

http://www.dummies.com/cheatsheet/html5css3aio

HTML5 and
CSS3
A L L - I N - O N E

3rd Edition

by Andy Harris

HTML5 and CSS3 All-in-One For Dummies®, 3rd Edition
Published by:
John Wiley & Sons, Inc.,
111 River Street,
Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior writ-
ten permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2013952425

ISBN 978-1-118-28938-9 (pbk); ISBN 978-1-118-42139-0 (ePub); ISBN 978-1-118-41983-0 (ePDF)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://Dummies.com

Contents at a Glance
Introduction .. 1

Part I: Creating the HTML Foundation 7
Chapter 1: Sound HTML Foundations ... 9
Chapter 2: It’s All About Validation ... 19
Chapter 3: Choosing Your Tools .. 33
Chapter 4: Managing Information with Lists and Tables .. 51
Chapter 5: Making Connections with Links .. 67
Chapter 6: Adding Images, Sound, and Video .. 77
Chapter 7: Creating Forms .. 105

Part II: Styling with CSS .. 129
Chapter 1: Coloring Your World .. 131
Chapter 2: Styling Text .. 149
Chapter 3: Selectors: Coding with Class and Style .. 175
Chapter 4: Borders and Backgrounds ... 197
Chapter 5: Levels of CSS.. 225
Chapter 6: CSS Special Effects .. 245

Part III: Building Layouts with CSS 263
Chapter 1: Fun with the Fabulous Float .. 265
Chapter 2: Building Floating Page Layouts ... 285
Chapter 3: Styling Lists and Menus ... 309
Chapter 4: Using Alternative Positioning .. 327

Part IV: Client-Side Programming with JavaScript 353
Chapter 1: Getting Started with JavaScript .. 355
Chapter 2: Talking to the Page ... 375
Chapter 3: Decisions and Debugging ... 399
Chapter 4: Functions, Arrays, and Objects ... 429
Chapter 5: Getting Valid Input .. 459
Chapter 6: Drawing on the Canvas .. 483
Chapter 7: Animation with the Canvas ... 511

Part V: Server-Side Programming with PHP 527
Chapter 1: Getting Started on the Server .. 529
Chapter 2: PHP and HTML Forms .. 549
Chapter 3: Using Control Structures ... 569
Chapter 4: Working with Arrays .. 587
Chapter 5: Using Functions and Session Variables ... 605
Chapter 6: Working with Files and Directories .. 617
Chapter 7: Exceptions and Objects ... 639

Part VI: Managing Data with MySQL 653
Chapter 1: Getting Started with Data .. 655
Chapter 2: Managing Data with MySQL ... 679
Chapter 3: Normalizing Your Data ... 705
Chapter 4: Putting Data Together with Joins ... 719
Chapter 5: Connecting PHP to a MySQL Database .. 741

Part VII: Integrating the Client and Server
with AJAX ... 759
Chapter 1: AJAX Essentials ... 761
Chapter 2: Improving JavaScript and AJAX with jQuery .. 775
Chapter 3: Animating jQuery .. 795
Chapter 4: Using the jQuery User Interface Toolkit .. 819
Chapter 5: Improving Usability with jQuery ... 841
Chapter 6: Working with AJAX Data .. 859
Chapter 7: Going Mobile ... 883

Part VIII: Moving from Pages to Sites 909
Chapter 1: Managing Your Servers .. 911
Chapter 2: Planning Your Sites .. 933
Chapter 3: Introducing Content Management Systems .. 953
Chapter 4: Editing Graphics ... 977
Chapter 5: Taking Control of Content ... 995

Index .. 1015

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Use Any Computer ... 3
Don’t Buy Any Software .. 3
How This Book Is Organized .. 3
New for the Third Edition ... 4
Icons Used in This Book ... 5
Beyond the Book ... 6
Where to Go from ... 6

Part I: Creating the HTML Foundation 7

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page .. 9
Understanding the HTML in the Basic Page ... 11
Meeting Your New Friends, the Tags .. 12
Setting Up Your System .. 15

Displaying file extensions ... 15
Setting up your software ... 16

Chapter 2: It’s All About Validation . .19
Somebody Stop the HTML Madness! .. 19

XHTML had some great ideas .. 20
Validating Your Page ... 23

Aesop visits W3C ... 25
Using Tidy to repair pages ... 30

Chapter 3: Choosing Your Tools . .33
What’s Wrong with the Big Boys: Expression Web and Adobe

Dreamweaver .. 33
How About Online Site Builders? ... 34
Alternative Web Development Tools .. 35
Picking a Text Editor ... 35

Tools to avoid unless you have nothing else 36
Suggested programmer’s editors ... 36
My Personal Choice: Komodo Edit .. 41
Other text editors .. 43
The bottom line on editors ... 44

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionvi

Finding a Good Web Developer’s Browser ... 44
A little ancient history ... 44
Overview of the prominent browsers ... 46
Other notable browsers .. 48
The bottom line in browsers .. 49

Chapter 4: Managing Information with Lists and Tables 51
Making a List and Checking It Twice ... 51

Creating an unordered list .. 51
Creating ordered lists .. 53
Making nested lists .. 54
Building the definition list .. 57

Building Tables .. 59
Defining the table ... 60
Spanning rows and columns... 63
Avoiding the table-based layout trap .. 65

Chapter 5: Making Connections with Links .67
Making Your Text Hyper ... 67

Introducing the anchor tag ... 68
Comparing block-level and inline elements...................................... 69
Analyzing an anchor .. 69
Introducing URLs ... 70

Making Lists of Links ... 71
Working with Absolute and Relative References 73

Understanding absolute references .. 73
Introducing relative references .. 73

Chapter 6: Adding Images, Sound, and Video .77
Adding Images to Your Pages .. 77

Linking to an image .. 78
Adding inline images using the tag .. 80
src (source) .. 81
height and width .. 81
alt (alternate text) .. 81

Choosing an Image Manipulation Tool ... 82
An image is worth 3.4 million words ... 82
Introducing IrfanView .. 84

Choosing an Image Format ... 85
BMP .. 85
JPG/JPEG ... 86
GIF .. 86
PNG .. 88
SVG... 89
Summary of web image formats ... 90

Manipulating Your Images .. 90
Changing formats in IrfanView ... 90
Resizing your images ... 91
Enhancing image colors .. 92

Table of Contents vii

Using built-in effects .. 93
Other effects you can use ... 97
Batch processing ... 98

Working with Audio ... 99
Adding video... 101

Chapter 7: Creating Forms . .105
You Have Great Form .. 105

Forms must have some form .. 107
Building Text-Style Inputs .. 109
Making a standard text field ... 109
Building a password field ... 111

Making multi-line text input .. 112
Creating Multiple Selection Elements ... 114

Making selections .. 114
Building check boxes... 116
Creating radio buttons .. 117

Pressing Your Buttons .. 119
Making input-style buttons ... 120
Building a Submit button .. 121
It’s a do-over: The Reset button ... 121
Introducing the <button> tag ... 121

New form input types .. 122
date .. 122
time .. 123
datetime .. 123
datetime-local ... 123
week ... 124
month .. 125
color... 125
number .. 125
range .. 126
search .. 126
email .. 127
tel ... 127
url ... 127

Part II: Styling with CSS ... 129

Chapter 1: Coloring Your World . .131
Now You Have an Element of Style ... 131

Setting up a style sheet ... 133
Changing the colors ... 134

Specifying Colors in CSS ... 134
Using color names ... 135
Putting a hex on your colors .. 136
Coloring by number ... 136

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionviii

Hex education... 137
Using the web-safe color palette .. 139

Choosing Your Colors ... 140
Starting with web-safe colors ... 141
Modifying your colors ... 141
Doing it on your own pages .. 141
Changing CSS on the fly... 142

Creating Your Own Color Scheme ... 143
Understanding hue, saturation, and lightness 143
Using HSL colors in your pages ... 145
Using the Color Scheme Designer .. 146
Selecting a base hue .. 147
Picking a color scheme ... 148

Chapter 2: Styling Text .149
Setting the Font Family ... 149

Applying the font-family style attribute .. 150
Using generic fonts .. 151
Making a list of fonts ... 153

The Curse of Web-Based Fonts .. 154
Understanding the problem ... 154
Using Embedded Fonts ... 155
Using images for headlines ... 158

Specifying the Font Size .. 160
Size is only a suggestion!... 160
Using the font-size style attribute .. 161
Absolute measurement units ... 162

Relative measurement units ... 163
Determining Other Font Characteristics .. 164

Using font-style for italics ... 165
Using font-weight for bold .. 166
Using text-decoration .. 167
Using text-align for basic alignment .. 169
Other text attributes.. 170
Using the font shortcut ... 171
Working with subscripts and superscripts 172

Chapter 3: Selectors: Coding with Class and Style 175
Selecting Particular Segments .. 175

Defining more than one kind of paragraph 175
Styling identified paragraphs ... 176

Using Emphasis and Strong Emphasis .. 177
Modifying the Display of em and strong ... 179
Defining Classes ... 180

Adding classes to the page ... 181

Table of Contents ix

Using classes .. 182
Combining classes ... 182

Introducing div and span .. 184
Organizing the page by meaning.. 185
Why not make a table? .. 186

Using Pseudo-Classes to Style Links ... 187
Styling a standard link ... 187
Styling the link states .. 187
Best link practices ... 189

Selecting in Context ... 190
Defining Styles for Multiple Elements ... 191
Using New CSS3 Selectors .. 193

attribute selection ... 193
not .. 194
nth-child .. 194
Other new pseudo-classes .. 195

Chapter 4: Borders and Backgrounds . .197
Joining the Border Patrol ... 197

Using the border attributes .. 197
Defining border styles ... 199
Using the border shortcut .. 200
Creating partial borders.. 201

Introducing the Box Model ... 202
Borders, margin, and padding .. 203
Positioning elements with margins and padding 205

New CSS3 Border Techniques .. 207
Image borders .. 207
Adding Rounded Corners ... 209
Adding a box shadow .. 210

Changing the Background Image ... 212
Getting a background check ... 214
Solutions to the background conundrum 215

Manipulating Background Images ... 218
Turning off the repeat ... 218
Using CSS3 Gradients .. 219

Using Images in Lists ... 223

Chapter 5: Levels of CSS .225
Managing Levels of Style .. 225

Using local styles ... 225
Using an external style sheet ... 228

Understanding the Cascading Part of Cascading Style Sheets 233
Inheriting styles ... 233
Hierarchy of styles ... 234

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionx

Overriding styles .. 235
Precedence of style definitions .. 236

Managing Browser Incompatibility ... 237
Coping with incompatibility ... 237
Making Internet Explorer–specific code ... 238
Using a conditional comment with CSS .. 240
Checking the Internet Explorer version .. 242
Using a CSS reset .. 243

Chapter 6: CSS Special Effects .245
Image Effects .. 245

Transparency ... 245
Reflections .. 247

Text Effects ... 249
Text stroke .. 249
Text-shadow ... 251

Transformations and Transitions .. 252
Transformations .. 253
Three-dimensional transformations .. 254
Transition animation ... 257
Animations .. 259

Part III: Building Layouts with CSS 263

Chapter 1: Fun with the Fabulous Float .265
Avoiding Old-School Layout Pitfalls .. 265

Problems with frames ... 265
Problems with tables ... 266
Problems with huge images.. 267
Problems with Flash .. 267

Introducing the Floating Layout Mechanism ... 268
Using float with images ... 269
Adding the float property ... 270

Using Float with Block-Level Elements ... 271
Floating a paragraph.. 271
Adjusting the width ... 273
Setting the next margin ... 275

Using Float to Style Forms .. 276
Using float to beautify the form ... 279
Adjusting the fieldset width.. 282
Using the clear attribute to control page layout 283

Table of Contents xi

Chapter 2: Building Floating Page Layouts .285
Creating a Basic Two-Column Design ... 285

Designing the page ... 285
Building the HTML ... 287
Using temporary background colors .. 288
Setting up the floating columns ... 290
Tuning up the borders .. 291
Advantages of a fluid layout ... 292
Using semantic tags ... 292

Building a Three-Column Design ... 295
Styling the three-column page ... 296
Problems with the floating layout.. 298
Specifying a min-height ... 299
Using height and overflow .. 300

Building a Fixed-Width Layout ... 302
Setting up the HTML .. 303
Fixing the width with CSS ... 303

Building a Centered Fixed-Width Layout .. 305
Making a surrogate body with an all div ... 306
How the jello layout works ... 307
Limitations of the jello layout .. 308

Chapter 3: Styling Lists and Menus . .309
Revisiting List Styles ... 309

Defining navigation as a list of links .. 310
Turning links into buttons .. 310
Building horizontal lists .. 313

Creating Dynamic Lists ... 314
Building a nested list ... 315
Hiding the inner lists ... 317
Getting the inner lists to appear on cue ... 318

Building a Basic Menu System ... 321
Building a vertical menu with CSS ... 322
Building a horizontal menu .. 324

Chapter 4: Using Alternative Positioning . .327
Working with Absolute Positioning ... 327

Setting up the HTML .. 327
Adding position guidelines ... 328
Making absolute positioning work... 330

Managing z-index ... 331
Handling depth ... 331
Working with z-index ... 332

Building a Page Layout with Absolute Positioning 332
Overview of absolute layout ... 333

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxii

Writing the HTML .. 334
Adding the CSS ... 335

Creating a More Flexible Layout .. 336
Designing with percentages.. 337
Building the layout... 339

Exploring Other Types of Positioning ... 340
Creating a fixed menu system .. 340
Setting up the HTML .. 341
Setting the CSS values ... 342

Flexible Box Layout Model ... 344
Creating a flexible box layout ... 345
Viewing a flexible box layout .. 346
… And now for a little reality ... 348

Determining Your Layout Scheme ... 351

Part IV: Client-Side Programming with JavaScript 353

Chapter 1: Getting Started with JavaScript . .355
Working in JavaScript ... 355

Choosing a JavaScript editor .. 356
Picking your test browser ... 356

Writing Your First JavaScript Program ... 357
Embedding your JavaScript code .. 358
Creating comments .. 358
Using the alert() method for output ... 358
Adding the semicolon.. 359

Introducing Variables .. 359
Creating a variable for data storage .. 360
Asking the user for information ... 361
Responding to the user ... 361

Using Concatenation to Build Better Greetings 362
Comparing literals and variables ... 363
Including spaces in your concatenated phrases 364

Understanding the String Object ... 364
Introducing object-based programming (and cows)..................... 364
Investigating the length of a string .. 365
Using string methods to manipulate text 366

Understanding Variable Types .. 368
Adding numbers ... 369
Adding the user’s numbers .. 370
The trouble with dynamic data .. 370
The pesky plus sign ... 371

Changing Variables to the Desired Type .. 372
Using variable conversion tools .. 373
Fixing the addInput code .. 373

Table of Contents xiii

Chapter 2: Talking to the Page . .375
Understanding the Document Object Model ... 375

Previewing the DOM .. 375
Getting the blues, JavaScript-style .. 377
Writing JavaScript code to change colors 378

Managing Button Events ... 379
Adding a function for more … functionality................................... 381
Making a more flexible function ... 382
Embedding quotes within quotes .. 384
Writing the changeColor function ... 384

Managing Text Input and Output ... 384
Introducing event-driven programming .. 385
Creating the HTML form ... 386
Using getElementById to get access to the page 387
Manipulating the text fields .. 388

Writing to the Document .. 388
Preparing the HTML framework .. 390
Writing the JavaScript ... 390
Finding your innerHTML ... 391

Working with Other Text Elements ... 391
Building the form ... 392
Writing the function... 393
Understanding generated source .. 395
What if you’re not in Chrome? ... 397

Chapter 3: Decisions and Debugging .399
Making Choices with If .. 399

Changing the greeting with if ... 401
The different flavors of if .. 402
Conditional operators ... 403
Nesting your if statements .. 403
Making decisions with switch .. 405

Managing Repetition with for Loops ... 406
Setting up the web page .. 407
Initializing the output .. 408
Creating the basic for loop ... 409
Introducing shortcut operators ... 410
Counting backwards .. 411
Counting by fives ... 412
Understanding the Zen of for loops ... 413

Building While Loops .. 413
Making a basic while loop ... 413
Getting your loops to behave ... 415
Managing more complex loops .. 416

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxiv

Managing Errors with a Debugger ... 418
Debugging with the interactive console ... 420
Debugging strategies ... 422
Resolving syntax errors .. 422
Squashing logic bugs ... 424

Chapter 4: Functions, Arrays, and Objects . .429
Breaking Code into Functions .. 429

