)
Damper: σd = cdε (2.8)

Model
equation

Substituting Eqs. (2.5) and (2.7)
into Eq. (2.3) gives:
λσ + σ = cdε (2.9)
where λ = cd/Es

Substituting Eqs. (2.6) and (2.8) into
Eq. (2.2) gives:
σ =Esε+ cdε (2.10)

(Es = Young’s modulus of elastic element, cd = damping coefficient of dissipative element)
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Table 2.2 Initial and final values of stresses and strains of Maxwell and Kelvin–Voigt models when
subjected to creep loading.

Model Maxwell model Kelvin–Voigt model

Model λσ + σ = cdε σ = Esε+ cdε

Loading conditions The stress is constant σ = σ0 and the initial and final values of the strain ε are
predicted.

σ0

σ

Time

The strain in the
Laplace s domain

ε=
λs+ 1
cds

σ =
λs+ 1
cds2

σ0 ε=
1

Es λs+ 1
σ =

1
Ess λs+ 1

σ0

Initial value ε0 = lim
s ∞

sε

= lim
s ∞

λ+ 1 s
cd

σ0 =
σ0
Es

ε0 = lim
s ∞

sε

= lim
s ∞

1
Es λs+ 1

σ0 = 0

Final value ε∞ = lim
s 0

sε

= lim
s 0

λs+ 1
cds

σ0 = ∞

ε∞ = lim
s 0

sε

= lim
s 0

1
Es λs+ 1

σ0 =
σ0
Es

Table 2.3 Initial and final values of stresses and strains of Maxwell and Kelvin–Voigt models when
subjected to relaxation loading.

Model Maxwell model Kelvin–Voigt model

Model λσ + σ = cdε σ = Esε+ cdε

Loading conditions The strain is constant ε = ε0 and the initial and final values of the stress σ are
predicted.

ε0

ε

Time

The stress in the
Laplace s domain

σ =
cds

λs+ 1
ε=

cd
λs+ 1

ε0 σ = Es λs+ 1 ε=
Es λs+ 1

s
ε0

Initial value σ0 = lim
s ∞

sσ

= lim
s ∞

cds
λs+ 1

ε0 =Esε0

σ0 = lim
s ∞

sσ

= lim
s ∞

Esε0 = Esε0

Final value σ∞ = lim
s 0

sσ

= lim
s 0

cds
λs+ 1

ε0 = 0

σ∞ = lim
s 0

sσ

= lim
s 0

Esε0 =Esε0



loading, respectively. These two theorems provide the means for determining the initial
and final limits of the VEM response under different loading conditions. This feature
enables the correct calculation of the time response, between these two limits, when
the differential equations describing these models are solved as will be demon-
strated later.
Table 2.2 indicates that theMaxwell model experiences an initial strain when the creep

load is applied, which is typical in VEMs. However, this strain tends to become
unbounded as time grows. This feature is not observed or supported experimentally.
As for the Kelvin–Voigt model, the initial value theorem indicates zero initial strain,
which is rather unrealistic and a bounded final strain of σ0/Es that is observed in a realistic
VEM.
Table 2.3 indicates that the Maxwell model experiences an initial stress when the

relaxation strain is applied and that stress is completely relieved as time progresses.
Both of these characteristics are typical in VEM. As for the Kelvin–Voigt model, the
initial and the final values remain constant Esε0, which is rather unrealistic behavior
of a VEM.

2.2.3 Detailed Time Response of Maxwell and Kelvin–Voigt Models

Tables 2.4 and 2.5 summarize the detailed behavior characteristics of Maxwell and
Kelvin–Voigt models in the time domain between the initial and final values predicted
in Tables 2.2 and 2.3.
Tables 2.4 and 2.5 indicate that the Maxwell model predicts unrealistic creep char-

acteristics as the strain tends to be unbounded even for finite stress levels or the
strain tends to remain constant when the stress is removed. The Kelvin–Voigt model
also yields unrealistic relaxation characteristics with the stress remaining constant
with time, indicating that the VEM does not exhibit any stress relaxation. Therefore,
neither the Maxwell nor the Kelvin–Voigt model replicates the behavior of realis-
tic VEM.
Note that these predictions, particularly at t = 0, are in agreement with the predictions

of the initial and final value theorems listed in Tables 2.2 and 2.3.
In order to avoid the drawbacks and limitations of both the Maxwell and Kelvin–Voigt

models, several other spring-damper arrangements have been considered. For example, a
damper with series and parallel springs is considered to combine the attractive attributes
and compensate for the deficiencies of both the Maxwell and Kelvin–Voigt models. The
resulting model is the Poynting–Thomson model, shown in Figures 2.1c and 2.2a. Other
common models are also displayed in Figure 2.2 such the “three-parameter model” and
the “standard solid model” (Zener 1948).
Figure 2.3a,b show the most widely used spring-mass configurations of VEM models

that are employed extensively, particularly, in commercial finite element packages. These
two configurations are, namely, the generalized Maxwell model and the generalized
Kelvin–Voigt model.
These two generalized n classical models are assembled in parallel or series to model

the complex behavior of realistic VEMs. These models are augmented with additional
springs E0, either in parallel or series, to eliminate the drawbacks associated with the clas-
sical models as outlined in Tables 2.2–2.5.
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Table 2.4 The creep characteristics of Maxwell and Kelvin–Voigt models.

