DAVID BANKS

An Introduction to Thermogeology GROUND SOURCE HEATING AND COOLING 2ND EDITION

An Introduction to Thermogeology: Ground Source Heating and Cooling For Jenny 'the Bean'

An Introduction to Thermogeology: Ground Source Heating and Cooling

2nd Edition

David Banks

Holymoor Consultancy Ltd UK

This edition first published 2012

© 2008 David Banks © 2012 John Wiley & Sons, Ltd

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

> *Editorial offices:* 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Banks, David, 1961– An introduction to thermogeology : ground source heating and cooling / David Banks. – 2nd ed.

p. cm. Includes bibliographical references and index. ISBN 978-0-470-67034-7 (hardcover : alk. paper) 1. Ground source heat pump systems. I. Title. TH7638.B36 2012 697'.7-dc23

097 .7-uczo

2011045231

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image:

Main photo: Coils of heat exchange pipe can be installed in natural lakes. They can be mounted in a steel frame, rowed out, filled and sunk to the base of the lake. Photo by kind permission of Geowarmth Heat Pumps Ltd. of Newcastle-upon-Tyne.

Top inset photo: Staff of the Geological Survey of Norway carry out a thermal response test on a closed loop heat exchange borehole drilled into greenstone rocks in Trondheim. Photo by David Banks.

Bottom inset photo: An underground house in Matmata, Tunisia. The rocks store 'coolth' from winter and night-time, such that the underground is much cooler than the surface at the height of summer. Photo by David Banks.

Cover design by Edge Creative

Set in 10/13 pt Trump Mediaeval by Toppan Best-set Premedia Limited

1 2012

Contents

Ab	out the	e Author	xi
Pre	face to	o the First Edition	xiii
Pre	face to	o the Second Edition	XV
Ac	knowle	edgements	xvii
1	An Iı	ntroduction	1
	1.1	Who should read this book?	2
	1.2	What will this book do and not do?	2
	1.3	Why should you read this book?	3
	1.4	Thermogeology and hydrogeology	6
2	Geothermal Energy		11
	2.1	Geothermal energy and ground source heat	11
	2.2	Lord Kelvin's conducting, cooling earth	12
	2.3	Geothermal gradient, heat flux and the structure of the earth	14
	2.4	Internal heat generation in the crust	16
	2.5	The convecting earth?	17
	2.6	Geothermal anomalies	19
	2.7	Types of geothermal system	27
	2.8	Use of geothermal energy to produce electricity by steam turbines	28
	2.9	Binary systems	28
	2.10	Direct use	30
	2.11	Cascading use	30
	2.12 2.13	Hot dry rock systems [a.k.a. 'enhanced geothermal systems (EGS)'] The 'sustainability' of geothermal energy and its	32
		environmental impact	35
	2.14	And if we do not live in Iceland?	38
3	The Subsurface as a Heat Storage Reservoir		
	3.1	Specific heat capacity: the ability to store heat	41
	3.2	Movement of heat	45
	3.3	The temperature of the ground	51
	3.4	Insolation and atmospheric radiation	55
	3.5	Cyclical temperature signals in the ground	59

	3.6	Geothermal gradient	61
	3.7	Human sources of heat in the ground	65
	3.8	Geochemical energy	69
	3.9	The heat energy budget of our subsurface reservoir	70
	3.10	Cyclical storage of heat	72
	3.11	Manipulating the ground heat reservoir	74
4	What	t Is a Heat Pump?	79
	4.1	Engines	81
	4.2	Pumps	84
	4.3	Heat pumps	85
	4.4	The rude mechanics of the heat pump	88
	4.5	Absorption heat pumps	91
	4.6	Heat pumps for space heating	91
	4.7	The efficiency of heat pumps	93
	4.8	Air-sourced heat pumps	96
	4.9	Ground source heat pumps	98
	4.10	1	99
	4.11	GSHPs for cooling	100
	4.12		100
	4.13		101
	4.14	1	104
	4.15	1	107
	4.16	8 8 7	108
	4.17	0	109
	4.18	,	112
5	Heat Pumps and Thermogeology: A Brief History and		
	Inter	national Perspective	114
	5.1	Refrigeration before the heat pump	115
	5.2	The overseas ice trade	117
	5.3	Artificial refrigeration: who invented the heat pump?	119
	5.4	The history of the GSHP	121
	5.5	The global energy budget: how significant are GSHPs?	129
	5.6	Ground source heat: a competitor in energy markets?	132
6	Ground Source Cooling		133
	6.1	Our cooling needs in space	133
	6.2	Scale effects and our cooling needs in time	134
	6.3	Traditional cooling	135
	6.4	Dry coolers	136
	6.5	Evaporation	138
	6.6	Chillers/heat pumps	141