Thinking about structure .. 430
Building the antsFunction.html program.. 431

Passing Data to and from Functions ... 432
Examining the makeSong code... 434
Looking at the chorus ... 434
Handling the verses ... 435

Managing Scope ... 437
Introducing local and global variables .. 437
Examining variable scope ... 437

Building a Basic Array ... 439
Accessing array data ... 440
Using arrays with for loops .. 441
Revisiting the ants song .. 442

Working with Two-Dimension Arrays ... 444
Setting up the arrays ... 446
Getting a city .. 447
Creating a main() function ... 448

Creating Your Own Objects .. 449
Building a basic object .. 449
Adding methods to an object ... 450
Building a reusable object .. 452
Using your shiny new objects .. 453

Introducing JSON ... 454
Storing data in JSON format ... 454
Building a more complex JSON structure 455

Chapter 5: Getting Valid Input .459
Getting Input from a Drop-Down List .. 459

Building the form ... 460
Reading the list box ... 461

Managing Multiple Selections .. 462
Coding a multiple selection select object 462
Writing the JavaScript code ... 463

Check, Please: Reading Check Boxes .. 465
Building the check box page .. 466
Responding to the check boxes ... 467

Working with Radio Buttons .. 468
Interpreting Radio Buttons ... 469

Table of Contents xv

Working with Regular Expressions ... 470
Introducing regular expressions .. 473
Using characters in regular expressions .. 475
Marking the beginning and end of the line 476
Working with special characters ... 476
Conducting repetition operations ... 477
Working with pattern memory ... 478

New HTML5/CSS3 Tricks for Validation ... 479
Adding a pattern .. 481
Marking a field as required ... 481
Adding placeholder text.. 481

Chapter 6: Drawing on the Canvas .483
Canvas Basics ... 483

Setting up the canvas .. 484
How <canvas> works ... 485

Fill and Stroke Styles ... 486
Colors .. 486
Gradients ... 487
Patterns ... 489

Drawing Essential Shapes ... 491
Rectangle functions ... 491
Drawing text ... 492
Adding shadows ... 494

Working with Paths ... 496
Line-drawing options ... 498
Drawing arcs and circles ... 500
Drawing quadratic curves... 502
Building a Bézier curve ... 503

Images ... 505
Drawing an image on the canvas ... 505
Drawing part of an image .. 507

Manipulating Pixels ... 508

Chapter 7: Animation with the Canvas .511
Transformations .. 511

Building a transformed image .. 512
A few thoughts about transformations ... 514

Animation ... 515
Overview of the animation loop ... 515
Setting up the constants ... 516
Initializing the animation .. 517
Animate the current frame ... 517
Moving an element... 519
Bouncing off the walls ... 520

Reading the Keyboard ... 521
Managing basic keyboard input ... 522
Moving an image with the keyboard ... 523

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxvi

Part V: Server-Side Programming with PHP 527

Chapter 1: Getting Started on the Server .529
Introducing Server-Side Programming .. 529

Programming on the server .. 529
Serving your programs .. 530
Picking a language ... 531

Installing Your Web Server ... 532
Inspecting phpinfo() ... 533
Building HTML with PHP .. 536
Coding with Quotation Marks .. 539
Working with Variables PHP-Style ... 540

Concatenation .. 541
Interpolating variables into text .. 542

Building HTML Output .. 543
Using double quote interpolation .. 543
Generating output with heredocs .. 544
Switching from PHP to HTML ... 546

Chapter 2: PHP and HTML Forms . .549
Exploring the Relationship between PHP and HTML 549

Embedding PHP inside HTML .. 550
Viewing the results .. 551

Sending Data to a PHP Program ... 552
Creating a form for PHP processing .. 552
Receiving data in PHP ... 555

Choosing the Method of Your Madness ... 556
Using get to send data ... 557
Using the post method to transmit form data 559
Getting data from the form ... 560

Retrieving Data from Other Form Elements ... 563
Building a form with complex elements ... 563
Responding to a complex form .. 565

Chapter 3: Using Control Structures .569
Introducing Conditions (Again) ... 569
Building the Classic if Statement ... 570

Rolling dice the PHP way .. 571
Checking your six... 571
Understanding comparison operators .. 574
Taking the middle road ... 574
Building a program that makes its own form 576

Making a switch ... 578
Looping with for .. 581
Looping with while .. 584

Table of Contents xvii

Chapter 4: Working with Arrays .587
Using One-Dimensional Arrays .. 587

Creating an array ... 587
Filling an array .. 588
Viewing the elements of an array .. 588
Preloading an array ... 589

Using Loops with Arrays .. 590
Simplifying loops with foreach ... 591
Arrays and HTML ... 593

Introducing Associative Arrays ... 594
Using foreach with associative arrays .. 595

Introducing Multidimensional Arrays ... 597
We’re going on a trip ... 597
Looking up the distance .. 599

Breaking a String into an Array .. 600
Creating arrays with explode ... 601
Creating arrays with preg_split.. 602

Chapter 5: Using Functions and Session Variables 605
Creating Your Own Functions .. 605

Rolling dice the old-fashioned way .. 606
Improving code with functions .. 607
Managing variable scope .. 610
Returning data from functions ... 610

Managing Persistence with Session Variables ... 611
Understanding session variables ... 613
Adding session variables to your code ... 614

Chapter 6: Working with Files and Directories 617
Text File Manipulation .. 617

Writing text to files .. 618
Writing a basic text file.. 620
Reading from the file ... 625

Using Delimited Data ... 626
Storing data in a CSV file ... 627
Viewing CSV data directly ... 629
Reading the CSV data in PHP .. 630

Working with File and Directory Functions ... 633
opendir() .. 633
readdir() ... 634
chdir() .. 634
Generating the list of file links .. 635

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxviii

Chapter 7: Exceptions and Objects .639
Object-Oriented Programming in PHP .. 639

Building a basic object .. 640
Using your brand-new class ... 642
Protecting your data with access modifiers 644
Using access modifiers .. 645

You’ve Got Your Momma’s Eyes: Inheritance ... 647
Building a critter based on another critter 648
How to inherit the wind (and anything else) 649

Catching Exceptions .. 650
Introducing exception handling ... 650
Knowing when to trap for exceptions ... 652

Part VI: Managing Data with MySQL 653

Chapter 1: Getting Started with Data .655
Examining the Basic Structure of Data ... 655

Determining the fields in a record ... 657
Introducing SQL data types .. 657
Specifying the length of a record ... 658
Defining a primary key .. 659
Defining the table structure .. 659

Introducing MySQL .. 660
Why use MySQL? .. 661
Understanding the three-tier architecture 662
Practicing with MySQL .. 662

Setting Up phpMyAdmin ... 663
Changing the root password .. 665
Adding a user.. 670
Using phpMyAdmin on a remote server ... 672

Implementing a Database with phpMyAdmin .. 674

Chapter 2: Managing Data with MySQL . .679
Writing SQL Code by Hand ... 679

Understanding SQL syntax rules.. 680
Examining the buildContact.sql script .. 680
Dropping a table... 681
Creating a table .. 681
Adding records to the table.. 682
Viewing the sample data ... 683

Running a Script with phpMyAdmin ... 683
Using AUTO_INCREMENT for Primary Keys .. 686

Table of Contents xix

Selecting Data from Your Tables ... 688
Selecting only a few fields ... 689
Selecting a subset of records ... 690
Searching with partial information .. 692
Searching for the ending value of a field ... 693
Searching for any text in a field.. 693
Searching with regular expressions .. 694
Sorting your responses ... 695

Editing Records .. 696
Updating a record .. 696
Deleting a record.. 697

Exporting Your Data and Structure ... 697
Exporting SQL code ... 700
Creating XML data ... 702

Chapter 3: Normalizing Your Data . .705
Recognizing Problems with Single-Table Data ... 705

The identity crisis .. 706
The listed powers .. 706
Repetition and reliability .. 708
Fields with changeable data ... 709
Deletion problems ... 709

Introducing Entity-Relationship Diagrams ... 709
Using MySQL workbench to draw ER diagrams 709
Creating a table definition in Workbench 710

Introducing Normalization ... 713
First normal form ... 714
Second normal form .. 715
Third normal form ... 716

Identifying Relationships in Your Data ... 717

Chapter 4: Putting Data Together with Joins .719
Calculating Virtual Fields .. 719

Introducing SQL functions .. 720
Knowing when to calculate virtual fields .. 721

Calculating Date Values .. 721
Using DATEDIFF to determine age ... 722
Adding a calculation to get years .. 723
Converting the days integer into a date.. 723
Using YEAR() and MONTH() to get readable values 724
Concatenating to make one field.. 725

Creating a View .. 726
Using an Inner Join to Combine Tables .. 728

Building a Cartesian join and an inner join 729
Enforcing one-to-many relationships .. 731

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxx

Counting the advantages of inner joins .. 732
Building a view to encapsulate the join .. 733

Managing Many-to-Many Joins ... 733
Understanding link tables ... 735
Using link tables to make many-to-many joins 736

Chapter 5: Connecting PHP to a MySQL Database741
PHP and MySQL: A Perfect (but Geeky) Romance 741

Understanding data connections ... 744
Introducing PDO... 745
Building a connection .. 745
Retrieving data from the database .. 747
Using HTML tables for output .. 748

Allowing User Interaction ... 751
Building an HTML search form .. 753
Responding to the search request... 753

Part VII: Integrating the Client and Server
with AJAX .. 759

Chapter 1: AJAX Essentials .761
AJAX Spelled Out ... 762

A is for asynchronous ... 763
J is for JavaScript ... 763
A is for … and? ... 763
And X is for … data .. 763

Making a Basic AJAX Connection .. 764
Building the HTML form .. 766
Creating an XMLHttpRequest object ... 767
Opening a connection to the server .. 768
Sending the request and parameters .. 769
Checking the status ... 769

All Together Now — Making the Connection Asynchronous 771
Setting up the program ... 772
Building the getAJAX() function ... 772
Reading the response .. 773

Chapter 2: Improving JavaScript and AJAX with jQuery 775
Introducing jQuery .. 776

Installing jQuery ... 777
Importing jQuery from Google ... 777

Your First jQuery App ... 778
Setting up the page .. 779
Meet the jQuery node object .. 780

Creating an Initialization Function .. 781

Table of Contents xxi

Using $(document).ready() ... 782
Alternatives to document.ready .. 783

Investigating the jQuery Object ... 783
Changing the style of an element ... 783
Selecting jQuery objects ... 785
Modifying the style .. 785

Adding Events to Objects ... 786
Adding a hover event .. 787
Changing classes on the fly .. 788

Making an AJAX Request with jQuery ... 790
Including a text file with AJAX .. 791
Building a poor man’s CMS with AJAX .. 791

Chapter 3: Animating jQuery .795
Playing Hide and Seek ... 795

Getting transition support .. 797
Writing the HTML and CSS foundation ... 799
Initializing the page.. 800
Hiding and showing the content .. 800
Toggling visibility... 801
Sliding an element .. 801
Fading an element in and out ... 802

Changing Position with jQuery .. 802
Creating the framework .. 804
Setting up the events ... 805
Building the move() function with chaining 806
Building time-based animation with animate () 806
Move a little bit: Relative motion ... 808

Modifying Elements on the Fly ... 808
Building the basic page ... 813
Initializing the code ... 813
Adding text ... 813
Attack of the clones ... 814
It’s a wrap.. 815
Alternating styles ... 816
Resetting the page ... 816
More fun with selectors and filters .. 817

Chapter 4: Using the jQuery User Interface Toolkit 819
What the jQuery User Interface Brings to the Table 819

It’s a theme park .. 820
Using the themeRoller to get an overview of jQuery 820
Wanna drag? Making components draggable 823
Downloading the library ... 824
Writing the program .. 826

Resizing on a Theme ... 827
Examining the HTML and standard CSS.. 829

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxii

Importing the files .. 829
Making a resizable element .. 830
Adding themes to your elements ... 830
Adding an icon ... 833

Dragging, Dropping, and Calling Back ... 834
Building the basic page ... 836
Initializing the page.. 836
Handling the drop .. 838
Beauty school dropout events ... 838
Cloning the elements ... 839

Chapter 5: Improving Usability with jQuery .841
Multi-Element Designs .. 841

Playing the accordion widget ... 842
Building a tabbed interface .. 845
Using tabs with AJAX... 848

Improving Usability ... 849
Playing the dating game .. 851
Picking numbers with the slider .. 852
Selectable elements ... 854
Building a sortable list .. 855
Creating a custom dialog box ... 856

Chapter 6: Working with AJAX Data .859
Sending Requests AJAX Style ... 859

Sending the data .. 859
Building a Multipass Application ... 863

Setting up the HTML framework .. 864
Loading the select element ... 865
Writing the loadList.php program ... 866
Responding to selections .. 867
Writing the showHero.php script .. 868

Working with XML Data .. 870
Review of XML .. 871
Manipulating XML with jQuery .. 872
Creating the HTML ... 873
Retrieving the data .. 874
Processing the results ... 874
Printing the pet name .. 875

Working with JSON Data ... 876
Knowing JSON’s pros .. 876
Reading JSON data with jQuery ... 877
Managing the framework .. 878
Retrieving the JSON data .. 879
Processing the results ... 879

Table of Contents xxiii

Chapter 7: Going Mobile .883
Thinking in Mobile ... 883
Building a Responsive Site ... 885

Specifying a media type .. 885
Adding a qualifier ... 885

Making Your Page Responsive ... 888
Building the wide layout ... 891
Adding the narrow CSS ... 892

Using jQuery Mobile to Build Mobile Interfaces 894
Building a basic jQuery mobile page ... 894
Working with collapsible content .. 897
Building a multi-page document .. 900

Going from Site to App .. 905
Adding an icon to your program .. 906
Removing the Safari toolbar ... 906
Storing your program offline .. 907

Part VIII: Moving from Pages to Sites 909

Chapter 1: Managing Your Servers .911
Understanding Clients and Servers ... 911

Parts of a client-side development system 912
Parts of a server-side system ... 913

Creating Your Own Server with XAMPP ... 914
Running XAMPP ... 915
Testing your XAMPP configuration ... 916
Adding your own files .. 916
Setting the security level .. 917
Compromising between functionality and security 919

Choosing a Web Host .. 920
Finding a hosting service .. 920
Connecting to a hosting service... 922

Managing a Remote Site .. 922
Using web-based file tools .. 922
Understanding file permissions ... 924
Using FTP to manage your site... 925
Using an FTP client .. 926

Naming Your Site ... 928
Understanding domain names ... 928
Registering a domain name .. 929

Managing Data Remotely .. 931
Creating your database ... 931
Finding the MySQL server name .. 932

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxiv

Chapter 2: Planning Your Sites .933
Creating a Multipage Web Site ... 933
Planning a Larger Site ... 934
Understanding the Client .. 934

Ensuring that the client’s expectations are clear 935
Delineating the tasks ... 936

Understanding the Audience ... 937
Determining whom you want to reach .. 937
Finding out the user’s technical expertise 938

Building a Site Plan .. 939
Creating a site overview .. 940
Building the site diagram .. 941

Creating Page Templates .. 943
Sketching the page design .. 943
Building the HTML template framework ... 945
Creating page styles .. 947
Building a data framework .. 949

Fleshing Out the Project ... 950
Making the site live .. 950
Contemplating efficiency .. 951

Chapter 3: Introducing Content Management Systems953
Overview of Content Management Systems ... 954
Previewing Common CMSs ... 955

Moodle... 955
WordPress .. 956
Drupal .. 957
Building a CMS site with WebsiteBaker .. 958
Installing your CMS .. 958
Getting an overview of WebsiteBaker ... 962
Adding your content .. 962
Using the WYSIWYG editor ... 963
Changing the template .. 968
Adding additional templates .. 969

Building Custom Themes .. 971
Adding new functionality .. 970
Starting with a prebuilt template ... 971
Changing the info.php file ... 973
Modifying index.php .. 974
Modifying the CSS files .. 975
Packaging your template .. 976

Chapter 4: Editing Graphics .977
Using a Graphic Editor .. 977
Choosing an Editor .. 978

Table of Contents xxv

Introducing Gimp ... 979
Creating an image .. 980
Painting tools .. 980
Selection tools .. 982
Modification tools .. 984
Managing tool options ... 984
Utilities .. 985

Understanding Layers ... 986
Introducing Filters ... 988
Solving Common Web Graphics Problems ... 989

Changing a color .. 989
Building a banner graphic... 990
Building a tiled background ... 992

Chapter 5: Taking Control of Content .995

Building a “Poor Man’s CMS” with Your Own Code 995
Using Server Side Includes (SSIs) .. 995
Using AJAX and jQuery for client-side inclusion 998
Building a page with PHP includes .. 1000

Creating Your Own Data-Based CMS ... 1001
Using a database to manage content .. 1001
Writing a PHP page to read from the table 1004
Allowing user-generated content ... 1007
Adding a new block ... 1011
Improving the dbCMS design ... 1013

Index ... 1015

HTML5 and CSS3 All-In-One For Dummies, 3rd Editionxxvi

Introduction

I
 love the Internet, and if you picked up this book, you probably do, too.
The Internet is dynamic, chaotic, exciting, interesting, and useful, all at

the same time. The web is pretty fun from a user’s point of view, but that’s
only part of the story. Perhaps the best part of the Internet is how participa-
tory it is. You can build your own content — free! It’s really amazing. There’s
never been a form of communication like this before. Anyone with access to
a minimal PC and a little bit of knowledge can create his or her own home-
stead in one of the most exciting platforms in the history of communication.