Model Maxwell model Kelvin–Voigt model

Loading
conditions

The stress is constant σ = σ0 and the time history of the strain is predicted

σ0

σ

Time

Response • As the initial strain ε = ε0
a at

time t = 0,

• Hence:

ε=
σ0
cd

t +
σ0
Es

=
σ0
Es

1 + t λ (2.13)

ε0

ε

Slope = σ0  / cd

Time

• Unbounded strain for bounded stress

• As the initial strain ε = 0a at
time t = 0,

• Hence:

ε=
σ0
Es

1−e− t λ (2.14)

ε

σ0 / Es

Time

• Bounded strain for bounded stress

Unloading
Conditions

The stress is reduced back to zero at time t = t1 and the time history of the strain

t1

σ0

σ

Time

Response • At t = t1, ε1 =
σ0
cd

t1 +
σ0
Es
,

• Hence, when σ = 0:
ε= 0

with solution ε = ε1= constant (2.15)

ε1

ε0

t1

ε

Time

• No contraction after stress removal

• At t = t1, ε1 =
σ0
Es

1−e− t1 λ ,

• Hence, when σ = 0:
Esε+ cdε= 0 or λε+ ε= 0

with solution ε= ε1e− t− t1 λ (2.16)

ε1

t1

ε

Time

• Complete strain relief after stress
removal

aTable 2.2 (using initial value theorem).
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(a) – Poynting-Thomson Model (b) – Zener Model

(c) – Jeffrey Model (d) – Burgers Model 

σσ σσ

σσ σσ

Figure 2.2 Other common viscoelastic models. (a) Poynting–Thomson model, (b) Zener model,
(c) Jeffrey model, and (d) Burgers model.

Table 2.5 Relaxation characteristics of Maxwell and Kelvin–Voigt models.

Model Maxwell model Kelvin–Voigt model

Loading
conditions

The strain is constant ε = ε0 and determines the time history of the stress

ε0

ε

Time
Response • As the initial stress σ = σ0

a at time
t = 0:

• Hence: λσ + σ = 0

with solution σ = Ese
−t/λε0 (2.17)

σ0= Es ε0

σ

Time

• stress decays to zero without any
residual stress

• As the initial strain ε = ε0
a at time t = 0:

• Hence: σ = Esε0 = constant (2.18)

σ0= Es ε0

σ

Time

• stress remains constant, that is, VEM
exhibits no relaxation

aTable 2.3 (using initial value theorem).

(a) (b)

Parallel
Spring

Maxwell
Model 1

Maxwell
Model 2

Maxwell
Model k

Maxwell
Model n

E0
E1

η1 η2

σ

σ

σ σ
ηn

η1 η2 ηn

E2 En

E0 E1 E2 En

Series
Spring

Kelvin-Voigt
Model 1

Kelvin-Voigt
Model 2

Kelvin-Voigt
Model n

Figure 2.3 Generalized Maxwell (a) and Kelvin–Voigt (b) models.



2.2.4 Detailed Time Response of the
Poynting–Thomson Model

The stress σ across the series spring of
the Poynting–Thomson model, shown in
Figure 2.4, is given by:

σ = Es εs 2 19

and the stress σ across the damper and the
parallel spring is given by:

σ = Ep εd + cd εd 2 20

Using the Laplace transformation, yields

εs = σ Es andεd = σ Ep + cds 2 21

Hence, the total strain ε across the Poynting–Thomson model is

ε= εs + εd =
Es +Ep + cds

Es Ep + cds
σ 2 22

In the time domain, this equation becomes

Es +Ep σ + cdσ = EsEpε+Escdε 2 23

From Eqs. (2.11), (2.12), and (2.23), p = 1, q = 1, α0 = (Es + Ep), α1 = cd, β0 = EsEp,
and β1 = Escd.

a) The creep characteristics of the Poynting–Thomson model are obtained as follows:

i) Determine the initial and final values strain:
For stress σ = σ0, then Eq. (2.22) reduces to:

ε=
Es + Ep + cds

Es Ep + cds

σ0
s

Then,

ε0 = lim
s ∞

sε= lim
s ∞

Es + Ep + cds

Es Ep + cds
σ0 =

σ0
Es

and

ε∞ = lim
s 0

sε= lim
s 0

Es + Ep + cds

Es Ep + cds
σ0 =

σ0
E∞

where E∞ =
EsEp

Es +Ep
.

cd

εd

σσ
Es

Ep

εs

ε

Figure 2.4 Poynting–Thomson
viscoelastic model.
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ii) Determine the time history of the strain:
The time history of the strain is determined by solving Eq. (2.23) such that at

t = 0, σ = σ0, and the initial strain ε0 = σ0/Es. Hence, Eq. (2.23) reduces to:

Escdε+ EsEpε= Es + Ep σ0

This equation has a solution:

ε=
σ0
E∞

1 +
E∞ −Es

Es
e− t λ 2 24

where λ = cd/Ep and E∞ = EsEp/(Es + Ep). Note that Eq. (2.24) has the initial and final
values ε0 and ε∞ at t = 0 and t = ∞.

Figure 2.5 shows the strain–time characteristics as predicted by Eq. (2.24).

b) The Relaxation characteristics of the Poynting–Thomson model are obtained as
follows:

i) Determining the initial and final values stress:
For strain ε = ε0, then Eq. (2.22) reduces to:

σ =
Es Ep + cds

Es +Ep + cds

ε0
s

Then,

σ0 = lim
s ∞

sσ = lim
s ∞

Es Ep + cds

Es +Ep + cds
ε0 =Esε0

and

σ∞ = lim
s 0

sε= lim
s 0

Es Ep + cds

Es + Ep + cds
ε0 = E∞ε0

where E∞ =
EsEp

Es +Ep
.

ii) Determining the time history of the stress:
The time history of the stress can be determined by solving Eq. (2.23) such that

at t = 0, ε = ε0, and the initial stress σ0 = Esε0. Hence, Eq. (2.23) reduces to:

cdσ + Es +Ep σ = EsEpε0

t1

ε

ε0 =
σ0

ε∞ =

ε = ε∞e–(t–t1)/λ

σ0

Es

E∞

Time-t

Figure 2.5 The creep characteristics of the Poynting–Thomson model.
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This equation has the following solution:

σ = E∞ε0 1−e− t α +Esε0 e
− t α 2 25

where α=
cd

Es + Ep
.

Figure 2.6 shows the stress–time characteristics as predicted by Eq. (2.25).

Table 2.6 summarizes the main characteristics of Maxwell, Kelvin–Voigt, and
Poynting–Thomson models.
The characteristics summarized in Table 2.6 ascertain the ability of the Poynting–

Thomson model to simulate a realistic behavior of VEMs. However, several

Time-t 

σ

σ∞=E∞ε
0

σ
0

Figure 2.6 The relaxation characteristics of the Poynting–Thomson model.

Table 2.6 Time domain characteristics of classical viscoelastic models.