7		0 0 0	143 144 145 145 147 148 150
/	Optio		150
	7.1 7.2 7.3 7.4 7.5 7.6 7.7	How much heat do I need? Sizing a GSHP Open-loop ground source heat systems Closed-loop systems Domestic hot water by ground source heat pumps? Heating and cooling delivery in complex systems Heat from ice	150 156 161 173 191 195 201
8	The 1	Design of Groundwater-Based Open-Loop Systems	202
	$\begin{array}{c} 8.1\\ 8.2\\ 8.3\\ 8.4\\ 8.5\\ 8.6\\ 8.7\\ 8.8\\ 8.9\\ 8.10\\ 8.11\\ 8.12\\ 8.13\\ 8.14\\ 8.15\\ 8.16\\ 8.17\end{array}$	Groundwater modelling Examples of open-loop heating/cooling schemes Further reading	203 203 205 206 208 210 215 217 222 227 234 240 242 243 244 245 246
9	Pipes	, Pumps and the Hydraulics of Closed-Loop Systems	248
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Our overall objective Hydraulic resistance of the heat exchanger The hydraulic resistance of pipes Acceptable hydraulic losses Hydraulic resistances in series and parallel An example Selecting pumps	251 252 253 255 255 256 262

	9.8 9.9 9.10 9.11	Carrier fluids Manifolds Hydraulic testing of closed loops Equipping a ground loop	265 271 275 277
10	Subsurface Heat Conduction and the Design of Borehole-Based Closed-Loop Systems		279
	10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Common design flaws Subsurface heat conduction Analogy between heat flow and groundwater flow Carslaw, Ingersoll, Zobel, Claesson and Eskilson's solutions Real closed-loop boreholes Application of theory – an example Multiple borehole arrays	279 282 283 286 289 294 304 313 321 322 323
11	Horizontal Closed-Loop Systems		
	11.3 11.4 11.5	Geometry of installation	326 327 328 329 333 333 344 351
12	Pond	and Lake-Based Ground Source Heat Systems	353
		Some rules of thumb	354 356 357 365 367 371
13	Stand	ing Column Wells	372
	13.1 13.2 13.3 13.4 13.5 13.6	'Standing column' systems The maths The cost of SCWs SCW systems in practice A brief case study: Grindon Camping Barn A final twist – the Jacob doublet well	372 376 377 379 379 381

14	Thinl	king Big: Large-Scale Heat Storage and Transfer	383
	14.1	The thermal capacity of a building footprint	384
	14.2	Simulating closed-loop arrays with balanced loads	385
	14.3	A case study of a balanced scheme: car showroom, Bucharest	390
	14.4	0	392
	14.5	Deliberate thermal energy storage – closed-loop borehole thermal	205
	14.6	energy storage (BTES)	395
	14.6	Aquifer thermal energy storage (ATES) UTES and heat pumps	398 403
	14.7	Regional transfer and storage of heat	403
15			
15		nal Response Testing	410
	15.1	Sources of thermogeological data	410
	15.2	Laboratory determination of thermal conductivity	411
	15.3	The thermal response test (TRT)	412
	15.4	The practicalities: the test rig	417
		Test procedure	420
		Sources of uncertainty Non-uniform geology	425 426
		Non-constant power input	426
		Groundwater flow	427
		Analogies with hydrogeology	428
		Thermal response testing for horizontal closed loops	429
16	Envir	onmental Impact, Regulation and Geohazards	432
	16.1	The regulatory framework	432
	16.2	Thermal risks	437
		Hydraulic risks	444
		Geotechnical risks	449
		Contamination risks	451
		Geochemical risks	453
		Microbiological risks	454
		Excavation and drilling risks	455
		Decommissioning of boreholes	458
		Promoting technology: subsidy The final word	459 460
	10.11		460
Ref	erence	S	463
	•	estion Answers	493
~	ıbols		503
	ssary		509
Un			515
Ind	ex		518