The real question is how to get there. A lot of web development books are
really about how to use some sort of software you have to buy. That’s okay,
but it isn’t necessary. Many software packages have evolved that purport to
make web development easier — and some work pretty well — but regard-
less what software package you use, there’s still a need to know what’s
really going on under the surface. That’s where this book comes in.

About This Book
You’ll find out exactly how the web works in this book. You’ll figure out how
to use various tools, but, more importantly, you’ll create your piece of the
web. You’ll discover:

 ✓ How web pages are created: You’ll figure out the basic structure of web
pages. You’ll understand the structure well because you build pages
yourself. No mysteries here.

 ✓ How to separate content and style: You’ll understand the foundation
of modern thinking about the Internet — that style should be separate
from content.

 ✓ How to use web standards: The web is pretty messy, but, finally, some
standards have arisen from the confusion. You’ll discover how these
standards work and how you can use them.

 ✓ How to create great-looking web pages: Of course, you want a terrific-
looking website. With this book, you’ll find out how to use layout, style,
color, and images.

 ✓ How to build modern layouts: Many web pages feature columns, menus,
and other fancy features. You’ll figure out how to build all these things.

 ✓ How to add interactivity: Adding forms to your pages, validating form
data, and creating animations are all possible with the JavaScript language.

Foolish Assumptions2

 ✓ How to write programs on the server: Today’s web is powered by pro-
grams on web servers. You’ll discover the powerful PHP language and
figure out how to use it to create powerful and effective sites.

 ✓ How to harness the power of data: Every web developer eventually
needs to interact with data. You’ll read about how to create databases
that work. You’ll also discover how to connect databases to your web
pages and how to create effective and useful interfaces.

 ✓ How AJAX is changing everything: The hottest web technology on
the horizon is AJAX (Asynchronous JavaScript and XML). You’ll figure
out how to harness this way of working and use it to create even more
 powerful and interesting applications.

Foolish Assumptions
I don’t have any foolish assumptions: I’m not assuming anything in this book.
If you’ve never built a web page before, you’re in the right hands. You don’t
need any experience, and you don’t have to know anything about HTML, pro-
gramming, or databases. I discuss everything you need.

If you’re reasonably comfortable with a computer (you can navigate the web
and use a word processor), you have all the skills you need.

If you’ve been around web development for a while, you’ll still find this book
handy.

If you’ve used HTML but not HTML5, see how things have changed and
 discover the powerful combination of HTML5 and CSS3.

You’ll see how new HTML and CSS features can literally make your web
pages sing and dance, with support for advanced tools like audio and video
embedding, animation, and much more.

If you’re already comfortable with HTML and CSS, you’re ready to add
JavaScript functionality for form validation and animation. If you’ve never
used a programming language before, JavaScript is a really great place to start.

If you’re starting to get serious about web development, you’ve probably
already realized that you’ll need to work with a server at some point. PHP is
a really powerful, free, and easy language that’s extremely prominent on the
web landscape. You’ll use this to have programs send e-mails, store and load
information from files, and work with databases.

If you’re messing with commercial development, you’ll definitely need to
know more about databases. I get e-mails every week from companies look-
ing for people who can create a solid relational database and connect it to a
website with PHP.

How This Book Is Organized 3

If you’re curious about AJAX, you can read about what it is, how it works,
and how to use it to add functionality to your site. You’ll also read about a
very powerful and easy AJAX library that can add tremendous functionality
to your bag of tricks.

I wrote this book as the reference I wish I had. If you have only one web develop-
ment book on your shelf, this should be the one. Wherever you are in your web
development journey, you can find something interesting and new in this book.

Use Any Computer
One of the great things about web development is how accessible it can be. You
don’t need a high-end machine to build websites. Whatever you’re using now
will probably do fine. I tested most of the examples in this book with Windows 7,
Ubuntu Linux, and a Macbook pro. I’ve tested on computers ranging from
cutting-edge platforms to mobile devices to a $35 Raspberry Pi. Most of the soft-
ware I use in the book is available free for all major platforms. Similar alterna-
tives for all platforms are available in the few cases when this isn’t true.

Don’t Buy Any Software
Everything you need for web development is on the companion website. I’ve
used only open-source software for this book. Following are the highlights:

 ✓ Komodo Edit: Komodo Edit is my current favorite editor. It’s a solid free text
editor well suited to the many text-editing tasks you’ll run across in your
programming travels. It also works exactly the same on every platform, so it
doesn’t really matter what computer or operating system you’re running.

 ✓ XAMPP: When you’re ready to move to the server, XAMPP is a com-
plete server package that’s easy to install and incredibly powerful. This
includes the incredible Apache web server, the PHP programming lan-
guage, the MySQL database manager, and tons of useful utilities.

 ✓ Useful tools: Every time I use a tool (such as a data mapper, a diagram
tool, or an image editor) in this book, I make it available on the compan-
ion website.

There’s no need to buy any expensive web development tools. Everything you
need is here and no harder than the more expensive web editors.

How This Book Is Organized
Web development is about solving a series of connected but different problems.
This book is organized into eight minibooks based on specific technologies. You
can read them in any order you wish, but you’ll find that the later books tend to
rely on topics described in the earlier books. (For example, JavaScript doesn’t
make much sense without HTML because JavaScript is usually embedded in a
web page written with HTML.) The following describes these eight minibooks:

New for the Third Edition4

 ✓ Book I: Creating the HTML Foundation — Web development incorpo-
rates a lot of languages and technologies, but HTML is the foundation.
Here I show you HTML5, the latest incarnation of HTML, and describe
how it’s used to form the basic skeleton of your pages.

 ✓ Book II: Styling with CSS — In the old days, HTML had a few tags to
spruce up your pages, but they weren’t nearly powerful enough. Today,
developers use Cascading Style Sheets (CSS) to add color and format-
ting to your pages as well as zing and pizazz. (I’m pretty sure those are
formal computer programming words.)

 ✓ Book III: Building Layouts with CSS — Discover the best ways to set up
layouts with floating elements, fixed positioning, and absolute position-
ing. Figure out how to build various multicolumn page layouts and how
to create dynamic buttons and menus.

 ✓ Book IV: Client-Side Programming with JavaScript — Figure out essen-
tial programming skills with the easy and powerful JavaScript language —
even if you’ve never programmed before. Manipulate data in web forms
and use powerful regular expression technology to validate form entries.
Also discover how to create animations with JavaScript with the powerful
new <canvas> element.

 ✓ Book V: Server-Side Programming with PHP — Move your code to the
server and take advantage of this powerful language. Figure out how to
respond to web requests; work with conditions, functions, objects, and
text files; and connect to databases.

 ✓ Book VI: Managing Data with MySQL — Most serious Web projects are
eventually about data. Figure out how databases are created, how to set
up a secure data server, the basics of data normalization, and how to
create a reliable and trustworthy data back end for your site.

 ✓ Book VII: Integrating the Client and Server with AJAX — Look forward
to the technology that has the web abuzz. AJAX isn’t really a language
but rather a new way of thinking about web development. Get the skinny
on what’s going on here, build an AJAX connection or two by hand, and
read about some really cool libraries for adding advanced features and
functionality to your pages.

 ✓ Book VIII: Moving from Pages to Sites — This minibook ties together
many of the threads throughout the rest of the book. Discover how
to create your own complete web server solution or pick a web host.
Walk through the process of designing a complex multipage web site.
Discover how to use content management systems to simplify complex
websites and, finally, to build your own content management system
with skills taught throughout the book.

New for the Third Edition
This is actually the third edition of this book. (The previous editions were
called HTML, XHTML, and CSS All in One For Dummies.) I have made a few
changes to keep up with advances in technology:

Icons Used in This Book 5

 ✓ Focus on HTML5: The first edition of the book used HTML4, the second
edition used XHTML, and this edition uses HTML5. I’m very excited
about HTML5 because it’s easier to use than either of the older versions,
and quite a bit more powerful.

 ✓ Integration with CSS3: CSS3 is the latest incarnation of CSS, and it has
some wonderful new features too, including the ability to use custom
fonts, animation, and new layout mechanisms.

 ✓ Improved PHP coverage: PHP has had some major updates reflected in
this book. I have modified all form input to use the safer filter_input
mechanism, and all database connectivity now uses the PDO library.

 ✓ Enhanced jQuery coverage: jQuery has become even more important
as a utility library than it was before. The coverage updates some of the
nice new features of this library.

 ✓ A new mobile chapter: Mobile web development is increasingly
important. I provide a new chapter with tips on making your pages
mobile-friendly, including use of the jQuery mobile library and building
responsive designs that automatically adjust based on screen size.

 ✓ Support for the WebsiteBaker CMS: I use this CMS quite a bit in my web
business, and I find it especially easy to modify. I changed Book VIII,
Chapter 3 to explain how to use and modify this excellent CMS.

 ✓ Various tweaks and improvements: No book is perfect (though I really
try). There were a few passages in the previous edition that readers
found difficult. I tried hard to clean up each of these areas. Many thanks
to those who provided feedback!

Icons Used in This Book
This is a For Dummies book, so you have to expect some snazzy icons, right?
I don’t disappoint. Here’s what you’ll see:

 This is where I pass along any small insights I may have gleaned in my travels.

I can’t really help being geeky once in a while. Every so often, I want to
explain something a little deeper. Read this to impress people at your next
computer science cocktail party or skip it if you really don’t need the details.

A lot of details are here. I point out something important that’s easy to forget
with this icon.

Watch out! Anything I mark with this icon is a place where things have blown
up for me or my students. I point out any potential problems with this icon.

Beyond the Book6

Beyond the Book
You can find additional features of this book online. Visit the web to find
these extras:

 ✓ Companion website: www.aharrisbooks.net/haio

 This is my primary site for this book. Every single example in the book
is up and running on this site so you can see it in action. When neces-
sary, I’ve also included source code so you can see the source code of
anything you can’t look at with the ordinary View Source command. I’ve
also posted a link to every piece of software that I mention in the book.
If you find any example is not working on your site, please come to my
site. If there was a problem with an example in the book, I’ll update the
site right away, so check my site to compare your code to mine. I also
have links to my other books, a forum where you can ask questions, and
a form for emailing me any specific questions you might have.

 ✓ Cheat Sheet: Go to www.dummies.com/cheatsheet/html5css3aio
to find this book’s Cheat Sheet. Here, you can find primers on selected
HTML syntax, CSS attributes, JavaScript syntax, and MySQL commands.

 ✓ Dummies.com online articles: Go to www.dummies.com/extras/
html5css3aio to find the Extras for this book. Here you can find arti-
cles on topics such as using HTML entities, resetting and extending CSS,
JavaScript libraries, using templates with PHP, SQLite and alternative
data strategies, fun with jQuery plug-ins, and what’s next for the web.

 ✓ Updates: For Dummies technology books sometimes have updates. To
check for updates to this book, go to www.dummies.com/extras/
html5css3aio.

Where to Go from Here
Well, that’s really up to you. I sincerely believe you can use this book to turn
into a top-notch web developer. That’s my goal for you.

Although this is a massive book, there’s still more to figure out. If you
have questions or just want to chat, feel free to e-mail me at andy@
aharrisbooks.net. You can also visit my website at www.aharrisbooks.
net/ for code examples, updates, and other good stuff.

I try hard to answer all reader e-mails, but sometimes I get behind. Please be
patient with me, and I’ll do my best to help.

I can’t wait to hear from you and see the incredible websites you develop.
Have a great time, discover a lot, and stay in touch!

http://www.aharrisbooks.net/haio
http://www.dummies.com/cheatsheet/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
mailto://andy@aharrisbooks.net
mailto://andy@aharrisbooks.net
http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

 Visit www.dummies.com for more great content online.

Part I
Creating the HTML

Foundation

http://www.dummies.com

Contents at a Glance

Contents at a Glance

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page ...9
Understanding the HTML in the Basic Page ..11
Meeting Your New Friends, the Tags...12
Setting Up Your System ...15

Chapter 2: It’s All About Validation .19
Somebody Stop the HTML Madness! ...19
Validating Your Page ..23
Using Tidy to repair pages ...30

Chapter 3: Choosing Your Tools .33
What’s Wrong with the Big Boys: Expression Web and Adobe Dreamweaver33
How About Online Site Builders? ...34
Alternative Web Development Tools ...35
Picking a Text Editor ...35
Finding a Good Web Developer’s Browser ...44

Chapter 4: Managing Information with Lists and Tables 51
Making a List and Checking It Twice ...51
Building Tables ..59

Chapter 5: Making Connections with Links .67
Making Your Text Hyper ...67
Making Lists of Links ..71
Working with Absolute and Relative References ...73

Chapter 6: Adding Images, Sound, and Video .77
Adding Images to Your Pages ...77
Choosing an Image Manipulation Tool ..82
Choosing an Image Format ...85
Manipulating Your Images ..90
Working with Audio ..99

Chapter 7: Creating Forms . .105
You Have Great Form ..105
Building Text-Style Inputs ...109
Making a standard text field ...109
Building a password field ..111
Creating Multiple Selection Elements ...114
Pressing Your Buttons ..119
New form input types ...122

Chapter 1: Sound HTML
Foundations

In This Chapter
✓ Creating a basic web page

✓ Understanding the most critical HTML tags

✓ Setting up your system to work with HTML

✓ Viewing your pages

T
his chapter is your introduction to building web pages. Before this slim
chapter is finished, you’ll have your first page up and running. It’s a

humble beginning, but the basic web technology you learn here is the foun-
dation of everything happening on the web today.

In this minibook, you discover the modern form of web design using HTML5.
Your web pages will be designed from the ground up, which makes them
easy to modify and customize. Although you figure out more advanced tech-
niques throughout this book, you’ll take the humble pages you discover in
this chapter and make them do all kinds of exciting things.

Creating a Basic Page
Here’s the great news: The most important web technology you need is also
the easiest. You don’t need any expensive or complicated software, and you
don’t need a powerful computer. You probably have everything you need to
get started already.

No more talking! Fire up a computer and build a web page!

 1. Open a text editor.

 You can use any text editor you want, as long as it lets you save files
as plain text. If you’re using Windows, Notepad is fine for now. If you’re
using Mac, you’ll really need to download a text editor. I like Komodo
Edit (www.activestate.com/komodo-edit) or TextWrangler
(www.barebones.com/products/textwrangler/). It’s possible to
make TextEdit work correctly, but it’s probably easier to just download
something made for the job. I explain text editors more completely in
Chapter 3 of this mini-book.

http://www.activestate.com/komodo-edit
http://www.barebones.com/products/textwrangler/

Creating a Basic Page10

 Don’t use a word processor like Microsoft Word or Mac TextEdit. These
are powerful tools, but they don’t save things in the right format. The way
these tools do things like centering text and changing fonts won’t work on
the web. I promise that you’ll figure out how to do all that stuff soon, but a
word processing program won’t do it correctly. Even the Save as HTML
feature doesn’t work right. You really need a very simple text editor, and
that’s it. In Chapter 3 of this minibook, I show you a few more editors that
make your life easier. You should not use Word or TextEdit.

 2. Type the following code.

 Really. Type it in your text editor so you get some experience writing the
actual code. I explain very soon what all this means, but type it now to
get a feel for it:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
<meta charset="UTF-8">
<!-- myFirst.html -->

<title>My very first web page!</title>
</head>

<body>

<h1>This is my first web page!</h1>

<p>
This is the first web page I've ever made,
and I'm extremely proud of it.
It is so cool!
</p>

</body>
</html>

 3. Save the file as myFirst.html.

 It’s important that your filename has no spaces and ends with the .html
extension. Spaces cause problems on the Internet (which is, of course,
where all good pages go to live), and the .html extension is how most
computers know that this file is an HTML file (which is another name for
a web page). It doesn’t matter where you save the file, as long as you can
find it in the next step.