Parameter Maxwell Kelvin–Voigt Poynting–Thomson

Model

Dynamic
equations

λσ + σ = cd ε σ = Esε+ cdε Es +Ep σ + cdσ =EsEpε+Escdε

Creep
characteristics

ε0

ε∞

ε

TimeOn Off

ε∞
ε

On Off Time

ε0

ε∞
ε

Time

Comments Unrealistic Realistic Realistic

Relaxation
characteristics

σ

Time

σ

Time

σ0

σ

Time

ε∞

Comments Realistic Unrealistic Realistic
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combinations of Poynting–Thomson models are necessary to replicate the behavior of
realistic VEMs.

Example 2.1 Plot the stress–strain characteristics for the Maxwell and Kelvin–
Voigt models when the VEM is subjected to the loading and unloading cycle shown
in Figure 2.7.
Assume that Es = 1, Ep = 1, cd = 1, ε0 = 0, t1 = 1, and t2 = 2.

Solution

Table 2.7 lists the solutions of the constitutive equations of Maxwell and Kelvin–Voigt
models for the given loading and unloading cycle.
Figure 2.8a,b displays the stress–strain characteristics of the Maxwell and Kelvin–

Voigt models. The figures indicate that, according to the Maxwell model, the VEM is
stiffer and dissipates less energy, as represented by the enclosed area, than that predicted
by the Kelvin–Voigt model.

2.3 Creep Compliance and Relaxation Modulus

In Section 2.2, time domain relationships are derived for the different classical VEM
models when these models are subjected to creep or relaxation loading. These relation-
ships are obtained by solving the constitutive equations that describe the dynamics of the
VEM models subject to initial conditions determined by applying the initial value
theorem.

σ
σ0=1

Timet1 t2

Figure 2.7 A ramp creep loading and loading cycle.

Table 2.7 Solutions of the constitutive equations.

Parameter Maxwell Kelvin–Voigt

Constitutive equation ε= σ + σ ε+ ε= σ

Equation during loading ε= 1+ t ε+ ε= t

Initial condition (ε0) ε0 = 0 ε0 = 0

Response ε= ε0 + t + 1
2t2 ε = (ε0 + 1)e−t − 1 + t

Equation during unloading ε= 1− t ε+ ε= 2− t

Initial condition (ε1) ε1 = 1.5 ε1 = e−1

Response ε= 1+ t−1
2t2 ε = 3 − t + e−t − 2e1 − t
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Table 2.8 lists these relationships such that the ratio between the strain and amplitude
of the creep stress ε/σ0 is denoted by the symbol J(t) and called “the creep compliance”
and the ratio between the stress and amplitude of the relaxation strain σ/ε0 is designated
by the symbol E(t) and called “the relaxation modulus.”
It is important to note that these two characteristic properties of VEM are time-

dependent, unlike the corresponding properties for solids, which are constants.
Note also that the process involved in deriving these properties has been tedious and

cumbersome as it consists of applying the initial and final value theorems followed by the
exhaustive procedure for solving the constitutive equations subject to the initial values
and then validating the solution against the obtained final values.
In this section, two other approaches are presented. In the first approach, the

direct Laplace and inverse Laplace transformations are applied one after the other to
the constitutive equations of the VEM. In the second approach, the topology of the
VEM model is translated into a linear set of equations that can be reduced by using the
Gauss elimination to determine both J(t) and E(t) simultaneously. The two approaches
are implemented in a MATLAB environment to enhance their practicality and utility.

(a) – Maxwell model (b) – Kelvin-Voigt model
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Figure 2.8 Stress–strain characteristics of Maxwell and Kelvin–Voigt models. (a) Maxwell model and
(b) Kelvin–Voigt model.

Table 2.8 The creep characteristics of Maxwell, Kelvin–Voigt, and Poynting–Thomson models.

Model Maxwell model Kelvin–Voigt model Poynting–Thomson model

Creep
compliance (J)

J =
ε

σ0
=

1
Es

1 +
t
λ

a J =
ε

σ0
=

1
Es

1−e− t λ a
J =

ε

σ0
=

1
E∞

1 +
E∞ −Es

Es
e−t λ

Relaxation
modulus (E)

E =
σ

ε0
= Ese

− t λ E =
σ

ε0
= Es + cd dirac t b

=
σ

ε0 +
= Es

E =
σ

ε0
=E∞ 1−e− t α +Ese

− t α

where α=
cd

Es + Ep
, λ=

cd
Ep

a λ = cd/Es.
b dirac(t) = ∞ at t = 0 and 0 at t = 0+.
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2.3.1 Direct Laplace Transformation Approach

The constitutive equations of the VEM are transformed into the Laplace domain to
assume one of the following transfer function forms:

J∗ =
ε

σ
2 26a

and

E∗ =
σ

ε
2 26b

When the VEM is subjected to creep loading, the stress σ is replaced by its Laplace
transform σ0/s and Eq. (2.26a) reduces to:

J∗ = s
ε

σ0
= sJ s 2 27a

Similarly, when the VEM is subjected to relaxation loading, the strain ε is replaced by
its Laplace transform ε0/s and Eq. (2.26b) reduces to:

E∗ = s
σ

ε0
= sE s 2 27b

The inverse Laplace transform is then used to transform J(s) and E(s) into the time
domain creep compliance J(t) and relaxation modulus E(t).
Table 2.9 lists the corresponding creep compliance J(t) and relaxation modulus E(t) for

the Maxwell, Kelvin–Voigt, and Poynting–Thomson models.

Table 2.9 Time domain characteristics of classical viscoelastic models.

