Tactical Wireless Communications and Networks Design Concepts and Challenges

George F. Elmasry

TACTICAL WIRELESS COMMUNICATIONS AND NETWORKS

TACTICAL WIRELESS COMMUNICATIONS AND NETWORKS

DESIGN CONCEPTS AND CHALLENGES

George F. Elmasry

XPRT Solutions, Inc., A DSCI Company, NJ, USA

This edition first published 2012

© 2012 John Wiley and Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Elmasry, George F. Tactical wireless communications and networks: design concepts and challenges / George F. Elmasry. p. cm. Includes bibliographical references and index. ISBN 978-1-119-95176-6 (cloth)
Communications, Military. 2. Wireless communication systems. I. Title. UA940.E56 2012 623.7'34-dc23

2012023990

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119951766

Set in 10/12pt Times by Laserwords Private Limited, Chennai, India

Contents

Abou	out the Author		xi
Fore	reword		xiii
Prefa	eface		XV
List	t of Acronyms		xvii
Part	rt I THEORETICAL BASIS		
1	Introduction		3
1.1	The OSI Model		4
1.2	From Network Layer to IP Layer		6
1.3	Pitfall of the OSI Model		7
1.4	Tactical Networks Layers		9
1.5	Historical Perspective		10
	Bibliography		11
2	The Physical Layer		13
2.1	Modulation		13
	2.1.1 Signal-in-Space (SiS)		16
2.2	Signal Detection		22
	2.2.1 Signal Detection in Two-Dimensional	Space	24
	2.2.2 Multidimensional Constellations for A	AWGN	28
2.3	Non-Coherent Demodulation		29
2.4	Signal Fading		29
2.5	Power Spectrum		31
2.6	Spread Spectrum Modulation		34
	2.6.1 Direct Sequence Spread Spectrum		35
	2.6.2 Frequency Hopping Spread Spectrum		38
2.7	Concluding Remarks		40
	2.7.1 What Happens Before Modulation and	d After Demodulation?	40
	2.7.2 Historical Perspective		40
	Bibliography		41

3	The DL	L and Information Theory in Tactical Networks	43
3.1	Informa	tion Theory and Channel Capacity	43
	3.1.1	Uncertainty and Information	45
	3.1.2	Entropy	46
	3.1.3	Coding for a Discrete Memoryless Source	48
	3.1.4	Mutual Information and Discrete Channels	50
	3.1.5	The Binary Symmetric Channel (BSC) Model	53
	3.1.6	Capacity of a Discrete Channel	54
3.2	Channel Coding, Error Detection, and Error Correction		57
	3.2.1	Hamming Distance and Probability of Bit Error	
		in Channel Coding	58
	3.2.2	Overview of Linear Block Codes	60
	3.2.3	Convolutional Codes	62
	3.2.4	Concatenated Coding and Interleaving	64
	3.2.5	Network Coding versus Transport Layer Packet	
		Erasure Coding	65
3.3	Conclud	ling Remarks	67
	3.3.1	The Role of Information Theory and Coding	
		in Tactical Wireless Communications and Networking	67
	3.3.2	Historical Perspective	68
	Append	ix 3.A: Using RS Code in Tactical Networks Transport Layer	69
	3.A.1	The Utilized RS Code	69
	3.A.2	Packet Erasure Analysis	70
	3.A.3	Imposed Tactical Requirements	77
	Bibliogr	raphy	80
4	MAC a	nd Network Layers in Tactical Networks	83
4.1	MAC L	ayer and Multiple Access Techniques	83
4.2	Queuing	g Theory	87
	4.2.1	Statistical Multiplexing of Packets	87
	4.2.2	Queuing Models	92
4.3	Conclud	ling Remarks	106
	4.3.1	How Congestion Happens in Tactical Wireless Networks	106
	4.3.2	Historical Perspective	107
	4.3.3	Remarks Regarding the First Part of the Book	108
	Bibliogr	raphy	110
Part	II THE	EVOLUTION OF TACTICAL RADIOS	
5	Non-IP	Tactical Radios and the Move toward IP	113