 4. Open your web browser.

 The web browser is the program used to look at pages. After you post
your page on a web server somewhere, your Great Aunt Gertrude
can use her web browser to view your page. You also need one (a
browser, not a Great Aunt Gertrude) to test your page. For now, use
whatever browser you ordinarily use. Most Windows users already
have Internet Explorer installed. If you’re a Mac user, you probably
have Safari. Linux folks generally have Chrome or Firefox. Any of
these are fine. In Chapter 3 of this minibook, I explain why you prob-
ably need more than one browser and how to configure them for
maximum usefulness.

Understanding the HTML in the Basic Page 11

Book I
Chapter 1

Sound HTM
L

Foundations

5. Load your page into the browser.

 You can do this a number of ways. You can use the browser’s File menu
to open a local file, or you can simply drag the file from your Desktop (or
wherever) to the open browser window.

 6. Bask in your newfound genius.

 Your simple text file is transformed! If all went well, it looks like Figure 1-1.

Understanding the HTML in the Basic Page
The page you created in the previous section uses an extremely simple
notation — HTML (HyperText Markup Language), which has been around since
the beginning of the web. HTML is a terrific technology for several reasons:

 ✦ It uses plain text. Most document systems (like word processors) use
special binary encoding schemes that incorporate formatting directly
into the computer’s internal language, which locks a document into
a particular computer or software. That is, a document stored in
Word format can’t be read without a program that understands Word
formatting. HTML gets past this problem by storing everything in
plain text.

Figure 1-1:
Congratu
lations!
You’re
now a web
developer!

Meeting Your New Friends, the Tags12

 ✦ It works on all computers. The main point of HTML is to have a univer-
sal format. Any computer should be able to read and write it. The plain-
text formatting aids in this.

 ✦ It describes what documents mean. HTML isn’t really designed to
indicate how a page or its elements look. HTML is about describing the
meaning of various elements (more on that very soon). This has some
distinct advantages when you figure out how to use HTML properly.

 ✦ It doesn’t describe how documents look. This one seems strange. Of
course, when you look at Figure 1-1, you can see that the appearance of the
text on the web page has changed from the way the text looked in your text
editor. Formatting a document in HTML does cause the document’s appear-
ance to change. That’s not the point of HTML, though. You discover in Book
II and Book III how to use another powerful technology — CSS — to change
the appearance of a page after you define its meaning. This separation of
meaning from layout is one of the best features of HTML.

 ✦ It’s easy to write. Sure, HTML gets a little more complicated than this
first example, but you can easily figure out how to write HTML without
any specialized editors. You only have to know a handful of elements,
and they’re pretty straightforward.

 ✦ It’s free. HTML doesn’t cost anything to use, primarily because it isn’t
owned by anyone. No corporation has control of it (although a couple
have tried), and nobody has a patent on it. The fact that this technology
is freely available to anyone is a huge advantage.

Meeting Your New Friends, the Tags
The key to writing HTML code is the special text inside angle braces (<>).
These special elements are tags. They aren’t meant to be displayed on the
web page, but offer instructions to the web browser about the meaning of
the text. The tags are meant to be embedded into each other to indicate the
organization of the page. This basic page introduces you to all the major tags
you’ll encounter. (There are more, but they can wait for a chapter or two.)
Each tag has a beginning and an end tag. The end tag is just like the begin-
ning tag, except the end tag has a slash (/):

 ✦ <!DOCTYPE HTML>: This special tag is used to inform the browser that
the document type is HTML. This is how the browser knows you’ll be
writing an HTML5 document. You will sometimes see other values for
the doctype, but HTML5 is the way to go these days.

 ✦ <html lang = “en”></html>: The <html> tag is the foundation of
the entire web page. The tag begins the page. Likewise, </html> ends
the page. For example, the page begins with <html> and ends with
</html>. The <html></html> combination indicates that everything
in the page is defined as HTML code. In HTML5, you’re expected to tell

Meeting Your New Friends, the Tags 13

Book I
Chapter 1

Sound HTM
L

Foundations

the browser which language the page will be written in. Because I write
in English, I’m specifying with the code “en.”

 Some books teach you to write your HTML tags in uppercase letters.
This was once a standard, but it is no longer recommended.

 ✦ <head></head>: These tags define a special part of the web page called
the head (or sometimes header). This part of the web page reminds me of
the engine compartment of a car. This is where you put some great stuff
later, but it’s not where the main document lives. For now, the only thing
you’ll put in the header is the document’s title. Later, you’ll add styling
information and programming code to make your pages sing and dance.

 ✦ <meta charset=“UTF-8”>: The meta tag is used to provide a little more
information to the browser. This command gives a little more information
to the browser, telling it which character set to use. English normally uses
a character set called (for obscure reasons) UTF-8. You don’t need to worry
much about this, but every HTML5 page written in English uses this code.

 ✦ <!--/-->: This tag indicates a comment, which is ignored by the
browser. However, a comment is used to describe what’s going on in a
particular part of the code.

 ✦ <title></title>: This tag is used to determine the page’s title. The
title usually contains ordinary text. Whatever you define as the title will
appear in some special ways. Many browsers put the title text in the
browser’s title bar. Search engines often use the title to describe the page.

 Throughout this book, I use the filename of the HTML code as the title.
That way, you can match any figure or code listing to the corresponding
file on the web site that accompanies this book. Typically, you’ll use some-
thing more descriptive, but this is a useful technique for a book like this.

 It’s not quite accurate to say that the title text always shows up in the title
bar because a web page is designed to work on lots of different browsers.
Sure, the title does show up on most major browsers that way, but what
about cellphones and tablets? HTML never legislates what will happen; it
only suggests. This may be hard to get used to, but it’s a reality. You trade
absolute control for widespread capability, which is a good deal.

 ✦ <body></body>: The page’s main content is contained within these
tags. Most of the HTML code and the stuff the user sees are in the body
area. If the header area is the engine compartment, the body is where
the passengers go.

 ✦ <h1></h1>: H1 stands for heading level one. Any text contained within
this markup is treated as a prominent headline. By default, most browsers
add special formatting to anything defined as H1, but there’s no guaran-
tee. An H1 heading doesn’t really specify any particular font or formatting,
just the meaning of the text as a level one heading. When you find out how
to use CSS in Book II, you’ll discover that you can make your headline look
however you want. In this first minibook, keep all the default layouts for
now and make sure you understand that HTML is about semantic mean-
ing, not about layout or design. There are other levels of headings, of

Meeting Your New Friends, the Tags14

course, through <h6> where <h2> indicates a heading slightly less impor-
tant than <h1>, <h3> is less important than <h2>, and so on.

 Beginners are sometimes tempted to make their first headline an <h1>
tag and then use an <h2> for the second headline and an <h3> for the
third. That’s not how it works. Web pages, like newspapers and books,
use different headlines to point out the relative importance of various
elements on the page, often varying the point size of the text. You can
read more about that in Book II.

 ✦ <p></p>: In HTML, p stands for the paragraph tag. In your web pages,
you should enclose each standard paragraph in a <p></p> pair. You might
notice that HTML doesn’t preserve the carriage returns or white space in
your HTML document. That is, if you press Enter in your code to move text
to a new line, that new line isn’t necessarily preserved in the final web page.

 The <p></p> structure is one easy way to manage spacing before and
after each paragraph in your document.

 Some older books recommend using <p> without a </p> to add space to
your documents, similar to pressing the Enter key. This way of thinking
could cause you problems later because it doesn’t accurately reflect the
way web browsers work. Don’t think of <p> as the carriage return.
Instead, think of <p> and </p> as defining a paragraph. The paragraph
model is more powerful because soon enough, you’ll figure out how to
take any properly defined paragraph and give it yellow letters on a green
background with daisies (or whatever else you want). If things are
marked properly, they’ll be much easier to manipulate later.

Be proud of this first page. It may be simple, but
it’s the foundation of greater things to come.
Before moving on, take a moment to ponder
some important HTML principles shown in this
humble page you’ve created:

 ✓ All tags are lowercase. Although HTML
does allow uppercase tags, modern devel
opers have agreed on lowercase tags in
most cases. (<!DOCTYPE> is one nota
ble exception to this rule.)

 ✓ Tag pairs are containers, with a beginning
and an end. Tags contain other tags or text.

 ✓ Some elements can be repeated. There’s
only one <html> , <title> , and
<body> tag per page, but a lot of the
other elements (<h1> and <p>) can be
repeated as many times as you like.

 ✓ Carriage returns are ignored. In the
Notepad document, there are a number
of carriage returns. The formatting of the
original document has no effect on the
HTML output. The markup tags indicate
how the output looks.

A few notes about the basic page

Setting Up Your System 15

Book I
Chapter 1

Sound HTM
L

Foundations

Setting Up Your System
You don’t need much to make web pages. Your plain text editor and a web
browser are about all you need. Still, some things can make your life easier
as a web developer.

Displaying file extensions
The method discussed in this section is mainly for Windows users, but it’s a
big one. Windows uses the extension (the part of the filename after the period)
to determine what type of file you’re dealing with. This is very important in
web development. The files you create are simple text files, but if you store
them with the ordinary .txt extension, your browser can’t read them prop-
erly. What’s worse, the default Windows setting hides these extensions from
you, so you have only the icons to tell you what type of file you’re dealing with,
which causes all kinds of problems. I recommend you have Windows explicitly
describe your file extensions. Here’s how to set that up in Windows 7:

 1. Click the Start button.

 This opens the standard Start menu.

 2. Open the Control Panel.

 The Control Panel application allows you to modify many parts of your
operating system.

 3. Find Appearance and Personalization.

 This section allows you to modify the visual look and feel of your operat-
ing system.

 4. Choose Folder Options.

 This dialog box lets you modify the way folders look throughout the
visual interface.

 5. Find Advanced Settings.

 Click the View tab and then look under Advanced Settings.

 6. Display file extensions.

 By default, the Hide Extensions for Known File Types check box is
selected. Deselect this check box to display file extensions.

The process for displaying file types is similar in Windows 8:

 1. Go to Windows Explorer.

 Use the Windows Explorer tile to view Windows Explorer — the standard
file manager for Windows.

 2. Click the View tab.

 This tab allows you to modify how directories look.

Setting Up Your System16

 3. De-select filename extensions.

 If this button is checked, file extensions are shown (which is what
you want.) (See Figure 1-2.) Note this is the opposite of Windows 7’s
behavior.

 Although my demonstration uses Windows 7 and 8, the technique is similar
in older versions of Windows. Just do a quick search for “displaying file
extensions.”

Setting up your software
You’ll write a lot of web pages, so it makes sense to set up your system to
make that process as easy as possible. I talk a lot more about some software
you should use in Chapter 3 of this minibook, but for now, here are a couple
of easy suggestions:

 ✦ Put a Notepad icon on your Desktop. You’ll edit a lot of text files, so it’s
helpful to have an icon for Notepad (or whatever other text editor you

Figure 1-2:
Don’t
hide file
extensions
(deselect
that Hide
Extensions
check box).

Setting Up Your System 17

Book I
Chapter 1

Sound HTM
L

Foundations

use) available directly on the Desktop. That way, you can quickly edit
any web page by dragging it to the Desktop. When you use more sophis-
ticated editors than Notepad, you’ll want links to them, too.

 ✦ Get another web browser. You may just love your web browser, and
that’s fine, but you can’t assume that everybody likes the same browser
you do. You need to know how other browsers interpret your code.
Chrome is an incredibly powerful browser, and it’s completely free, as
well has having a lot of great programmer’s features. If you don’t already,
I suggest having links to at least two browsers directly on your Desktop.

Most of the problems people have with the web
are from misunderstandings about how this
medium really works. Most people are com
fortable with word processors, and we know
how to make a document look how we want.
Modern applications use WYSIWYG tech
nology, promising that what you see is what
you get. That’s a reasonable promise when it
comes to print documents, but it doesn’t work
that way on the web.

How a web page looks depends on a lot of
things that you don’t control. The user may
read your pages on a smaller or larger screen
than you. She may use a different operating
system than you. She may have a slower con
nection or may turn off the graphics for speed.
She may be blind and use screenreader tech
nology to navigate web pages. She may be
reading your page on a tablet, smart phone,

or even an older (not so smart) cellphone. You
can’t make a document that looks the same in
all these situations.

A good compromise is to make a document
that clearly indicates how the information
fits together and makes suggestions about
the visual design. The user and her browser
can determine how much of those sugges
tions to use.

You get some control of the visual design but
never complete control, which is okay because
you’re trading total control for accessibility.
People with devices you’ve never heard of can
visit your page.

Practice a few times until you can easily build
a page without looking anything up. Soon
enough, you’re ready for the next step — build
ing pages like the pros.

Understanding the magic

18 Book I: Creating the HTML Foundation

Chapter 2: It’s All About Validation

In This Chapter
✓ Introducing the concept of valid pages

✓ Using a doctype

✓ Setting the character set

✓ Meeting the W3C validator

✓ Fixing things when they go wrong

✓ Using HTML Tidy to clean your pages

W
eb development is undergoing a revolution. As the web matures and
becomes a greater part of everyday life, it’s important to ensure that

web pages perform properly — thus, a call for web developers to follow
voluntary standards of web development.

Somebody Stop the HTML Madness!
In the bad old days, the web was an informal affair. People wrote HTML
pages any way they wanted. Although this was easy, it led to a lot of
problems:

 ✦ Browser manufacturers added features that didn’t work on all
browsers. People wanted prettier web pages with colors, fonts, and
doodads, but there wasn’t a standard way to do these things. Every
browser had a different set of tags that supported enhanced features. As
a developer, you had no real idea if your web page would work on all the
browsers out there. If you wanted to use some neat feature, you had to
ensure your users had the right browser.

 ✦ The distinction between meaning and layout was blurred. People
expected to have some kind of design control of their web pages, so
all kinds of new tags popped up that blurred the distinction between
describing and decorating a page.

 ✦ Table-based layout was used as a hack. HTML didn’t have a good way
to handle layout, so clever web developers started using tables as a
layout mechanism. This worked, after a fashion, but it wasn’t easy or
elegant.

 ✦ People started using tools to write pages. Web development soon
became so cumbersome that people began to believe that they couldn’t
do HTML by hand anymore and that some kind of editor was necessary

Somebody Stop the HTML Madness!20

to handle all that complexity for them. Although these editing programs
introduced new features that made things easier upfront, these tools
also made code almost impossible to change without the original editor.
Web developers began thinking they couldn’t design web pages without
a tool from a major corporation.

 ✦ The nature of the web was changing. At the same time, these factors
were making ordinary web development more challenging. Innovators
were recognizing that the web wasn’t really about documents but was
about applications that could dynamically create documents. Many of
the most interesting web pages you visit aren’t web pages at all, but
programs that produce web pages dynamically every time you visit. This
innovation meant that developers had to make web pages readable by
programs, as well as humans.

 ✦ XHTML tried to fix things. The standards body of the web (there really
is such a thing) is called the World Wide Web Consortium (W3C), and
it tried to resolve things with a new standard called XHTML. This was a
form of HTML that also followed the much stricter rules of XML. If every-
one simply agreed to follow the XHTML standard, much of the ugliness
would go away.

 ✦ XHTML didn’t work either. Although XHTML was a great idea, it
turned out to be complicated. Parts of it were difficult to write by
hand, and very few developers followed the standards completely.
Even the browser manufacturers didn’t agree exactly on how to read
and display XHTML. It doesn’t matter how good an idea is if nobody
follows it.

In short, the world of HTML was a real mess.

XHTML had some great ideas
In 2000, the World Wide Web Consortium (usually abbreviated as W3C) got
together and proposed some fixes for HTML. The basic plan was to create a
new form of HTML that complied with a stricter form of markup, or eXtensi-
ble Markup Language (XML). The details are long and boring, but essentially,
they came up with some agreements about how web pages are standardized.
Here are some of those standards:

 ✦ All tags have endings. Every tag comes with a beginning and an end
tag. (Well, a few exceptions come with their own ending built in. I’ll
explain when you encounter the first such tag in Chapter 6 of this
minibook.) This was a new development because end tags were con-
sidered optional in old-school HTML, and many tags didn’t even have
end tags.

 ✦ Tags can’t be overlapped. In HTML, sometimes people had the tendency
to be sloppy and overlap tags, like this: <a>my stuff.
That’s not allowed in XHTML, which is a good thing because it confuses
the browser. If a tag is opened inside some container tag, the tag must
be closed before that container is closed.

Book I
Chapter 2

It’s All About
Validation

Somebody Stop the HTML Madness! 21

 ✦ Everything’s lowercase. Some people wrote HTML in uppercase, some
in lowercase, and some just did what they felt like. It was inconsistent
and made it harder to write browsers that could read all the variations.