Operation Maxwell Kelvin–Voigt Poynting–Thomson

Dynamic
equations

λσ + σ = cd ε σ =Esε+ cdε Es + Ep σ + cdσ

=EsEpε+Escdε

Laplace transform
of the strain due to
creep loading σ0

ε

σ0
=
λs+ 1
cds2

ε

σ0
=

1
Ess λs+ 1

ε

σ0
=

Es +Ep + cds

EsEp + Escds s

Inverse Laplace
transform of
ε/σ0 = J using
MATLAB

>> syms L cd s t
>> ilaplace ((L∗s + 1)/
(cd∗s^2),s,t)

J = λ/cd + t/cd

>> syms L E s t
>> ilaplace(1/(E∗s∗(L∗s
+ 1)),s,t)

J = 1/E − 1/(E∗ exp(t/λ))

>> syms Es Ep cd s t
>> ilaplace (((Es + Ep) + cd∗s)/
(s∗(Es∗Ep+Es∗cd∗s)),s,t)
J = (Ep + Es)/(Ep∗Es) -
1/(Ep∗exp((Ep∗t)/cd))

Laplace transform
of the stress due to
relaxation loading
ε0

σ

ε0
=

cd
λs+ 1

σ

ε0
=
Es λs+ 1

s
σ

ε0
=

EsEp + Escds

Es +Ep + cds s

Inverse Laplace
transform of
σ/ε0 = R using
MATLAB

>> syms L cd s t
>> ilaplace ((cd)/
(L∗s+1),s,t)
R = cd/(λ∗ exp(t/λ))

>> syms L E s t
>> ilaplace(E∗(L∗s + 1)/
s,s,t)

R = E + E∗L∗dirac(t)

>> syms Es Ep cd s t
>> ilaplace((Es∗Ep + Es∗cd∗s)/
(s∗(Es + Ep + cd∗s)),s,t)
R = (Ep∗Es)/(Ep + Es) + Es^2/
(exp((t∗(Ep + Es))/cd)∗(Ep + Es))
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2.3.2 Approach of Simultaneous Solution of a Linear Set of Equilibrium,
Kinematic, and Constitutive Equations

This approach was developed by Vondřejc (2009) and translates the topology of the VEM
model into a linear set of equilibrium, kinematic, and constitutive equations which can
be reduced by using the Gauss elimination to determine both J and R simultaneously.
The approach is implemented in a MATLAB environment to enhance its practicality
and utility.
In this approach, the topology of the viscoelastic model is described by N serial strings

extending between P points. Each string can consist of a spring and a damper in series.
For example, Figure 2.9 shows the description of the topology of the Maxwell and
Poynting–Thomson VEM models. In Figure 2.9a, the Maxwell model is described by
one string and two points whereas in Figure 2.9b, the Poynting–Thomson model is
defined by two strings and three points.
In a symbolic MATLAB environment, the topology description of the two models is

given by the vectors B such that:

Maxwell Model: B = [1, 2, E1, cd1],

Poynting–Thomson Model: B = [1, 2, E1, inf; 2, 3, E2, inf; 2, 3, inf, cd2];

Note that in this description of any string, the component value of a spring or a damper
that is missing in the string is set equal to “inf.”
The mathematical formulation of the VEMmodel, in the Laplace domain, is described

as follows:

Constitutive equations − ei−1
j= bi

εj, j+ 1 + σi
1
Ei

+
1
cdi s

= 0 i= 1,2,…,N (2.28)

Equilibrium equations − P
j= 1δibjσj + σ = 0 For beginning points bj (2.29)

P
j= 1 δibj −δiej σj = 0 i= 1,2,…,P−1 (2.30)

− P
k = 1δiekσk + σ = 0 For end pointsek (2.31)

Kinematic equations − P−1
j= 1 εj, j+ 1 + ε= 0 (2.32)

(a) – Maxwell model (b) – Poynting-Thomson Model

1 32

String 1 String 2

cd2

E2E1

1 2

String 1

E1

ε1,2
ε1,2 ε2,3ε

ε

σ σ σ σ
cd1

Figure 2.9 Topology of the Maxwell and Poynting–Thomson models. (a) Maxwell model and
(b) Poynting–Thomson model.
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Note that bj and ej denote the beginning and end points of the jth string.
In a matrix form, Eqs. (2.28) through (2.32) take the following form:

Ax= 0 2 33

where x is a vector of the strains and stresses given by:

x= ε1,2 ε2,3 … εP−1,P σ1 σ2… σN σ ε 2 34

where εj, j + 1 = strain between points j and j + 1, σi = stress in the ith string, σ = stress
applied to the entire VEM topology, and ε = total strain of the entire VEM topology.

Example 2.2 Derive expressions for the creep compliance and relaxation modulus
for the Maxwell model using the approach of simultaneous solution of a linear set of
equilibrium, kinematic, and constitutive equations described in Section 2.3.2.

Solution

From Eqs. (2.28) through (2.32), the system of equations describing the dynamics of the
Maxwell model is given by:

−1 C 0 0

0 −1 1 0

0 −1 1 0

−1 0 0 1

ε1,2

σ1,2

σ

ε

= 0 or Ax= 0 2 35

where C =
1
E1

+
1

cd1s
.

Applying the Gauss elimination method to Eq. (2.35), it reduces to:

−1 C 0 0

0 −1 1 0

0 0 0 0

0 0 −C 1

ε1,2

σ1,2

σ

ε

= 0 2 36

Expanding the last row of Eq. (2.36) gives:

Cσ = ε or
1
E1

+
1

cd1s
σ = ε 2 37

Hence, if the VEM is subjected to creep loading such that σ = σ0, then Eq. (2.37)
reduces to:

ε=
1
E1

+
1

cd1s
σ0
s

2 38

Using MATLAB symbolic manipulation gives:

>> syms E1 cd1 sigma0 s t
>> ilaplace ((1/E1+1/(cd1∗s))∗sigma0/s, s, t)
J = sigma0/E1 + (sigma0∗t)/cd1)
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Note that the obtained creep compliance J matches that listed in Table 2.9.
Also, if the VEM is subjected to relaxation strain such that ε = ε0, then Eq. (2.37)

reduces to:

σ =
ε0
s

1
E1

+
1

cd1s
2 39

Using MATLAB symbolic manipulation gives:

>> syms E1 cd1 eps0 s t
>> ilaplace (1/(1/E1+1/(cd1∗s))∗eps0/s, s, t)
E = (E1∗eps0)/exp((E1∗t)/cd1)

The obtained relaxation modulus E matches that listed in Table 2.9.