5.1	Multist	Multistep Evolution to the Global Information Grid	
5.2	Link-16 Waveform		114
	5.2.1	Link-16 Messages	119
	5.2.2	Link Layer Operations of Link-16	120
	5.2.3	JTIDS/LINK-16 Modulation and Coding	120

	5.2.4	Enhancements to Link-16	126
	5.2.5	Concluding Remarks on Link-16 Waveform	129
5.3	EPLRS	130	
5.4	SINCG	131	
5.5	Tactica	l Internet (TI)	131
5.6	IP Gate	eways	136
	5.6.1	Throughput Efficiency	136
	5.6.2	End-to-End Packet Loss	137
5.7	Conclu	ding Remarks	137
	5.7.1	What Comes after the GIG?	137
	5.7.2	Historical Perspective	137
	Bibliog	graphy	138
6	IP-Bas	ed Tactical Waveforms and the GIG	141
6.1	Tactica	l GIG Notional Architecture	141
6.2	Tactica	l GIG Waveforms	144
	6.2.1	Wide-Area Network Waveform (WNW)	144
	6.2.2	Soldier Radio Waveform (SRW)	163
	6.2.3	High-Band Networking Waveform (HNW)	164
	6.2.4	Network Centric Waveform (NCW)	165
6.3	The Ro	ble of Commercial Satellite in the Tactical GIG	166
6.4	Satellit	e Delay Analysis	166
6.5	Networ	rking at the Tactical GIG	169
6.6	Histori	cal Perspective	170
	Bibliog	graphy	173
7	Cognit	ive Radios	177
7.1	Cognit	ive Radios and Spectrum Regulations	177
7.2	Concep	ptualizing Cognitive Radios	180
	7.2.1	Cognitive Radio Setting (CRS) Parameters	180
	7.2.2	The Cognitive Engine	181
7.3	Cognit	ive Radios in Tactical Environments	183
7.4	Softwa	re Communications Architecture (SCA)	184
	7.4.1	The SCA Core Framework	185
	7.4.2	SCA Definitions	185
	7.4.3	SCA Components	186
	7.4.4	SCA and Security Architecture	188
7.5	Spectrum Sensing		190
	7.5.1	Multidimensional Spectrum Awareness	190
	7.5.2	Complexity of Spectrum Sensing	193
	7.5.3	Implementation of Spectrum Sensing	195
	7.5.4	Cooperative Spectrum Sensing	199
	7.5.5	Spectrum Sensing in Current Wireless Standards	200
7.6	Securit	y in Cognitive Radios	201
7.7	Conclu	ding Remarks	201

7.7.1	Development of Cognitive Radios	201
7.7.2	Modeling and Simulation of Cognitive Radios	202
7.7.3	Historical Perspective	202
Bibliography		202

Part III THE OPEN ARCHITECTURE MODEL

8	Open Architecture in Tactical Networks	207
8.1	Commercial Cellular Wireless Open Architecture Model	208
8.2	Tactical Wireless Open Architecture Model	210
8.3	Open Architecture Tactical Protocol Stack Model	211
	8.3.1 Tactical Wireless Open Architecture Model Entities	213
	8.3.2 Open Architecture Tactical Wireless Model ICDs	216
8.4	The Tactical Edge	219
	8.4.1 Tactical Edge Definition	219
	8.4.2 Tactical Edge Analysis	220
8.5	Historical Perspective	222
	Bibliography	224
9	Open Architecture Details	225
9.1	The Plain Text IP Layer and the Tactical Edge	225
9.2	Measurement Based Resource Management	227
	9.2.1 Advantages and Challenges of MBRM	228
	9.2.2 Congestion Severity Level	229
	9.2.3 Markov Chain Representation of MBAC	231
	9.2.4 Regulating the Flow of Traffic between Two Nodes	233
	9.2.5 Regulating the Flow of Traffic for Multiple Nodes	233
	9.2.6 Packet Loss from the Physical Layer	234
9.3	ICD I: Plain Text IP Layer to HAIPE	238
9.4	ICD V: Plain Text IP Layer Peer-to-Peer	239
	9.4.1 TCP Proxy over HAIPE	239
	9.4.2 VoIP Proxy over HAIPE	241
	9.4.3 Video Proxy over HAIPE	247
	9.4.4 RSVP Proxy over HAIPE	248
	9.4.5 Multicast Proxy over HAIPE	252
9.5	ICD X Cross Layer Signaling across the HAIPE	255
9.6	Concluding Remarks	258
9.7	Historical Perspective	258
	Bibliography	259
10	Bringing Commercial Cellular Capabilities to Tactical	
	Networks	261
10.1	Tactical User Expectations	262
10.2	3G/4G/LTE Technologies within the War Theater	264
10.3	The Tactical Cellular Gateway	265