 ✦ Attributes must be in quotes. If you’ve already done some HTML, you
know that quotes used to be optional — not anymore. (Turn to Chapter
3 for more about attributes.)

 ✦ Layout must be separate from markup. Old-school HTML had a bunch
of tags (like and <center>) that were more about format-
ting than markup. These were useful, but they didn’t go far enough.
XHTML (at least the strict version) eliminates all these tags. Don’t
worry, though; CSS gives you all the features of these tags and a lot
more.

This sounds like strict librarian rules, but really they aren’t restricting at all.
Most of the good HTML coders were already following these guidelines or
something similar.

Even though you’re moving past XHTML into HTML5, these aspects of
XHTML remain, and they are guidelines all good HTML5 developers still use.

 HTML5 actually allows a looser interpretation of the rules than XHTML strict
did, but throughout this book I write HTML5 code in a way that also passes
most of the XHTML strict tests. This practice ensures nice clean code with
no surprises.

You validate me
In old-style HTML, you never really knew how your pages would look on
various browsers. In fact, you never really knew if your page was even writ-
ten properly. Some mistakes would look fine on one browser but cause
another browser to blow up.

The idea of validation is to take away some of the uncertainty of HTML. It’s
like a spell checker for your code. My regular spell checker makes me feel a
little stupid sometimes because I make mistakes. I like it, though, because
I’m the only one who sees the errors. I can fix the spelling errors before I
pass the document on to you, so I look smart. (Well, maybe.)

It’d be cool if you could have a special kind of checker that does the same
things for your web pages. Instead of checking your spelling, it’d test your
page for errors and let you know if you made any mistakes. It’d be even
cooler if you could have some sort of certification that your page follows a
standard of excellence.

That’s how page validation works. You can designate that your page will
follow a particular standard and use a software tool to ensure that your
page meets that standard’s specifications. The software tool is a validator.
I show you two different validators in the upcoming “Validating Your Page”
section.

Somebody Stop the HTML Madness!22

The browsers also promise to follow a particular standard. If your page
validates to a given standard, any browser that validates to that same
standard can reproduce your document correctly, which is a big deal.

The most important validator is the W3C validator at http://validator.
w3.org, as shown in Figure 2-1.

A validator is actually the front end of a piece of software that checks pages
for validity. It looks at your web page’s doctype and sees whether the page
conforms to the rules of that doctype. If not, it tells you what might have
gone wrong.

You can submit code to a validator in three ways:

 ✦ Validate by URI. This option is used when a page is hosted on a web
server. Files stored on local computers can’t be checked with this
technique. Book VIII describes all you need to know about working with
web servers, including how to create your own and move your files to
it. (A URI, or uniform resource identifier, is a more formal term for a web
address, which is more frequently seen as URL.)

 ✦ Validate by file upload. This technique works fine with files you haven’t
posted to a web server. It works great for pages you write on your com-
puter but that you haven’t made visible to the world. This is the most
common type of validation for beginners.

 ✦ Validate by direct input. The validator page has a text box you can
simply paste your code into. It works, but I usually prefer to use the
other methods because they’re easier.

Figure 2-1:
The W3C
validator
page isn’t
exciting,
but it sure is
useful.

http://validator.w3.org
http://validator.w3.org

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 23

Validation might sound like a big hassle, but it’s really a wonderful tool
because sloppy HTML code can cause lots of problems. Worse, you might
think everything’s okay until somebody else looks at your page, and
suddenly, the page doesn’t display correctly.

 As of this writing, the W3C validator can read and test HTML5 code, but the
HTML5 validation is still considered experimental. Until HTML5 becomes a
bit more mainstream, your HTML5 pages may get a warning about the
experimental nature of HTML5. You can safely ignore this warning.

Validating Your Page
To explain all this, I created a web page the way Aesop might have done in
ancient Greece. Okay, maybe Aesop didn’t write his famous fables as web
pages, but if he had, they might have looked like the following code listing:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

<p>
 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to pull
 the wagon, but they did not complain.
<p>

<p>
 The Wheels of the wagon were of a different sort. Though the
 task they had to do was very light compared with that of the
 Oxen, they creaked and groaned at every turn. The poor Oxen,
 pulling with all their might to draw the wagon through the
 deep mud, had their ears filled with the loud complaining of
 the Wheels. And this, you may well know, made their work so
 much the harder to endure.
</p>

<p>
 "Silence!" the Oxen cried at last, out of patience. "What have
 you Wheels to complain about so loudly? We are drawing all the
 weight, not you, and we are keeping still about it besides."
</p>

<h2>
They complain most who suffer least.

Validating Your Page24

</h2>

</body>
</html>

The code looks okay, but actually has a number of problems. Aesop may
have been a great storyteller, but from this example, it appears he was a
sloppy coder. The mistakes can be hard to see, but trust me, they’re there.
The question is, how do you find the problems before your users do?

You might think that the problems would be evident if you viewed the
page in a web browser. The various web browsers seem to handle the page
decently, even if they don’t display it in an identical way. Figure 2-2 shows
oxWheels1.html in a browser.

Chrome appears to handle the page pretty well, but From Aesop’s
Fables is supposed to be a headline level two, or H2, and it appears as
plain text. Other than that, there’s very little indication that something is
wrong.

If it looks fine, who cares if it’s exactly right? You might wonder why we
care if there are mistakes in the underlying code, as long as everything
works okay. After all, who’s going to look at the code if the page displays
properly?

The problem is, you don’t know if it’ll display properly, and mistakes in your
code will eventually come back to haunt you. If possible, you want to know
immediately what parts of your code are problematic so you can fix them
and not worry.

Figure 2-2:
The page
looks okay,
but the
headings
are strange.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 25

Aesop visits W3C
To find out what’s going on with this page, pay a visit to the W3C validator
at http://validator.w3.org. Figure 2-3 shows me visiting this site and
uploading a copy of oxWheels1.html to it.

Hold your breath and click the Check button. You might be surprised at the
results shown in Figure 2-4.

The validator is a picky beast, and it doesn’t seem to like this page at all. The
validator does return some useful information and gives enough hints that
you can decode things soon enough.

Figure 2-3:
I’m
checking
the
oxWheels
page to
look for any
problems.

Figure 2-4:
Five errors?
That can’t
be right!

http://validator.w3.org

Validating Your Page26

Examining the overview
Before you look at the specific complaints, take a quick look at the web page
the validator sends you. The web page is chock-full of handy information.
The top of the page tells you a lot of useful things:

 ✦ Result: This is really the important thing. You’ll know the number of
errors remaining by looking at this line. Don’t panic, though. The errors
in the document are probably fewer than the number you see here.

 ✦ File: The name of the file you’re working on.

 ✦ Encoding: The text encoding you’ve set. If you didn’t explicitly set text
encoding, you may see a warning here.

 ✦ Doctype: This is the doctype extracted from your document. It indicates
the rules that the validator is using to check your page. This should usu-
ally say HTML5.

 ✦ The dreaded red banner: Experienced web developers don’t even have
to read the results page to know if there is a problem. If everything goes
well, there’s a green congratulatory banner. If there are problems, the
banner is red. It doesn’t look good, Aesop.

 Don’t panic because you have errors. The mistakes often overlap, so one
problem in your code often causes more than one error to pop up. Most of
the time, you have far fewer errors than the page says, and a lot of the errors
are repeated, so after you find the error once, you’ll know how to fix it
throughout the page.

Validating the page
The validator doesn’t always tell you everything you need to know, but it
does give you some pretty good clues. Page validation is tedious but not
as difficult as it might seem at first. Here are some strategies for working
through page validation:

 ✦ Focus only on the first error. Sure, 100 errors might be on the page,
but solve them one at a time. The only error that matters is the first one
on the list. Don’t worry at all about other errors until you’ve solved the
first one.

 ✦ Note where the first error is. The most helpful information you get is
the line and column information about where the validator recognized
the error. This isn’t always where the error is, but it does give you some
clues.

 ✦ Look at the error message. It’s usually good for a laugh. The error mes-
sages are sometimes helpful and sometimes downright mysterious.

 ✦ Look at the verbose text. Unlike most programming error messages,
the W3C validator tries to explain what went wrong in something like
English. It still doesn’t always make sense, but sometimes the text gives
you a hint.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 27

 ✦ Scan the next couple of errors. Sometimes, one mistake shows up as
more than one error. Look over the next couple of errors, as well, to see
if they provide any more insight; sometimes, they do.

 ✦ Try a change and revalidate. If you’ve got an idea, test it out (but only
solve one problem at a time.) Check the page again after you save it. If
the first error is now at a later line number than the previous one, you’ve
succeeded.

 ✦ Don’t worry if the number of errors goes up. The number of perceived
errors will sometimes go up rather than down after you successfully fix
a problem. This is okay. Sometimes, fixing one error uncovers errors
that were previously hidden. More often, fixing one error clears up many
more. Just concentrate on clearing errors from the beginning to the end
of the document.

 ✦ Lather, rinse, and repeat. Look at the new top error and get it straight-
ened out. Keep going until you get the coveted Green Banner of
Validation. (If I ever write an HTML adventure game, the Green Banner of
Validation will be one of the most powerful talismans.)

Examining the first error
Look again at the results for the oxWheels1.html page. The first error mes-
sage looks like Figure 2-5.

Figure 2-5:
Well, that
clears
every-
thing up.

Figure 2-5 shows the first two error messages. The first complains that the
head is missing a title. The second error message is whining about the title
being in the body. The relevant code is repeated here:

<!DOCTYPE HTML>
<html lang="en-US">

Validating Your Page28

<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>

Look carefully at the head and title tag pairs and review the notes in
the error messages, and you’ll probably see the problem. The <title>
element is supposed to be in the heading, but I accidentally put it in the
body! (Okay, it wasn’t accidental; I made this mistake deliberately here
to show you what happens. However, I have made this mistake for real in
the past.)

Fixing the title
If the title tag is the problem, a quick change in the HTML should fix it.
oxWheels2.html shows another form of the page with my proposed fix:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<!-- oxWheels2.html -->

<!-- Moved the title tag inside the header -->
<title>The Oxen and the Wheels</title>

</head>
<body>

Note: I’m only showing the parts of the page that I changed. The entire page
is available on this book’s website. See this book’s Introduction for more on
the website.

The fix for this problem is pretty easy:

 1. Move the title inside the head. I think the problem here is having the
<title> element inside the body, rather than in the head where it
belongs. If I move the title to the body, the error should be eliminated.

 2. Change the comments to reflect the page’s status. It’s important that
the comments reflect what changes I make.

 3. Save the changes. Normally, you simply make a change to the same docu-
ment, but I’ve elected to change the filename so you can see an archive
of my changes as the page improves. This can actually be a good idea
because you then have a complete history of your document’s changes,
and you can always revert to an older version if you accidentally make
something worse.

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 29

 4. Note the current first error position. Before you submit the modified
page to the validator, make a mental note of the position of the current
first error. Right now, the validator’s first complaint is on line 12, column
7. I want the first mistake to be somewhere later in the document.

 5. Revalidate by running the validator again on the modified page.

 6. Review the results and do a happy dance. It’s likely you still have
errors, but that’s not a failure! Figure 2-6 shows the result of my revalida-
tion. The new first error is on line 17, and it appears to be very different
from the last error. I solved it!

Solving the next error
One down, but more to go. The next error (refer to Figure 2-6) looks strange,
but it makes sense when you look over the code.

This type of error is very common. What it usually means is you forgot to
close something or you put something in the wrong place. The error mes-
sage indicates a problem in line 17. The next error is line 17, too. See if you
can find the problem here in the relevant code:

<body>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

After you know where to look, the problem becomes a bit easier to spot.
I got sloppy and started the <h2> tag before I finished the <h1>. In many
cases, one tag can be completely embedded inside another, but you can’t
have tag definitions overlap as I’ve done here. The <h1> has to close before I
can start the <h2> tag.

Figure 2-6:
Heading
cannot be
a child of
another
heading.
Huh?

Validating Your Page30

This explains why browsers might be confused about how to display the
headings. It isn’t clear whether this code should be displayed in H1 or H2
format, or perhaps with no special formatting at all. It’s much better to
know the problem and fix it than to remain ignorant until something goes
wrong.

The third version — oxWheels3.html — fixes this part of the program:

<!-- oxWheels3.html -->
<!-- sort out the h1 and h2 tags at the top -->
<title>The Oxen and the Wheels</title>
</head>
<body>
<h1>The Oxen and the Wheels</h1>
<h2>From Aesop's Fables</h2>

The validator has fixed a number of errors, but there’s one really sneaky
problem still in the page. See if you can find it, and then read ahead.

Using Tidy to repair pages
The W3C validator isn’t the only game in town. Another great resource —
HTML Tidy — can be used to fix your pages. You can download Tidy or just
use the online version at http://infohound.net/tidy. Figure 2-7
illustrates the online version.

I can hear the angry e-mails coming in. “Andy,
I’ve been writing web pages since 1998, and I
never used a validator.” Okay, it’s true. A lot of
people, even some professional web develop-
ers, work without validating their code. Some
of my older web pages don’t validate at all.
(You can run the W3C validator on any page
you want, not just one you wrote. This can be
a source of great joy if you like feeling superior
to sloppy coders.) When I became more profi-
cient and more prolific in my web development,
I found that those little errors often caused a
whole lot of grief down the road. I really believe
you should validate every single page you
write. Get into the habit now, and it’ll pay huge
dividends. When you’re figuring out this stuff
for the first time, do it right.

If you already know some HTML, you’re gonna
hate the validator for a while because it rejects
coding habits that you might think are perfectly
fine. Unlearning a habit is a lot harder than
learning a new practice, so I feel your pain. It’s
still worth it.

After you discipline yourself to validate your
pages, you’ll find you’ve picked up good
habits, and validation becomes a lot less pain-
ful. Experienced programmers actually like
the validation process because it becomes
much easier and prevents problems that could
cause lots of grief later. You may even want
to re-validate a page you’ve been using for a
while. Sometimes a content update can cause
mistakes.

Is validation really that big a deal?

http://infohound.net/tidy

Book I
Chapter 2

It’s All About
Validation

Validating Your Page 31

Figure 2-7:
HTML
Tidy is an
alternative
to the W3C
validator.

Figure 2-8:
Tidy fixes
the page,
but the fix
is a little
awkward.

Unlike W3C’s validator, Tidy actually attempts to fix your page. Figure 2-8
displays how Tidy suggests the oxWheels1.html page be fixed.

Tidy examines the page for a number of common errors and does its best
to fix the errors. However, the result is not quite perfect:

 ✦ It outputs XHTML by default. XHTML is fine, but because we’re doing
HTML here, deselect the Output XHTML box. The only checkbox you
need selected is Drop Empty Paras.

Validating Your Page32

 ✦ Tidy got confused by the headings. Tidy correctly fixed the level one
heading, but it had trouble with the level two heading. It removed all the
tags, so it’s valid, but the text intended to be a level two heading is just
sort of hanging there.

 ✦ Sometimes, the indentation is off. I set Tidy to indent every element,
so it is easy to see how tag pairs are matched up. If I don’t set up the
indentation explicitly, I find Tidy code very difficult to read.

 ✦ The changes aren’t permanent. Anything Tidy does is just a suggestion.
If you want to keep the changes, you need to save the results in your
editor. Click the Download Tidied File button to do this easily.

I sometimes use Tidy when I’m stumped because I find the error messages
are easier to understand than the W3C validator. However, I never trust
it completely. Until it’s updated to truly understand HTML5, it sometimes
deletes perfectly valid HTML5 tags. There’s really no substitute for good old
detective skills and the official W3C validator.

Did you figure out that last error? I tried to close a paragraph with <p>
rather than </p>. That sort of thing freaks out an XHTML validator, but
HTML takes it in stride, so you might not even know there is a problem. Tidy
does notice the problem and repairs it. Remember this when you’re working
with a complex page and something doesn’t seem right. It’s possible there’s
a mistake you can’t even see, and it’s messing you up. In that case, consider
using a validator and Tidy to figure out what’s going wrong and fix it.

Chapter 3: Choosing Your Tools

In This Chapter
✓ Choosing a text editor

✓ Using a dedicated HTML editor

✓ Comparing common browsers

W
eb development is a big job. You don’t go to a construction site with-
out a belt full of tools (and a cool hat), and the same thing is true

with web development (except you don’t normally need a hard hat for web
development). An entire industry has evolved trying to sell tools that help
make web development easier. The funny thing is that the tools you need
might not be the ones that people are trying to sell you. Some of the very
best web development tools are free, and some of the most expensive tools
aren’t that helpful.

This chapter tells you what you need and how to set up your workshop with
great programs that simplify web development.