2.4 Characteristics of the VEM in the Frequency Domain

Assume a VEM is subjected to sinusoidal stress σ and strain ε, at a frequencyω, such that:

σ = σ0e
iωt and ε= ε0e

iωt 2 40

where σ0 and ε0 denote the amplitude of the stress and strain, respectively, with i= −1.
Hence, for a VEM described by the Maxwell model, Eqs. (2.9) and (2.26b) give:

1 + iλω σ0e
iωt = λEsωε0i e

iωt or σ0 =Es
ω2λ2

1 +ω2λ2
+ i

ωλ

1 +ω2λ2
ε0

In a compact form,

σ0 =E 1 + iη ε0 2 41

where E =Es
ω2λ2

1 +ω2λ2
and η= 1

ωλ. The constitutive equation of the VEM, as given by

Eq. (2.41), indicates that the material has a complex modulus E∗ = E [1 + j η] that relates
the stress and the strain. Note that:

a) the real part of the complex modulus = E is called the storage modulus,
b) the imaginary part of the modulus = E η is called the loss modulus E , and
c) the ratio between loss and the storage moduli is η is called the loss factor.

Figure 2.10 shows the effect of the excitation frequency on the storagemodulus and the
loss factor of the Maxwell model.

(a) – Storage Modulus (b) – Loss Factor

E′

Es

ω ω

η

Figure 2.10 Effect of frequency on the storage modulus and loss factor of Maxwell model. (a) Storage
modulus and (b) loss factor.
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Note that the Maxwell model indicates that the
VEM has zero storage modulus under static condi-
tions (ω = 0) and has a loss factor that is continuously
decaying with frequency. These two characteristics
contradict the behavior of realistic VEMs.
Figure 2.11 displays graphically the different com-

ponents of the complex modulus E∗ = E [1 + i η].
Note that the complex modulus makes an angle δ

with the real axis such that:

tan δ = η 2 42

Because of this relationship, the loss factor is also called “tan delta” or the “loss
tangent.”
In a similar manner, the constitutive equations for the Kelvin–Voigt and Poynting–

Thomson models can be determined in the frequency domain. Table 2.10 lists these
equations and gives expressions for the corresponding storage modulus and loss factor
for the different models.
The characteristics summarized in Table 2.10 ascertain the ability of the Poynting–

Thomson model to simulate a realistic behavior of VEMs. However, several

Imaginary

δ
Real

E″=E′η

E′

E*

Figure 2.11 Graphical
representation of complex modulus.

Table 2.10 Frequency domain characteristics of classical viscoelastic models.

Parameter Maxwell Kelvin–Voigt Poynting–Thomson

Model

Storage
modulus E =Es

ω2λ2

1 +ω2λ2
E = Es

E = E∞
1 + αβω2

1 + α2ω2
a

ω

E′

ω

E′

ω

βE′

E

α E∞

Comments Unrealistic Unrealistic Realistic

Loss Factor η = 1/ωλ η = ωλ η = (β − α)ω/[1 + αβω2]

ω

η η

ω

η

ω
Comments Unrealistic Unrealistic Realistic

awhere E∞ =
EsEp
Es +Ep

, α=
cd

Es +Ep
, and β =

cd
Ep
.
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combinations of Poynting–Thomson models are necessary to replicate the behavior of
realistic VEMs.

2.5 Hysteresis and Energy Dissipation Characteristics of
Viscoelastic Materials

2.5.1 Hysteresis Characteristics

Consider a VEM subjected to sinusoidal stress σ and strain ε given by

σ = σ0e
iωt andε= ε0e

iωt 2 43

with the stress and strain related by the following constitutive equation

σ = E 1 + iη ε 2 44

Combining Eqs. (2.43) and (2.44) gives

σ = σ0 sin ωt

=E ε0 sin ωt + ηE ε0 cos ωt

= σe + σd

2 45

where σe = E ε0 sin(ωt) and σd = ηE ε0 cos(ωt) denote the elastic and dissipative compo-
nents of the applied stress σ.
Then σd can be written as:

σd = ηE ε0 cos ωt

= ± ηE ε20−ε
2
0sin

2 ωt

= ± ηE ε20−ε
2

2 46

Rearranging this equation reduces it to

σd ηE 2 + ε2 = ε20 2 47

which is an equation of an ellipse as shown in Figure 2.12a. Figure 2.12b shows a plot of
the elastic stress versus the strain and Figure 2.12c combines the elastic and dissipative
stress components. Figure 2.12c displays accordingly the total stress σ acting on the VEM
versus the strain ε.

(a) – dissipative component (b) – elastic component (c) – viscoelastic material

D
σd

ε ε

σe σ

ε0

ηE′ε0

ε0

ε

W

Figure 2.12 Stress–strain relationship for a viscoelastic material. (a) dissipative component, (b) elastic
component, and (c) viscoelastic material.
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Note that the dissipative component takes the form of a hysteresis loop. The area
inside the loop quantifies the amount of energy D dissipated during the cyclic deforma-
tion of the VEM.

2.5.2 Energy Dissipation

The energy dissipated during a full vibration cycle of the VEM, at a frequency ω, per unit
volume can be determined from

D= σddε=

2π
ω

0

σd
dε
dt

dt 2 48

But as σd = ηE ε0 cos(ωt) and ε = ε0 sin(ωt), then Eq. (2.48) reduces to

D=

2π
ω

0

σd
dε
dt

dt

=

2π
ω

0

ηE ε0 cos ωt ωε0 cos ωt dt

= π ηE ε20

2 49

2.5.3 Loss Factor

Two methods can be used to extract the loss factor from the hysteresis characteristics of
the VEM. These methods are based on the following:

2.5.3.1 Relationship Between Dissipation and Stored Elastic Energies
Consider now the energy W stored in the elastic component, during one-quarter of a
vibration cycle, which can be determined from:

W = σedε=

π
2ω

0

σe
dε
dt

dt

With σe = E ε0 sin(ωt), the equation reduces to

W =

π
2ω

0

σe
dε
dt

dt

=

π
2ω

0

E ε0 sin ωt ωε0 cos ωt dt

=
1
2
E ε20

2 50
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From Eqs. (2.49) and (2.50), the loss factor η can be determined from

η=
D

2πW
2 51

Hence, Eq. (2.51) defines the physical meaning of the loss factor as the ratio between
the dissipated energy and stored energy. Also, Figure 2.12 shows the graphical represen-
tation and physical meaning of both the dissipated and stored energies.