10.4	Deployi	ment Use Cases	267
	10.4.1	Use Case I: Smartphone Tethered to a Soldier Radio	
		Waveform (SRW) Radio	268
	10.4.2	Use Case II: 3G/4G/LTE Services on a Dismounted Unit	269
	10.4.3	Use Case III: 3G/4G/LTE Access at an Enclave	271
10.5	Conclue	ling Remarks	272
	Bibliog	raphy	273
11	Networ	k Management Challenges in Tactical Networks	275
11.1	Use of	Policy Based Network Management and Gaming Theory	
	in Tactical Networks		275
11.2	Challen	ges Facing Joint Forces Interoperability	277
11.3	Joint No	etwork Management Architectural Approach	277
	11.3.1	Assumptions and Concepts for Operations (ConOps)	279
	11.3.2	The Role of Gateway Nodes	281
	11.3.3	Abstracting Information	282
	11.3.4	Creating Path Information	283
	11.3.5	Sequence Diagram	285
11.4	Conflict Resolution for Shared Resources		286
	11.4.1	Tactical Network Hierarchy	287
	11.4.2	Dynamic Activation of NCW in WNW/NCW-Capable Nodes	287
	11.4.3	Interfacing between the WIN-NM and the JWNM	
		for NCW Resources	288
	11.4.4	NCW Resource Attributes	289
11.5	Concluding Remarks		290
	Bibliography		291
	2101108		-

Index

293

About the Author

Dr. George F. Elmasry was born in Egypt and received a Bachelor of Science in Electrical Engineering from Alexandria University, Egypt in 1985. He then continued on to receive a Master of Science and a Ph.D. in Electrical Engineering from New Jersey Institute of Technology (NJIT) in 1993 and 1999 respectively. He has 20 years of industrial experience in commercial and defense telecommunications and is currently leading XPRT Solutions – a DSCI Company which specializes in research and development of communications systems with an emphasis on Department of Defense Cyber, Command, Control, Communications, Computers, and Combat-support (C6) space.

Dr. Elmasry has an interdisciplinary background in electrical and computer engineering and computer science. He has much experience in many areas of these fields, including research, patenting, publication, and grant proposal activities. He has an in-depth knowledge of commercial and tactical telecommunication systems, experience with technical task leads, and team building for middle and upper management. Dr. Elmasry has over 50 publications and patents, which pertain to network management, network operations, quality of service and resource management, network and transport layer coding, joint source and channel coding, source coding, modeling and simulation of large-scale networks, security and information assurance, cross layer signaling, topology management, multidimensional interleaving, and spread spectrum communications.

In addition to his publications and patents, Dr. Elmasry has been a member of the technical committee for the annual Military Communication Conference (Milcom) since 2003, where he has led session organization, paper reviews, and session chairing. Dr. Elmasry is also a senior member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the Armed Forces Communications and Electronics Association (AFCEA) International, a member of Sigma Xi, and a member of Alpha Epsilon Lambda – NJIT graduate-student honor society. Dr. Elmasry holds countless awards, including the prestigious Hashimoto Award for achievement and academic excellence in electrical and computer engineering.

Foreword

This textbook authored by Dr. George Elmasry, is the definitive text on the subject of tactical wireless networks. Dr. Elmasry, General Manager of XPRT Solutions, Inc., a subsidiary of DSCI, is an author of numerous peer reviewed papers, inventor, and patent holder, and recognized authority regarding the subject matter. The text provides a comprehensive view and unique insight in its treatment of tactical wireless networks by bridging theory with practical examples. In creating this work, Dr. Elmasry has succeeded in creating a thorough and reliable reference source for network engineers and scientists.

Steven DeChiaro CEO and Chairman of the Board, DSCI