What’s Wrong with the Big Boys: Expression Web and
Adobe Dreamweaver

Many web development books are really books about how to use a particu-
lar type of software. Microsoft’s Expression Web and Adobe Dreamweaver
are the two primary applications in this category. These tools are powerful
and offer some seemingly great features:

 ✦ WYSIWYG editing: What you see is what you get is an idea borrowed
from word processors. You can create a web page much like a word-
processing document and use menus as well as tools to handle all the
formatting. The theory is that you don’t have to know any icky codes.

 ✦ Templates: You can create a template that stays the same and build
several pages from that template. If you need to change the template,
everything else changes automatically.

 ✦ Site management: The interaction between the various pages on your
site can be maintained automatically.

These sound like pretty good features, and they are. The tools (and the
newer replacements, like Microsoft’s Expression suite) are very powerful
and can be an important part of your web development toolkit. However,
the same powerful programs introduce problems, such as the following:

How About Online Site Builders?34

 ✦ Code maintenance: The commercial editors that concentrate on visual
design tend to create pretty unmanageable code. If you find there’s
something you need to change by hand, it’s pretty hard to fix the code.

 ✦ Vendor lock-in: These tools are written by corporations that want you to
buy other tools from them. If you’re using Dreamweaver, you’ll find it easy
to integrate with other Adobe applications (like ColdFusion), but it’s not
as simple to connect to non-Adobe technology. Likewise, Microsoft’s offer-
ings are designed to work best with other Microsoft technologies.

 ✦ Cost: The cost of these software packages keeps going up. Although
there are free versions of Microsoft’s web development tools, the com-
mercial versions are very expensive. Likewise, Dreamweaver weighs in
at $400. Both companies encourage you to buy the software as part of a
package, which can easily cost more than hundreds more.

 ✦ Complexity: They’re complicated. You can take a full class or buy a huge
book on how to use only one of these technologies. If it’s that hard to
figure out, is it really saving you any effort?

 ✦ Code: You still need to understand it. No matter how great your platform
is, at some point, you have to dig into your code. After you plunk down
all that money and spend all that time figuring out an application, you
still have to understand how the underlying code works because things
still go wrong. For example, if your page fails to work with Safari, you’ll
have to find out why and fix the problem yourself.

 ✦ Spotty standards compliance: The tools are getting better here, but if
you want your pages to comply with the latest standards, you have to
edit them heavily after the tool is finished.

 ✦ Display variations: WYSIWYG is a lie. This is really the big problem.
WYSIWYG works for word processors because it’s possible to make
the screen look like the printed page. After a page is printed, it stays
the same. You don’t know what a web page will look like because that
depends on the browser. What if the user loads your page on a cell-
phone or handheld device? The editors tend to perpetuate the myth that
you can treat a web page like a printed document when, in truth, it’s a
very different kind of beast.

 ✦ Incompatibility with other tools: Web development is now moving
toward content management systems (CMS) — programs that create
websites dynamically. Generally, CMS systems provide the same ease-
of-use as a visual editor but with other benefits. However, transitioning
code created in a commercial editor to a CMS is very difficult. I describe
CMS systems in detail in Book VIII.

How About Online Site Builders?
A lot of modern websites are built with a content management system (CMS).
Content management systems are software programs that allow you to build
and modify a page right in your web browser. Some CMS systems are free, and

35Alternative Web Development Tools

Book I
Chapter 3

Choosing Your Tools

some cost money to use. I go over how to install and modify a CMS (and even
build your own) in Book VIII. A CMS system can be nice because it allows you
to build a website visually without any special tools or knowledge.

The CMS approach is a very good solution, but I still recommend you dis-
cover how to build things by hand. Ultimately even a CMS uses HTML and
CSS, and you’ll need these skills to make your site look and perform well
even if you have help.

Alternative Web Development Tools
For web development, all you really need is a text editor and a web browser.
You probably already have a basic set of tools on your computer. If you
read Chapters 1 and 2 of this minibook, you’ve already written a couple of
web pages. However, the very basic tools that come with every computer
might not be enough for serious work. Web development requires a special-
ized kind of text editor, and a number of tools have evolved that make the
job easier.

I’ve found uses for four types of programs in web development:

 ✦ Enhanced text editors: These tools are text editors, but they’re souped-
up with all kinds of fancy features, like syntax checkers, code-coloring
tools, macro tools, and multiple document interfaces.

 ✦ Browsers and plug-ins: Some browsers are better than others for devel-
opment. You’ll also need a full suite of browsers to ensure your code
works in all of them. Some browsers can be extended with plug-ins for
advanced performance.

 ✦ Programming technologies: This book covers all pertinent info about
incorporating other technologies, like Apache, PHP, and MySQL. I show
you how to install everything you need for these technologies in Book
VIII, Chapter 1. You don’t need to worry about these things yet, but you
should develop habits that are compatible with these enhanced tech-
nologies from the beginning.

 ✦ Multimedia tools: It’s very common for a web page to feature various
types of images, as well as other multimedia like custom fonts, sound
effects, and video. You’ll need some tools to manage these resources.

Picking a Text Editor
As a programmer, you come to see your text editor as a faithful companion.
You spend a lot of time with this tool, so use one that works with you.

A text editor should save plain text without any formatting at all. You don’t
want anything that saves colors, font choices, or other text formatting
because these things don’t automatically translate to HTML.

Picking a Text Editor36

Fortunately, you have several choices, as the following sections reveal.

Tools to avoid unless you have nothing else
A text editor may be a simple program, but that doesn’t mean they’re all the
same. Some programs have a history of causing problems for beginners (and
experienced developers, too). There’s usually no need to use some of these
weaker choices.

Microsoft Word
 Just don’t use it for web development. Word is a word processor. Even though,

theoretically, it can create web pages, the HTML code it writes is absolutely
horrific. As an example, I created a blank document, wrote “Hello World” in it,
changed the font, and saved it as HTML. The resulting page was non-compliant
code, was not quite HTML or XHTML, and was 114 lines long. Word is getting
better, but it’s just not a good web development tool. In fact, don’t use any
word processor. They’re just not designed for this kind of work.

Windows Notepad
Notepad is everywhere, and it’s free. That’s the good news. However,
Notepad doesn’t have a lot of the features you might need, such as line
numbers, multiple documents, or macros. Use it if you’re on an unfamil-
iar machine, but try something else if you can. Many people begin with
Notepad, but it won’t be long until you outgrow its limitations.

Mac TextEdit
Mac has a simple text editor built in — TextEdit — that’s similar to Notepad, but
closer to a word processor than a programmer’s text editor. TextEdit saves files
in a number of formats. If you want to use it to write web pages, you must save
your files in plain-text format, and you must not use any of TextEdit’s formatting
features. It’s probably best not to use TextEdit unless you really have to.

Suggested programmer’s editors
If Notepad, Word, and TextEdit aren’t the best choices, what are some better
options?

Good question. Because a text editor is such an important tool, it might
depend a bit on your preferences, so I’ll highlight a few of my favorites. Note
that every editor I mention here is entirely free, so don’t go paying for some-
thing until you’ve tried some of these first.

A noteworthy editor: Notepad++
A number of developers have come up with good text editors. Some of the
best are free, such as Notepad++ by Don Ho. Notepad++ is designed for text
editing, especially in programming languages. Figure 3-1 shows Notepad++
with an HTML file loaded.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 37

Figure 3-1:
Notepad++
has many of
the features
you need in
a text editor.

Notepad++ has a lot of interesting features. Here are a few highlights:

 ✦ Syntax highlighting: Notepad++ can recognize key HTML terms and put
different types of terms in different colors. For example, all HTML tags
are rendered blue, and text is black, making it easy to tell if you’ve made
certain kinds of mistakes, such as forgetting to end a tag. Note that the
colors aren’t saved in the document. The coloring features are there to
help you understand the code.

 ✦ Multiple files: You’ll often want to edit more than one document at a time.
You can have several different documents in memory at the same time.

 ✦ Multi-language support: Currently, your pages consist of nothing but
HTML. Soon enough, you’ll use some other languages, like SQL, CSS, and
PHP. Notepad++ is smart enough to recognize these languages, too.

 ✦ Macros: Whenever you find yourself doing something over and over,
consider writing a keyboard macro. Notepad++ has a terrific macro
feature. Macros are easy to record and play back a series of keystrokes,
which can save you a lot of work.

 ✦ Page preview: When you write a page, test it. Notepad++ has short-
cut keys built in to let you quickly view your page in Internet Explorer
(Ctrl+Alt+Shift+I) and Firefox (Ctrl+Alt+Shift+X).

 ✦ TextFX: The open-source design of Notepad++ makes it easy to add fea-
tures. The TextFX extension (built into Notepad++) allows you to do all
sorts of interesting things. One especially handy set of tools runs HTML
Tidy on your page and fixes any problems.

 Sadly, Notepad++ is a Windows-only editor. If you’re using Mac or Linux, you
need to find something else. The closest alternative in the Mac and Linux
world is gedit.

Picking a Text Editor38

gedit
One simple but effective editor available free for all major operating sys-
tems is gedit. It is the default editor for many versions of Linux, but you can
download it for Mac and Windows from http://projects.gnome.org/
gedit/.

It has all the standard features including syntax highlighting (which colors
different parts of code in different colors to help with debugging), line
numbers, and a tag list, which is a special menu which allows you to pick
common HTML tags from a list if you forget some syntax. (You may need to
play with the plugins from the edit-preferences menu to activate all these
features.)

Sadly, gedit does not have a macro editor. This may not be a deal-breaker for
you, but often I find a macro tool to be extremely useful, and I’m happiest
when my editor has this feature. (If you’re especially geeky, it does expose
the entire Python language and allow you to modify anything with this lan-
guage, but that’s a topic for another day.) If you need a very nice general-
purpose editor, consider gedit. It does much of what you might want without
getting terribly complicated.

Figure 3-2 shows gedit in action.

Figure 3-2:
gedit is a
very nice
but simple
tool.

The old standards: VI and Emacs
No discussion of text editors is complete without a mention of the venerable
UNIX editors that were the core of the early Internet experience. Most of the
pioneering work on the web was done in the UNIX and Linux operating sys-
tems, and these environments had two extremely popular text-editor families.

http://projects.gnome.org/gedit/
http://projects.gnome.org/gedit/

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 39

Both might seem obscure and difficult to modern sensibilities, but they still
have passionate adherents, even in the Windows community. (Besides, Linux
is more popular than ever!)

VI and VIM
VI stands for VIsual Editor. That name seems strange now because most
developers can’t imagine an editor that’s not visual. Back in the day, it was a
very big deal that VI could use the entire screen for editing text. Before that
time, line-oriented editors were the main way to edit text files. Trust me, you
have it good now. Figure 3-3 shows a modern variant of VI (called GVIM) in
action.

VI is a modal editor, which means that the same key sometimes has more
than one job, depending on the editor’s current mode. For example, the I key
is used to indicate where you want to insert text. The D key is used to delete
text, and so on. Of course, when you’re inserting text, the keys have their
normal meanings. This multimode behavior is baffling to modern users, but
it can be amazingly efficient after you get used to it. Skilled VI users swear by
it and often use nothing else.

VI is a little too obscure for some users, so a number of variants are floating
around, such as VIM, or VI Improved. (Yeah, it should be VII but maybe they
were afraid people would call it the Roman numeral seven.) VIM is a little
friendlier than VI, and GVIM is friendlier yet. It tells you which mode it’s in
and includes such modern features as mouse support, menus, and icons.
Even with these features, VIM is not intuitive for most people.

Versions of VI are available for nearly any operating system being used. If
you already know VI, you might enjoy using it for web page development

Figure 3-3:
VI isn’t
pretty, but
after you
know it,
it’s very
powerful.

Picking a Text Editor40

because it has all the features you might need. If you don’t already know VI,
it’s probably more efficient for you to start with a more standard text editor,
such as Notepad++.

Emacs
The other popular editor from the UNIX world is Emacs. Like VI, you prob-
ably don’t need this tool if you never use Linux or UNIX. Also like VI, if you
know it already, you probably don’t need anything else. Emacs has been a
programmer’s editor for a very long time (it has been in continuous develop-
ment since 1976) and has nearly every feature you can think of.

 Emacs also has a lot of features you haven’t thought of, including a built-in
text adventure game and even a psychotherapist simulator. I really couldn’t
make this stuff up if I tried.

Emacs has very powerful customization and macro features and allows
you to view and edit more than one file at a time. Emacs also has the abil-
ity to view and manipulate the local file system, manage remote files,
access the local operating system (OS) shell, and even browse the web or
check e-mail without leaving the program. If you’re willing to invest in a
program that takes some effort to understand, you’ll have an incredibly
powerful tool in your kit. Versions of Emacs are available for most major
operating systems. Emacs is one of the first programs I install on any new
computer because it’s so powerful. A version of Emacs is shown in
Figure 3-4.

An enhanced version — XEmacs — (shown in the figure) uses standard
menus and icons like modern programs, so it’s reasonably easy to get
started with.

Figure 3-4:
Emacs is
powerful but
somewhat
eccentric.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 41

 Emacs has an astonishing number of options and a nonstandard interface, so
it can be challenging for beginners. However, those who have made the
investment (like me) swear by it.

My personal choice: Komodo Edit
Personally I really like Komodo Edit (www.activestate.com/komodo-edit).
This editor is extremely powerful, but is not quite as intimidating as some of
the older tools. It has a modern streamlined interface, but more power than
you might realize at first. Komodo Edit is actually the open-source cousin to a
commercial Integrated Development Environment (IDE) called Komodo IDE.
Komodo IDE costs hundreds of dollars, but Komodo Edit has almost as many
features, and is entirely free. Figure 3-5 illustrates Komodo Edit.

Komodo Edit has a number of really intriguing features that make it stand
out in my mind:

 ✦ All the standard features: Komodo Edit has all the features I’ve men-
tioned as necessary for a programmer’s editor, including syntax high-
lighting, line numbers, and saving in plain text format.

 ✦ Code completion: A number of higher-end programmer’s editors have
this feature, but it’s not as common in text editors. Here’s how it works:
When you set up a page as HTML5 (by choosing from the menu on the
bottom right), Komodo “watches” as you type and provides hints. So, if
you begin typing <h, Komodo pops up a little dialog box showing all the
tags that begin with h. If you pick <html> and then move to the next line
and type an angle bracket (<) character, you’ll get a pop-up menu with
<head> and <body> listed because these are the two tags valid in this
context. Komodo is pretty smart about knowing what tags you can use
when. This can be a helpful feature when you’re starting out.

Figure 3-5:
Komodo Edit
is a really
powerful
editor.

http://www.activestate.com/komodo-edit

Picking a Text Editor42

 ✦ Multiple file support: Your first few web pages will be single documents,
but most websites incorporate many pages. Komodo allows you to have
several pages at once and to compare any two pages at the same time.

 ✦ Page Preview: Just use ctrl-K-V to preview the current web page in a
second tab. This is a quick way to see how your page is going.

 ✦ Multiple language support: This book (and web development in gen-
eral) requires a whole bunch of different languages. Komodo Edit is just
as good at the languages you’ll be using as it is with HTML. Komodo has
native support for HTML, CSS, JavaScript, PHP, MySQL and many more.
(In fact, I also use it for working in other languages like Python, C++, and
Java, so you might end up using it beyond even web development.)

 ✦ Multi-platform: It might not be a big deal to you right now, but Komodo
works the same on all major operating systems – Windows, Mac, and
Linux. This really matters in web development because you will encoun-
ter new operating systems in your web travels. I use all three major OS
types and use Komodo on all of them.

 ✦ Remote file support: Eventually, you’ll be posting your sites on a remote
web server. (See Book VIII for details on how to set up a server.) Komodo
makes it easy to edit a web page even when it’s not on your own machine!

 ✦ Page templates: If you don’t remember exactly how to start a page, you
can choose New ➪ File from Template from the File menu to start a file
with some starter code in it. Note that the HTML5 code provided with
Komodo does not include everything the validator wants, but you can
add the features you want and save it as your own template (File ➪ Save
As ➪ Template).

 ✦ Code sample library: Komodo comes with a complete code sample
library. To see it, pick View ➪ Tabs and Sidebars➪Toolbox. The toolbox
appears and contains a number of interesting tools. Choose samples-
HTML from the tree structure and you’ll see several useful HTML snip-
pets. You can double-click on any of these to add a code snippet directly
to your page. This can be helpful when you don’t remember exactly how
to type something.

 ✦ Powerful macro system: As you spend more time with your editor, you’ll
probably want to add some custom features. The Macro and command
feature is especially powerful. This system allows you to record a series of
keystrokes and play them back. This is handy when you find yourself doing
something repetitive (for example, if you have a list of filenames and you
want to turn them into links). I love a good macro system. If you create a
particularly good macro, you can save it for later reuse and even attach a
keystroke to it so it becomes a permanent part of your Komodo system.