2.5.3.2 Relationship Between Different Strains
Equations (2.45) and (2.46) can be rewritten as:

σ =E ε± ηE ε20−ε
2 2 52

When the stress σ is set = 0, the corresponding strain εsf can be obtained from:

0 = E εsf ± ηE ε20−ε
2
sf

or,

εsf =
η

1 + η2
ε0 2 53

The σ − ε relationship of the upper branch of hysteresis characteristics can be
expressed form Eq. (2.45) as:

σ =E ε+ ηE ε20−ε
2 2 54

The maximum stress is attained when:
dσ
dε

= 0 at ε = εmaxσ given by:

εmaxσ = ε0 1 + η2 2 55

Figure 2.13 displays the graphical interpretation of the strains εsf and εmaxσ.
From Eqs. (2.53) and (2.55),

εsf
εmaxσ

= η 2 56

Hence, the loss factor can be computed as the ratio
between the two strains εsf and εmaxσ as measured
from the hysteresis characteristics.

2.5.4 Storage Modulus

The storage modulus can be determined by con-
sidering the stress under a strain-free condition
σstf. This value can be obtained by setting ε = 0 in
Eq. (2.54), giving:

σstf = ± ηE ε0 2 57

σ

σstf

ε

εsf

σmax

εmax σ

Figure 2.13 Graphical representation
of the strains εsf and εmaxσ.
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Once η and ε0 are determined from Eqs. (2.56) and (2.53), then Eq. (2.57) can be used
to compute the storage modulus E .

Example 2.3 Plot the stress–strain characteristics for the Poynting–Thomson
model when the VEM is subjected to sinusoidal stress such that σ = sin t. Assume that
Es = 1, Ep = 1, and cd = 1. Determine the loss factor and the storage modulus according
to the methods described in Sections 2.5.3.2 and 2.5.4. Compare the results with the
loss factor and the storage modulus expressions listed in Table 2.10.

Solution

The constitutive equation for the Poynting–Thomson model is:

ε+ ε= σ + 2σ

For sinusoidal stress: σ = sin t, this equation reduces to:

ε+ ε= 2sin t + cos t

This equation is integrated numerically, with respect to time, using MATLAB to
extract the time history of the strain as function of the time history of the input stress.
Then, the strain is plotted against the stress to yield the stress–strain characteristics
shown in Figure 2.14.

a) From Figure 2.14,

εmaxσ = ε0 1 + η2 = 1 5

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
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–0.2

0

0.2

0.4

0.6

0.8

1

Strain
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ss

Figure 2.14 Stress–strain characteristics of a Poynting–Thomson model.
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εsf =
η

1 + η2
ε0 = 0 5

Then,

εsf
εmaxσ

= η=
0 5
1 5

= 0 33

This yields ε0 = 1.581.

Also, from Figure 2.14, σstf = ± ηE ε0 = ± 0.3148, or

E = 0 3148 ηε0

= 0 3148 0 333 × 1 581 = 0 598

b) From Table 2.10,

AsE =
EsEp

Es +Ep
=
1
2
, α=

cd
Es +Ep

=
1
2
, β =

cd
Ep

= 1, and ω= 1

Then,

E =E
1 + αβω2

1 + α2ω2
=
1
2

1 + 0 5ω2

1 + 0 25ω2
=

1 5
2 × 1 25

= 0 6

and

η= β−α ω 1 + αβω2 = 0 5 1 + 0 5 = 0 333

Hence, the two methods yield exactly the same results.

Example 2.4 Plot the storagemodulus and the loss factor as predicted by aMaxwell,
Kelvin–Voigt, and Poynting–Thomson models that best fits the experimental behav-
ior of the VEM Dyad 606 (Soundcoat, Deer Park, NY) at 37.8 C (100 F).

Solution

The storage modulus and the loss factor of the different VEM models, listed in
Table 2.10, are plotted versus the frequency ω as shown in Figure 2.15. The plots are
obtained for α = 1, β = 20, λ = 3, Es = 500, and E = 500.
The figure indicates clearly that all the three models are incapable of capturing the

behavior of the Dyad606. However, the predictions of the Poynting–Thomson model
qualitatively have the general trends but fail to quantitatively describe the behavior over
a broad frequency range.
A combination of several Poynting–Thomson models is necessary to replicate the

behavior of realistic VEMs.
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2.6 Fractional Derivative Models of Viscoelastic Materials

As indicated in Section 2.5, the simple classical models of VEMs cannot replicate the
dynamic behavior of real VEMs. Other alternative models have been considered to over-
come such serious limitations. Among these models are fractional derivative (FD) model
(Bagley and Torvik 1983), Golla–Hughes–MacTavish (GHM) model (Golla and Hughes
1985), and the Augmented Temperature Field model (Lesieutre and Mingori 1990;
Lesieutre et al. 1996).

2.6.1 Basic Building Block of Fractional Derivative Models

The basic concepts of fractional calculus are summarized in Appendix 2.B.
In this section, the basic building block of FD models is the “spring-pot” that replaces

the spring and dashpot elements used in the classical models. The spring-pot element is
employed to simplify, improve the applicability, and reduce the number of parameters
used to model the complex behavior of viscoelastic polymers.
The spring-pot element is a nonlinear FD element that has the following constitutive

equation:

σ t =Eτα
dαε t
dtα

2 58

Note that the stress σ(t) applied to the element is dependent on the FD of order α of
the strain ε(t) where α ranging between 0 and 1. When α = 0, the spring-pot element
reduces to a linear spring and when α = 1, the spring-pot element becomes a linear
dashpot (damper) as shown in Figure 2.16.
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Figure 2.15 Storage modulus and loss factor of different VEM models.
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From Eq. (2.58), the storage and loss moduli of the spring-pot can be determined as
follows:

E∗ ω =E iωτ α

=E ωτ α e

π

2
αi

=E ωτ α cos
π

2
α + i sin

π

2
α

=E + iE

2 59

where E =E ωτ α cos π
2α and E =E ωτ α sin π

2α .