About the Author

David BANKS was born in Bishop Auckland in 1961. He is a hydrogeologist with 26 years experience of investigating groundwater-related issues. He started his career with the Thames Water Authority in southern England, then moved across the North Sea to the Geological Survey of Norway, where he eventually headed the Section for Geochemistry and Hydrogeology. Since returning to the United Kingdom in 1998, he has worked as a consultant from a base in Chesterfield, sandwiched between the gritstone of the Peak District National Park and the abandoned mines of Britain's largest coalfield. He has international experience from locations as diverse as Afghanistan, the Bolivian Altiplano, Somalia, Western Siberia, Darfur and Huddersfield. During the past 10 years, his attention has turned to the emerging science of thermogeology: he has worked closely with the ground source heat industry and has also enjoyed spells as a Senior Research Associate in Thermogeology at the University to provide input to the European Union 'GeoTrainet' program of geothermal education.

In his spare time, Dave enjoys music. With his chum Bjørn Frengstad, he has formed almost one half of the sporadically active acoustic lo-fi stunt duo 'The Sedatives'. They have murdered songs by their musical heroes (who include Jarvis Cocker, Benny Andersen, Richard Thompson and Katherine Williams) in a variety of seedy locations.

Reviews of 'An Introduction to Thermogeology'

'... it is seldom that one needs to use superlatives when talking about a book ... this book should be a bible for all who would like to gain insight into the nature of the earth's heat, and how we can exploit it in practice'.

Inga Sørensen, writing in Geologisk Nyt, Denmark, August 2009

Other books by the same author

With Bruce Misstear and Lewis Clark, Dave Banks has previously co-authored 'Water Wells and Boreholes', currently available from Wiley.

^{&#}x27;The book is fulsome. It is a complete counterbalance to the common, but naïve, notion that if you want a new water well "you just go out and get yourself a driller." This book

explains how to do it properly.... It is an important achievement. I expect that it will become a "Bible" that will be on the desk or in the field with every practical hydrogeologist \ldots .

David Ball, writing in the Geological Survey of Ireland Newsletter

'. . . it far outshines most other volumes with which it might otherwise be compared. . . . I would recommend every aspiring and practising hydrogeologist to buy it and thumb it to pieces'.

Paul Younger, writing in the Quarterly Journal of Engineering Geology and Hydrogeology

Preface to the First Edition

In the late 1990s, I was working for the Norwegian Geological Survey's Section for Hydrogeology and Geochemistry. Despite the Section being choc-a-bloc with brainy research scientists, one of my most innovative colleagues was an engineer who called me, on what seemed a weekly basis, brimming with enthusiasm for some wizard new idea. One day, he started telling me all about something called *grunnvarme* or ground source heat, which was, apparently, very big in Sweden. Initially, it seemed to me to be something akin to perpetual motion – space heating from Norwegian rock at 6°C? – and in violation of the second law of thermodynamics to boot. Nevertheless, he persuaded me that it really did have a sound physical basis. In fact, my chum went on to almost single-handedly sell the concept of ground source heat to a Norwegian market that was on the brink of an energy crisis. A subsequent dry summer that pulled the plug on Norway's cheap hydroelectric supplies and sent prices soaring was the trigger that ground source heat needed to take off. So, firstly, a big thank you to Helge Skarphagen (for it was he!), who first got me interested in ground source heat.

On my return to England in 1998, I tried to bore anyone who gave the appearance of listening about the virtues of ground source heat (I was by no means the first to try this – John Sumner and Robin Curtis, among others, had been evangelists for the technology much earlier). It was not until around 2003, however, that interest in ground source heat was awakened in Britain and I was lucky enough to fall in with a group of entrepreneurs with an eye for turning it into a business. So, secondly, many thanks to GeoWarmth of Hexham (now based at Newcastle) for the pleasure of working with you, and especially to Dave Spearman, Jonathan Steven, Braid and Charlie Aitken, Nick Smith and John Withers.

Oh, and by the way, Jenny, I don't know what you've been up to while I've been locked in the attic writing this book, but normal parental service will shortly be resumed!

David Banks Chesterfield, Derbyshire, 2007