 ✦ Tools and commands: Explore the Tools panel to see some very useful
tools that are installed by default. These tools are often used to send
commands to the underlying operating system. You can use the tool
system to view the contents of a particular directory, preview the cur-
rent document in a specific browser, or pretty much anything you can
do from the command line.

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 43

As you begin coding, the basic features of
Komodo Edit are more than enough for your
needs. However, you’ll soon become more
adept at coding, you may want some tools to
improve your efficiency. My favorite add-on for
Komodo is a tool called Emmet (formerly known
as Zen Coding). It’s a neat tool for writing HTML
and CSS super-quickly.

Essentially, this tool allows you to enter a code
snippet and Emmet expands it to complete
code. For example, take a look at the following
code:

html:5>h1{my page}+ul>li*5>{item $}

With Emmet installed, you can simply invoke
Emmet’s expand abbreviation com-
mand, and the following HTML snippet is
created:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
</head>
<body>

 <h1>my page</h1>

 item 1
 item 2
 item 3
 item 4
 item 5

</body>
</html>

Of course, you might not understand the Emmet
code or the HTML it generates yet, so don’t
worry about installing Emmet until you’re a
little more fluent with HTML and CSS. However,
when you’re ready, you’ll find that Emmet is one
of the most powerful tools in your library. You
can install Emmet (and many other interesting
add-ons) by searching for it in the Tools ➪ Add-
ons menu.

I actually use Emmet more often than the code
snippets built into Komodo because I find it
faster and more flexible. With this tool and
a little practice, I can build a web page far
more quickly and accurately in a text editor
than I ever would with a graphical tool like
Dreamweaver.

Super-charging Komodo with Emmet

 ✦ Extensions and add-ons: Komodo uses the same general architecture as
the Firefox web browser. The developers of Komodo made it very easy to
extend, so there are hundreds of really great add-ons you can install quite
easily. After you have a feel for the stock version of Komodo, you may want
to investigate some add-ons to make it even better. See the nearby sidebar
“Super-charging Komodo with Emmet” to find out about my favorite add-on.

Other text editors
Many other text editors are used in web development. The most impor-
tant thing is to find one that matches the way you work. If you don’t like
any of the editors I’ve suggested so far, here are a few more you might
want to try:

Finding a Good Web Developer’s Browser44

 ✦ SynEdit: Much like Notepad++ and very popular with web developers

 ✦ Scintilla: Primarily a programming editor, but has nice support for
HTML coding

 ✦ jEdit: A popular text editor written in Java with nice features, but some
developers consider it slower than the other choices

The bottom line on editors
There is a dizzying array of editors for you to choose from. Which is the best
for you is something of a personal decision. As your coding style develops,
you’ll know more about which is the best editor for you. If you’re not sure, I
recommend starting with gedit (if you want simple and fast) or Komodo Edit
(if you’re ready for a bit more power). Then as you spend more time with an
editor, try some of the others out to see what best fits your needs.

Finding a Good Web Developer’s Browser
Web pages are meant to display in a browser; so, of course, you need brows-
ers for testing. Not all browsers are the same, though, so you need more
than one. There are a number of important browsers in use right now, and
you need to understand how they are related because they are how the user
will see your work.

A little ancient history
You’ve probably already noticed that browsers are inconsistent in the way
they display and handle web pages. It’s useful to understand how we got into
this mess.

Mosaic/Netscape: The killer application
In the beginning, browsers were written by small teams. The most important
early browser was Mosaic, written by a team based at the National Center
for Supercomputing Applications (NCSA) in Champaign–Urbana, Illinois.

Several members of that NCSA team decided to create a completely com-
mercial web browser. Netscape was born and it quickly became the most
prominent and important browser, with 97 percent market share at the peak
of its popularity.

Microsoft enters (and wins) the battle
Microsoft came onto the scene with Internet Explorer (IE). A bitter fight
(sometimes called the First Browser Wars) ensued between Microsoft and
Netscape. Each browser added new features regularly. Eventually, entire
sets of tags evolved, so a web page written for IE would not always work in
Netscape and vice versa. Developers had three bad choices: pick only one

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 45

browser to support, write two versions of the page, or stick with the more
limited set of features common to both browsers.

Netscape 6.0 was a technical disappointment, and Microsoft capitalized,
earning a nearly complete lock on the browser market. Microsoft’s version of
standards became the only standards because there was virtually no compe-
tition. After Microsoft won the fight, there was a period of stability but very
little innovation.

Firefox shakes up the world
A new browser rose from the ashes of Netscape (in fact, its original name
was Firebird, after the mythical birds that rise from their own ashes). The
name was later changed to Firefox, and it breathed new life into the web.
Firefox has several new features that are very appealing to web developers:

 ✦ Solid compliance to standards: Firefox followed the W3C standards
almost perfectly.

 ✦ Tabbed browsing: One browser window can have several panels, each
with its own page.

 ✦ Easy customization: Firefox developers encouraged people to add
improvements and extensions to Firefox. This led to hundreds of inter-
esting add-ons.

 ✦ Improved security: By this time, a number of security loopholes in IE
were publicized. Although Firefox has many of the same problems, it has
a much better reputation for openness and quick solutions.

WebKit messes things up again
The next shakeup happened with a rendering engine called WebKit. This
tool is the underlying engine shared by Apple’s Safari and Google’s Chrome
browser. These browsers changed things again by being even more aggres-
sive about standards-compliance and by emphasizing the programming
capabilities built into a browser. Chrome and Safari are each extensions of
the same essential technology. It gets messier. Recently Google announced
that they are developing a new rendering engine called ‘blink’ based on
WebKit. It’s still not clear what this will mean, but for the time being, WebKit
is a solid place to start.

HTML5 ushers in the second browser war
It is now becoming clear that the web is far more than a document mecha-
nism. It is really becoming more like an operating system in its own right,
and increasingly the web is about applications more than documents.
HTML5 is at the center of this innovation, and today there are again many
browser choices. It’s a better situation, as developers are insisting on
compliance with HTML5 standards, and any browser that follows these

Finding a Good Web Developer’s Browser46

 standards will be acceptable. The real question today isn’t which browser
the user prefers, but does the user have a browser that’s reasonably com-
plaint with today’s standards?

Overview of the prominent browsers
The browser is the primary tool of the web. All your users view your page
with one browser or another, so you need to know a little about each of
them.

Microsoft Internet Explorer 10
Microsoft Internet Explorer (IE) remains a dominant player on the Internet.
Explorer is still extremely prevalent because it comes installed with Microsoft
Windows. Of course, it also works exclusively with Microsoft Windows. Mac
and Linux aren’t supported (users don’t seem too upset about it, though).

Version 10 of IE finally has respectable (if not complete support) for the
major parts of the HTML5 standard. If you write pages according to the ver-
sion of HTML5 described in this book (using a reasonably universal subset
of the HTML5 standard), you can expect your page to work well in IE10. Most
features will also work in IE9, but not all.

Older versions of Internet Explorer
The earlier versions of IE are still extremely important because so many
computers out there don’t have 10 installed yet. Version 6 was the dominant
player in the Internet for some time, and it refuses to die. However, it will not
play well with modern standards, so it’s considered obsolete by most devel-
opers. (There are some software packages built on the proprietary features
of IE6, so it refuses to die away completely, but there is no need for consum-
ers to use this version.)

Mozilla Firefox
Firefox is a major improvement on IE from a programmer’s point of view, for
the following reasons:

 ✦ Better code view: If you view the HTML code of a page, you see the code
in a special window. The code has syntax coloring, which makes it easy
to read. Some versions of IE display code in Notepad, which is confusing
because you think you can edit the code, but you’re simply editing a copy.

 ✦ Better error-handling: You’ll make mistakes. Generally, Firefox does a
better job of pointing out errors than IE, especially when you begin using
JavaScript and other advanced technologies.

 ✦ Great extensions: Firefox has some wonderful extensions that make web
development a lot easier. These extensions allow you to modify your
code on the fly, automatically validate your code, and explore the struc-
ture of your page dynamically.

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 47

 ✦ Multi-platform support: IE works only on the Windows operating
system, so it isn’t available to Mac or Linux users. Even if you’re a
Windows-only developer, your users may use something else, so you
need to know how the other browsers see things.

WebKit/Safari
The default browser for Mac and the iPhone/iPad Operating System (iOS)
is called Safari. It’s a very powerful browser built on the WebKit rendering
engine. Safari was designed with standards-compliance and speed in mind,
and it shows. Your Mac and iOS users will almost certainly be using Safari, so
you should know something about it. Fortunately, Chrome uses WebKit (or
a variant) as well, so if things look good on Chrome, you’re likely to be fine
with your Apple users.

Google Chrome
Google sees the future of computing in browser-based applications using
AJAX technologies. (AJAX is described in Book VII.) The Chrome browser
is extremely fast, especially in the JavaScript technology that serves as the
foundation to this strategy. Chrome complies quite well with common stan-
dards. In addition, Chrome has a number of developer toolkits that makes it
the hands-down favorite browser for many web developers (including me).
Many of the features of the developer tools make sense only when you have
a bit more experience, but here are the highlights:

 ✦ Real-time page editing: You can go to any web page, right click ‘inspect
this element’ and modify the text of that element in real time. You can
then see what the element looks like with new content. You can select
a part of the page to see which page corresponds to the code, and you
can select the code and see which part of the page that code represents.
Figure 3-6 illustrates this feature in action.

Figure 3-6:
The ability to
inspect an
element is
a powerful
feature of
Chrome.

Finding a Good Web Developer’s Browser48

 ✦ Page Outline: A well-designed web page is created in outline form, with
various elements nested inside each other. The elements view allows
you to see the web page in this format, with the ability to collapse and
expand elements to see your page’s structure clearly.

 ✦ Realtime CSS Edit: As you discover how to apply CSS styles in Books II
and III, you’ll want to be able to see how various CSS rules change your
page. In the Inspect Element view, you can highlight a part of your page
and change the CSS while seeing how the change affects your page in
real time.

 ✦ Network Tab: This feature allows you to examine how long each piece
of your page takes to load. It can be helpful for troubleshooting a slow-
loading page.

 ✦ Sources View: This allows you to see the complete code of your page.
It’s especially useful when you get to JavaScript programming (in Book
IV) because it includes a powerful debugging suite.

 ✦ Console: The console view is a little command-line tool integrated
directly into your browser. This can be very helpful because it often
shows errors that are otherwise hidden from view. The console is most
useful when using JavaScript, so it is described in more detail in Book IV.

Other notable browsers
Firefox and IE are the big players in the browser world, but they certainly
aren’t the only browsers you will encounter.

Opera
The Opera web browser, one of the earliest standards-compliant brows-
ers, is a technically solid browser that has never been widely used. If you
design your pages with strict compliance in mind, users with Opera have no
problems accessing them. Opera has very good HTML5 compliance. Many
gaming consoles and mobile devices have browsers based on Opera, so it’s
worth looking into.

WebKit/Safari
Apple includes a web browser in all recent versions of Mac OS. The cur-
rent incarnation — Safari — is an excellent standards-compliant browser.
Safari was originally designed only for the Mac, but a Windows version is
also available. The WebKit framework, the foundation for Safari, is used in a
number of other online applications, mainly on the Mac. A modified version
of Safari is the foundation of the browsers on the iPhone and iPad.

Text-only browsers
Some browsers that don’t display any graphics at all (such as Lynx) are
intended for the old command-line interfaces. This may seem completely
irrelevant today, but these browsers are incredibly fast because they don’t

Book I
Chapter 3

Choosing Your Tools

Finding a Good Web Developer’s Browser 49

display graphics. Auditory browsers read the contents of web pages. They
were originally intended for people with visual disabilities, but people with-
out any disabilities often use them as well. Fire Vox is a variant of Firefox
that reads web pages aloud.

 Worrying about text-only readers may seem unnecessary because people
with visual disabilities are a relatively small part of the population, and you
may not think they’re part of your target audience. You probably should
think about these users anyway because it isn’t difficult to help them (and if
you’re developing for certain organizations, support for folks with disabili-
ties is required). There’s another reason, too. The search engines (Google is
the main game in town) read your page just like a text-only browser.
Therefore, if an element is invisible to a text-based browser, it won’t appear
on the search engine.

The bottom line in browsers
Really, you need to have access to a couple browsers, but you can’t possi-
bly have them all. I tend to do my initial development testing with Chrome.
I look over my page in IE version 10 and I try to keep an older computer
around with IE7 or 8 just to see what will happen.

I also check the built-in browser on an Android phone and iOS tablet to
see how the pages look there. Generally, if you follow the subset of HTML5
outlined in this book, you can be satisfied that it works on most browsers.
However, there’s still no guarantee. If you follow the standards, your page
displays on any browser, but you might not get the exact layout you expect.

50 Book I: Creating the HTML Foundation

Chapter 4: Managing Information
with Lists and Tables

In This Chapter
✓ Understanding basic lists

✓ Creating unordered, ordered, and nested lists

✓ Building definition lists

✓ Building basic tables

✓ Using rowspan and colspan attributes

Y
ou’ll often need to present large amounts of organized information, and
HTML has some wonderful tools to manage this task. HTML has three

kinds of lists and a powerful table structure for organizing the content of
your page. Figure out how these tools work, and you can manage complex
information with ease.

Making a List and Checking It Twice
HTML supports three types of lists. Unordered lists generally contain bullet
points. They’re used when the order of elements in the list isn’t important.
Ordered lists usually have some kind of numeric counter preceding each list
item. Definition lists contain terms and their definitions.

Creating an unordered list
All the list types in HTML are closely related. The simplest and most
common kind of list is an unordered list.

Looking at an unordered list
Look at the simple page shown in Figure 4-1. In addition to a couple of
headers, it has a list of information.

This list of browsers has some interesting visual characteristics:

 ✦ The items are indented. There’s some extra space between the left
margin and the beginning of each list item.

 ✦ The list elements have bullets. That little dot in front of each item is a
bullet. Bullets are commonly used in unordered lists like this one.

Making a List and Checking It Twice52

Figure 4-1:
An
unordered
list of web
browsers.

✦ Each item begins a new line. When a list item is displayed, it’s shown
on a new line.

These characteristics help you see that you have a list, but they’re just
default behaviors. Defining something as a list doesn’t force it to look a par-
ticular way; the defaults just help you see that these items are indeed part of
a list.

 Remember the core idea of HTML here. You aren’t really describing how
things look, but what they mean. You can change the appearance later when
you figure out CSS, so don’t get too tied up in the particular appearance of
things. For now, just recognize that HTML can build lists, and make sure you
know how to use the various types.

Building an unordered list
Lists are made with two kinds of tags. One tag surrounds the entire list and
indicates the general type of list. This first example demonstrates an unor-
dered list, which is surrounded by the pair.

Note: Indenting all the code inside the set is common. The unordered
list can go in the main body.

Inside the set is a number of list items. Each element of the list
is stored between a (list item) and a tag. Normally, each
 pair goes on its own line of the source code, although you can
make a list item as long as you want.

 Look to Book II, Chapter 4 for information on how to change the bullet to all
kinds of other images, including circles, squares, and even custom images.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 53

The code for the unordered list is pretty straightforward:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
<title>basicUL.html</title>
</head>
<body>
 <h1>Basic Lists</h1>
 <h2>Common Web Browsers</h2>

 Firefox
 Chrome
 Internet Explorer
 Opera
 Safari

</body>
</html>

Creating ordered lists
Ordered lists are almost exactly like unordered lists. Ordered lists tradition-
ally have numbers rather than bullets (although you can change this through
CSS if you want; see Book II, Chapter 4).

Viewing an ordered list
Figure 4-2 demonstrates a page with a basic ordered list — basicOL.html.

Figure 4-2 shows a list where the items are numbered. When your data is a
list of steps or information with some type of numerical values, an ordered
list is a good choice.

Figure 4-2:
A simple
ordered list.

Making a List and Checking It Twice54

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unordered
list:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicOL.html</title>
</head>
<body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey
 Shadow
 Sam
 Lady

 <p>
 data from http://www.bowwow.com.au
 </p>
</body>
</html>

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.

You don’t indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

 This is where it’s great that HTML is about meaning, not layout. If you speci-
fied the actual numbers, it’d be a mess to move things around. All that really
matters is that the element is inside an ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure 4-3
shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it. You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

Figure 4-3:
An ordered
list inside an
unordered
list!