The relaxation modulus E(t) of the spring-pot can be obtained by applying the inverse
Fourier transform to Eq. (2.58) knowing that E(s) = E∗/s, as indicated in Eq. (2.27b). This
yields the following expressions:

Relaxation modulus

E t =
2
π

∞

0

1
ω
E sin ωt dω

=
2
π
E τα cos

π

2
α

∞

0

ωα−1 sin ωt dω

=
E

Γ 1−α
t
τ

−α

2 60

and

Creep compliance

J t =
E−1

Γ 1 + α
t
τ

α

2 61

2.6.2 Basic Fractional Derivative Models

The basic FDmodels presented in this section are the FDMaxwell, FD Kelvin–Voigt, and
FD Poynting–Thomson models.

(a) – Spring-Pot

α = 0 α = 1

(b) – Spring (c) – Dashpot

(E, τ, α)

E cd

Figure 2.16 Representations of a spring-pot, spring, and dashpot. (a) Spring-pot, (b) spring, and
(c) dashpot.
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For example, consider the classical Maxwell model shown in Figure 2.17a is trans-
formed to a FD Maxwell model shown in Figure 2.17b by replacing each component
by a spring-pot with different parameters.
For the FD model and using the equivalent spring-pot Eq. (2.58), the strains ε1 and ε2

can be written as:

ε1 t = E−1
1 τ1

−α1
d−α1σ t
dt−α1

andε2 t = E−1
2 τ−α2

d−α2σ t
dt−α2

2 62

But as, ε = ε1 + ε2, then:

σ t + τα1−α2
dα1 −α2σ t
dtα1−α2

=Eτα1
dα1ε t
dtα1

2 63

where τ = E1τ
α1
1 E2τ

α2
2

1 α1−α2 , E = E1 τ1 τ2
α1 , and α1 ≥ α2.

Fourier-transforming Eq. (2.63) gives:

E∗ =
E iωτ α1

1 + iωτ α1−α2 2 64

Following the same approach adopted in Section 2.6.1, it can be easily shown that
the relaxation modulus and creep compliance of the FD Maxwell model are given by:

J t =
E−1

Γ 1 + α1

t
τ

α1
+

E−1

Γ 1 + α2

t
τ

α2
2 65

Table 2.11 summarizes the complex moduli for the FD Maxwell, Kelvin–Voigt, and
Zener models.

Example 2.5 Determine the storage modulus, loss modulus, and loss factor as
predicted by the FD Zener model that is given by the following four-parameter FD
model proposed by Bagley and Torvik (1983):

σ t + ταDασ t = E0ε t + E∞ ταDαε t

where E0 = EsEp/(Es + Ep) = relaxed elastic modulus, E∞ = Es = unrelaxed elastic mod-
ulus, τ = cd/(Es + Ep) = the relaxation time, and 0 < α < 1.

Solution

From Eq. (2.58), the complex modulus as predicted by the four-parameter FDmodel can
be obtained by using Eq. (2.B.10), to give:

E∗ =
σ s
ε s

=
E0 +E∞ τs α

1 + τs α

(a) (b)

Ecd σσ
(E1, τ1, α1) (E2, τ2, α2)

σσ

ε1 ε1 ε2ε2

ε ε

Figure 2.17 Classical (a) and fractional derivative (b) Maxwell models.
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It can be easily shown that the storage and loss moduli of the four-parameter FDmodel
are given by:

E ω =
E0 + E∞ + E0 ωτ α cos πα 2 +E∞ ωτ 2α

1 + 2 ωτ α cos πα 2 + ωτ 2α

and

E ω =
E∞ −E0 ωτ α sin πα 2

1 + 2 ωτ α cos πα 2 + ωτ 2α

Accordingly, the loss factor η is given by:

η=
E ω

E ω
=

E∞ −E0 ωτ α sin πα 2

E0 + E∞ +E0 ωτ α cos πα 2 +E∞ ωτ 2α

This yields a value of α that can be estimated from (see Problem 2.9):

α=
2
π
sin−1 ηmax E∞ −E0 ×

2 E∞E0 + E∞ +E0 1 + η2max

η2max E∞ + E0
2 + E∞ −E0

2

Example 2.6 Plot the storage modulus and the loss factor as predicted by a FD
model that best fits the experimental behavior of theVEMDyad 606 (Soundcoat, Deer
Park, NY) at 37.8 C (100 F). Compare the predictions with those of a Poynting–
Thomson model.

Solution

The storage modulus and the loss factor of the FD and Poynting–Thomson VEMmodels
are plotted versus the frequency ω as shown in Figure 2.18. The plots are obtained for

Table 2.11 Frequency domain characteristics of fractional derivative viscoelastic models.

Parameter Maxwell Kelvin–Voigt Zener

Model (E1, τ1, α1) (E2, τ2, α2) (E1, τ1, α1)

(E2, τ2, α2)

(E1, τ1, α1) (E2, τ2, α2)

(E3, τ3, α3)

Storage
modulus E∗ =

E iωτ α1

1 + iωτ α1 −α2
a E∗ =E iωτ α1 +E iωτ α2 E∗ =E0

iωτ α2

1 + iωτ α2 −α1 + E iωτ α3 b

awhere τ = E1τ
α1
1 E2τ

α2
2

1 α1 −α2 , E =E1 τ1 τ2
α1 , and α1 ≥ α2.

b E0 =E1 τ1 τ α1 .
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the Poynting–Thomson model with α = 1, β = 20, λ = 3, and Es = 500 psi while the FD
model is given by:

σ =
52 5 + 18000 0 004s 0 7

1 + 0 004s 0 7 ε

The figure indicates clearly that the four-parameter FD model adequately replicates
the physical behavior of Dyad 606 unlike the linear Poynting–Thomson model.

2.6.3 Other Common Fractional Derivative Models

In this section, some of the commonly used FD models are introduced. The main char-
acteristics of these models are presented in the frequency ω domain as indicated in
Table 2.12. These models vary in complexity by increasing the number of the included
parameters from three (E∞, Δ, τ) as in the Debye model to five parameters (E∞, Δ, τ, α,
and β) as in the Havriliak–Negami model (Pritz 2003, Ciambella et al. 2011).

Example 2.7 Determine the time response of the following spring-mass system,
shown in Figure 2.19, which is damped by a FD damper of the order α:

mx + cταDαx+ kx= f

Assume that m= 1 kg, k = 1 Nm−1, τ = 1 s, f = 1 N, and α = 0.75. Assume also that
x(0) = 0 and x 0 = 0. Use the Grunwald–Letnikov (G–L) definition of FDs described
in Appendix 2.B.5.
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Figure 2.18 Storage modulus and loss factor of a fractional derivative and Poynting–Thomson models.
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Solution

According to the set parameters, the system equation reduces to:

x +D0 75x+ x= 1

or

x = −D0 75x−x+ 1

where,

D0 75x= lim
N ∞

t
N

−0 75 N −1

j=0

Aj+1 f t− jt N

where Aj + 1 = Grunwald coefficients.

Figure 2.20a,b displays the Grunwald coefficients and the time response of the spring-
mass system with a FD damper, respectively. It is evident, from Figure 2.20a, that the
Grunwald coefficients vanish as the number of terms included in the summation of
Eq. (2B.14) increases. This demonstrates clearly the “fading memory” characteristics
of FDs. Figure 2.20b indicates that the system reaches, with an error of 3.14%, the desired
reference command after 15 s.

Table 2.12 Frequency domain characteristics of fractional derivative viscoelastic models.

Model E�(ω) Parameters

Debye
E∗ = E∞ 1 +

Δ
1 + iωτ

a 3

Cole–Coleb
E∗ = E∞ 1 +

Δ
1 + iωτ α

4

Cole–Davidson
E∗ = E∞ 1 +

Δ
1 + iωτ β

4

Havriliak–Negami
E∗ = E∞ 1 +

Δ
1 + iωτ α β

5

awhere Δ = (E0 − E∞)/E∞ = relaxation strength, = relaxed elastic modulus, = unrelaxed elastic modulus.
b Friedrich and Braun (1992), Pritz (2003), and Ciambella et al. (2011).

(c, τ, α)

m
x(t)

k

f (t)

Figure 2.19 A spring-mass system with a fractional derivative damper.

Viscoelastic Damping 37



Note that the approach adopted in Example 2.7 establishes the basis for time domain
analysis of finite element models of structures treated with VEMs that are described
by FD models.

2.7 Viscoelastic Versus Other Types of Damping Mechanisms

In this section, four important damping mechanisms are presented, including: viscous,
hysteretic, structural, and friction damping in order to distinguish, compare, and relate
their characteristics to those of viscoelastic damping materials.
Tables 2.13 and 2.14 summarize the main characteristics of these four damping

mechanisms. Table 2.13 presents the physical representation of each mechanism, its
mathematical model, force-displacement characteristics, and a typical time response
behavior.
The energy dissipated per cycle by the different damping forces is calculated as follows:

Di = 4

π 2ω

0

Fd xdt 2 66

where Fd denotes the damping force as listed in the third column of Table 2.13.
The equivalent viscous damping coefficient, for any damping mechanism, is obtained

by equating the energy dissipated by the ith mechanism to that of the viscous damping
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Figure 2.20 Time response of a spring-mass system with a fractional derivative damper.
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Table 2.13 Characteristics of viscous, hysteretic, structural, and friction damping.

Damping
mechanism

Physical
representation Model Force – displacement Time response

Viscousa,b

m

k C

x Fd = cx

x

Fd
cX

·

X

x

t

Hysteretica,b

m

k
ηk

ω

x Fd =
ηk
ω x FdX

·

x
X

ηk
ω

x

t

Structuralc,d

m
x

k ηk

Fd = ηk x sgn x

x
X

2ηkX
Fd x

t

Frictiona,b x

k Ff

m
Fd = Ff sgn x Fd

x

X

Ff

x

t

Ff /k

aBeards (1996).
bRao (2010).
cMuravskii (2004).
dGremaud (1987).

Table 2.14 Energy dissipation and damping ratios of viscous, hysteretic, structural, and friction
damping.

Damping
mechanism Energy dissipation

Equivalent damping
coefficient

Equivalent
damping ratio

Viscous Dv = πcωX2 cv = c ζv = c 2 km

Hysteretic DH = πkηX2 cH =
kη
ω

ζH =
η

2

Structural DS = 2kηX2 cS =
2kη
πω

ζS =
η

π

Friction DF = 4FfX cF =
4Ff
πωX

ζF =
2
π

Ff
kX

Viscoelastic DVEM = πkηX2 cVEM =
kη
ω

ζVEM =
η

2



mechanism Dv. Hence, the equivalent damping ratio of the ith mechanism is calculated
as follows:

ζi = ci 2 km 2 67

Equation (2.67) assumes that ζi = ci/cc where cc = 2 km is the critical damping coef-
ficient for a single degree of freedom vibrating system.
Table 2.14 summarizes the energy dissipated per cycle, the equivalent viscous damping

coefficients, and equivalent damping ratios of the different mechanisms in comparison
with the corresponding values for viscoelastic materials.

2.8 Summary

This chapter has presented the classical models of VEMs. The merits and limitations of
these models have been discussed both in the time and frequency domains. The energy
dissipation characteristics of the VEMs have been presented with particular emphasis on
the use of the unifying concept of the complex modulus. A brief description of the FD
models has also been outlined to emphasize their utility and compactness. Measurement
methods of the complex modulus of the VEMs will be presented in the next chapter, and
extension of the classical models tomore practical models that can be easily incorporated
in the formulation of finite element method will be presented in Chapters 4–6.
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2.A Initial and Final Value Theorems

The initial and final values of a function x(t) are given by the following theorems
(Nise 2015):

• Initial value theorem: x 0 = limt 0 x t = lims ∞ sX s

• Final value theorem: x ∞ = limt ∞ x t = lims 0 sX s

Proof
From the definition of the Laplace transform L:

L
d
dt

x t =

∞

0

d
dt

x t e−stdt = sX s −x 0
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