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 55

In this example, there’s an unordered list with only two elements. Each of
these elements contains an <h3> heading and an ordered list. The page han-
dles all this data in a relatively clean way and validates correctly.

Examining the nested list example
The entire code for nestedList.html is reproduced here:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>nestedList.html</title>
</head>
<body>
 <h1>Nested Lists</h1>

 <h2>Popular Cat Names</h2>

 <h3>USA</h3>

 Tigger
 Tiger
 Max
 Smokey
 Sam

 <h3>Australia</h3>

 Oscar
 Max
 Tiger

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unordered
list:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicOL.html</title>
</head>
<body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey
 Shadow
 Sam
 Lady

 <p>
 data from http://www.bowwow.com.au
 </p>
</body>
</html>

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.

You don’t indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

 This is where it’s great that HTML is about meaning, not layout. If you speci-
fied the actual numbers, it’d be a mess to move things around. All that really
matters is that the element is inside an ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure 4-3
shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it. You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

Figure 4-3:
An ordered
list inside an
unordered
list!

Making a List and Checking It Twice56

 Sam
 Misty

</body>
</html>

Here are a few things you might notice in this code listing:

 ✦ There’s a large set surrounding the entire main list.

 ✦ The main list has only two list items.

 ✦ Each of these items represents a country.

 ✦ Each country has an <h3> element, describing the country name inside
the .

 ✦ Each country also has an set with a list of names.

 ✦ The indentation really helps you see how things are connected.

Indenting your code
You might have noticed that I indent all the HTML code in this book. The
browsers ignore all indentation, but it’s still an important coding habit.

There are many opinions about how code should be formatted, but the standard
format I use in this book will serve you well until you develop your own style.

Generally, I use the following rules to indent HTML code:

 ✦ Indent each nested element. Because the <head> tag is inside the
<html> element, I indent to indicate this. Likewise, the elements
are always indented inside or pairs.

 ✦ Line up your elements. If an element takes up more than one line, line
up the ending tag with the beginning tag. This way, you know what ends
what.

 ✦ Use spaces, not tabs. The tab character often causes problems in source
code. Different editors format tabs differently, and a mixture of tabs and
spaces can make your carefully formatted page look awful when you
view it in another editor.

 Most editors have the ability to interpret the tab key as spaces. It’s a
great idea to find this feature on your editor and turn it on, so any time
you hit the tab key, it’s interpreted as spaces. In Komodo Edit, you do
this in Edit ➪ Preferences ➪ Editor ➪ Indentation.

 ✦ Use two spaces. Most coders use two or four spaces per indentation
level. HTML elements can be nested pretty deeply. Going seven or eight
layers deep is common. If you use tabs or too many spaces, you’ll have
so much white space that you can’t see the code.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 57

 ✦ End at the left margin. If you finish the page and you’re not back at
the left margin, you’ve forgotten to end something. Proper indentation
makes seeing your page organization easy. Each element should line up
with its closing tag.

Building a nested list
When you look over the code for the nested list, it can look intimidating, but
it isn’t really that hard. The secret is to build the list outside in:

 1. Create the outer list first. Build the primary list (whether it’s ordered or
unordered). In my example, I began with just the unordered list with the
two countries in it.

 2. Add list items to the outer list. If you want text or headlines in the
larger list (as I did), you can put them here. If you’re putting nothing but
a list inside your primary list, you may want to put some placeholder
 tags in there just so you can be sure everything’s working.

 3. Validate before adding the next list level. Nested lists can confuse the
validator (and you). Validate your code with the outer list to make sure
there are no problems before you add inner lists.

 4. Add the first inner list. After you know the basic structure is okay, add
the first interior list. For my example, this was the ordered list of cat
names in the U.S.

 5. Repeat until finished. Keep adding lists until your page looks right.

 6. Validate frequently. It’s much better to validate as you go than to wait until
everything’s finished. Catch your mistakes early so you don’t replicate them.

Building the definition list
One more type of list — the definition list — is very useful, even if it’s used
infrequently. The definition list was originally designed to format dictionary-
style definitions, but it’s really useful any time you have name and value
pairs. Figure 4-4 shows a sample definition list in action.

Definition lists don’t use bullets or numbers. Instead, they have two ele-
ments. Definition terms are usually words or short phrases. In Figure 4-4, the
browser names are defined as definition terms. Definition descriptions are the
extended text blocks that contain the actual definition.

The standard layout of definition lists indents each definition description. Of
course, you can change the layout to what you want after you understand
the CSS in Books II and III.

You can use definition lists any time you want a list marked by key terms,
rather than bullets or numbers. The definition list can also be useful in
other situations, such as forms, figures with captions, and so on.

Making a List and Checking It Twice58

Here’s the code for basicDL.html:

<!DOCTYPE HTML>
<html lang="en-US">
 <head>
 <meta charset="UTF-8">
 <title>BasicDL.html</title>
 </head>
 <body>
 <h1>Basic Definition List</h1>
 <h2>Common Web Browsers</h2>
 <dl>
 <dt>Mosaic</dt>
 <dd>
 The mother of all modern browsers. The first widely used
 visual browser.
 </dd>

 <dt>Netscape</dt>
 <dd>
 The commercial successor to Mosaic. Widely popular, but
 eventually eclipsed by Internet Explorer
 </dd>

 <dt>IE</dt>
 <dd>
 Microsoft's entry into the browser market, and a dominant
 player.
 </dd>

 <dt>Firefox</dt>
 <dd>
 An open-source browser that has shaken up the world.
 </dd>
 </dl>
 </body>
</html>

Figure 4-4:
A basic
definition
list.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 59

As you can see, the definition list uses three tag pairs:

 ✦ <dl></dl> defines the entire list.

 ✦ <dt></dt> defines each definition term.

 ✦ <dd></dd> defines the definition data.

Definition lists aren’t used often, but they can be extremely useful. Any time
you have a list that will be a combination of terms and values, a definition
list is a good choice.

Building Tables
Sometimes, you’ll encounter data that fits best in a tabular format. HTML
supports several table tags for this kind of work. Figure 4-5 illustrates a very
basic table.

Sometimes, the best way to show data in a meaningful way is to organize
it in a table. HTML defines a table with the (cleverly named) <table> tag.
The table contains a number of table rows (defined with the <tr> tag).
Each table row can consist of a number of table data (<td>) or table header
(<th>) tags.

Compare the output in Figure 4-5 with the code for basicTable.html that cre-
ates it:

<!doctype html>
<html lang="en">

Figure 4-5:
Tables are
useful for
certain
kinds of
data repre
sentation.

Building Tables60

<head>
 <meta charset="UTF-8">
 <title>basicTable.html</title>
</head>
<body>
 <h1>A Basic Table</h1>
 <h2>HTML Super Heroes</h2>
 <table border = "1">
 <tr>
 <th>Hero</th>
 <th>Power</th>
 <th>Nemesis</th>
 </tr>

 <tr>
 <td>The HTMLator</td>
 <td>Standards compliance</td>
 <td>Sloppy Code Boy</td>
 </tr>

 <tr>
 <td>Captain CSS</td>
 <td>Super-layout</td>
 <td>Lord Deprecated</td>
 </tr>

 <tr>
 <td>Browser Woman</td>
 <td>Mega-Compatibility</td>
 <td>Ugly Code Monster</td>
 </tr>

 </table>
</body>
</html>

Defining the table
The HTML table is defined with the <table></table> pair. It makes a lot of
sense to indent and space your code carefully so you can see the structure
of the table in the code. Just by glancing at the code, you can guess that the
table consists of three rows and each row consists of three elements.

In a word processor, you typically create a blank table by defining the
number of rows and columns, and then fill it in. In HTML, you define the table
row by row, and the elements in each row determine the number of columns.
It’s up to you to make sure each row has the same number of elements.

By default (in most browsers, anyway), tables don’t show their borders. If
you want to see basic table borders, you can turn on the table’s border
attribute. (An attribute is a special modifier you can attach to some tags.)

 <table border = "1">

This tag creates a table and specifies that it will have a border of size 1. If
you leave out the border = “1” business, some browsers display a border

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 61

and some don’t. You can set the border value to 0 or to a larger number. The
larger number makes a bigger border, as shown in Figure 4-6.

 Although this method of making table borders is perfectly fine, I show a
much more flexible and powerful technique in Book II, Chapter 4.

 Setting a table border is a good idea because you can’t count on browsers to
have the same default. Additionally, the border value is always in quotes.
When you read about CSS in Book II (are you getting tired of hearing that
yet?), you discover how to add more complex and interesting borders than
this simple attribute allows.

Adding your first row
After you define a table, you need to add some rows. Each row is indicated
by a <tr></tr> pair.

Inside the <tr></tr> set, you need some table data. The first row often
consists of table headers. These special cells are formatted differently to indi-
cate that they’re labels, rather than data.

 Table headers have some default formatting to help you remember they’re
headers, but you can change the way they look. You can change the table
header’s appearance in all kinds of great ways in Books II and III. Define the
table header so when you discover formatting and decide to make all your
table headers chartreuse, you’ll know where in the HTML code all the table
headers are.

Indent your headers inside the <tr> set. If your table contains three col-
umns, your first row might begin like this:

Figure 4-6:
I set the
border
attribute
to 10.

Building Tables62

<tr>
 <th></th>
 <th></th>
 <th></th>
</tr>

Place the text you want shown in the table headers between the <th> and
</th> elements. The contents appear in the order they’re defined.

 Headings don’t have to be on the top row. If you want headings on the left, just
put a <th></th> pair as the first element of each row. You can have headings
at both the top and the left, if you want. In fact, you can have headings
anywhere, but it usually makes sense to put headings only at the top or left.

Making your data rows
The next step is to create another row. The data rows are just like the head-
ing row, except they use <td></td> pairs, rather than <th></th> pairs, to
contain the data elements. Typically, a three-column table has blank rows
that look like this:

<tr>
 <td></td>
 <td></td>
 <td></td>
</tr>

Place the data elements inside the <td></td> segments and you’re ready to go.

Building tables in the text editor
Some people think that tables are a good reason to use WYSIWYG (what you
see is what you get) editors because they think it’s hard to create tables in
text mode. You have to plan a little, but it’s really quite quick and easy to
build an HTML table without graphical tools if you follow this plan:

 1. Plan ahead. Know how many rows and columns will be in the table.
Sketching it on paper first might be helpful. Changing the number of
rows later is easy, but changing the number of columns can be a real
pain after some of the code has been written.

 2. Create the headings. If you’re going to start with a standard headings-
on-top table, begin by creating the heading row. Save, check, and
validate. You don’t want mistakes to multiply when you add more com-
plexity. This heading row tells how many columns you’ll need.

 3. Build a sample empty row. Make a sample row with the correct number
of td elements with one <td></td> pair per line. Build one td set and
use copy and paste to copy this data cell as many times as you need.
Make sure the number of <td> pairs equals the number of <th> sets in
the heading row.

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 63

 4. Copy and paste the empty row to make as many rows as you need.

 5. Save, view, and validate. Be sure everything looks right and validates
properly before you put a lot of effort into adding data.

 6. Populate the table with the data you need. Go row by row, adding the
data between the <td></td> pairs.

 7. Test and validate again to make sure you didn’t accidentally break
something.

Spanning rows and columns
Sometimes, you need a little more flexibility in your table design. Figure 4-7
shows a page from an evil overlord’s daily planner.

Being an evil overlord is clearly a complex business. From a code stand-
point, the items that take up more than one cell are the most interesting.
Designing traps takes two mornings, and improving the hideout takes three.
All Friday afternoon and evening are spent on world domination. Take a look
at the code, and you’ll see how it works:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>tableSpan.html</title>
</head>
<body>
 <h1>Using colspan and rowspan</h1>
 <table border = "1">
 <caption><p>My Schedule</p></caption>
 <tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
 </tr>

 <tr>
 <th>Breakfast</th>
 <td>In lair</td>
 <td>with cronies</td>
 <td>In lair</td>
 <td>in lair</td>
 <td>in lair</td>
 </tr>

 <tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>

Building Tables64

 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 </tr>

 </table>
</body>
</html>

The secret to making cells larger than the default is two special attributes:
rowspan and colspan.

Figure 4-7:
Some
of these
activities
take up
more than
one cell.

Spanning multiple columns
The morning activities tend to happen over several days. Designing traps
will take both Monday and Tuesday morning, and improving the hide-
out will occupy the remaining three mornings. Take another look at the
Morning row; here’s how this is done:

 <tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 65

The Design Traps cell spans over two normal columns. The colspan attri-
bute tells how many columns this cell will take. The Improve Hideout cell
has a colspan of 3.

The Morning row still takes up six columns. The <th> is one column wide, like
normal, but the Design Traps cell spans two columns and the Improve Hideout
cell takes three, which totals six columns wide. If you increase the width of a
cell, you need to eliminate some other cells in the row to compensate.

Spanning multiple rows
A related property — rowspan — allows a cell to take up more than one
row of a table. Look back at the Friday column in Figure 4-7, and you’ll see
the World Domination cell takes up two time slots. (If world domination was
easy, everybody would do it.) Here’s the relevant code:

 <tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

 <tr>
 <th>Evening</th>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 </tr>

The Evening row has only five entries because the World Domination cell
extends into the space that would normally be occupied by a <td> pair.

 If you want to use rowspan and colspan, don’t just hammer away at the
page in your editor. Sketch out what you want to accomplish first. I’m pretty
good at this stuff, and I still needed a sketch before I was able to create the
tableSpan.html code.

Avoiding the table-based layout trap
Tables are pretty great. They’re a terrific way to present certain kinds of
data. When you add the colspan and rowspan concepts, you can use
tables to create some pretty interesting layouts. In fact, because old-school
HTML didn’t really have any sort of layout technology, a lot of developers
came up with some pretty amazing layouts based on tables. You still see a
lot of web pages today designed with tables as the primary layout
mechanism.

Using tables for layout causes some problems though, such as

Building Tables66

 ✦ Tables aren’t meant for layout. Tables are designed for data presenta-
tion, not layout. To make tables work for layout, you have to do a lot
of sneaky hacks, such as tables nested inside other tables or invisible
images for spacing.

 ✦ The code becomes complicated fast. Tables involve a lot of HTML
markup. If the code involves tables nested inside each other, it’s very dif-
ficult to remember which <td> element is related to which row of which
table. Table-based layouts are very difficult to modify by hand.

 ✦ Formatting is done cell by cell. A web page could be composed of hun-
dreds of table cells. Making a change in the font or color often involves
making changes in hundreds of cells throughout the page. This makes
your page less flexible and harder to update.

 ✦ Presentation is tied tightly to data. A table-based layout tightly inter-
twines the data and its presentation. This runs counter to a primary goal
of web design — separation of data from its presentation.

 ✦ Table-based layouts are hard to change. After you create a layout
based on tables, it’s very difficult to make modifications because all the
table cells have a potential effect on other cells.

 ✦ Table-based layouts cause problems for screen-readers. People with
visual disabilities use special software to read web pages. These screen-
readers are well adapted to read tables as they were intended (to
manage tabular data), but the screen-readers have no way of knowing
when the table is being used as a layout technique rather than a data
presentation tool. This makes table-based layouts less compliant to
accessibility standards.

 ✦ Table-based layouts do not adapt well. Modern users expect to run
pages on cell phones and tablets as well as desktop machines. Table-
based designs do not easily scale to these smaller form-factors.

Resist the temptation to use tables for layout. Use tables to do what they’re
designed for: data presentation. Book III is entirely about how to use
CSS to generate any kind of visual layout you might want. The CSS-based
approaches are easier, more dependable, and much more flexible.

Chapter 5: Making Connections
with Links

In This Chapter
✓ Understanding hyperlinks

✓ Building the anchor tag

✓ Recognizing absolute and relative links

✓ Building internal links

✓ Creating lists of links

T
he basic concept of the hyperlink is common today, but it was a major
breakthrough back in the day. The idea is still pretty phenomenal, if you

think about it: When you click a certain piece of text (or a designated image,
for that matter), your browser is instantly transported somewhere else. The
new destination might be on the same computer as the initial page, or it
could be literally anywhere in the world.

Any page is theoretically a threshold to any other page, and all information
has the ability to be linked. This is still a profound idea. In this chapter, you
discover how to add links to your pages.

Making Your Text Hyper
The hyperlink is truly a wonderful thing. Believe it or not, there was a time
when you had to manually type in the address of the web page you wanted
to go to. Not so anymore. Figure 5-1 illustrates a page that describes some of
my favorite websites.

In Figure 5-1, the underlined words are hyperlinks. Clicking a hyperlink takes
you to the indicated website. Although this is undoubtedly familiar to you
as a web user, a few details are necessary to make this mechanism work:

 ✦ Something must be linkable. Some text or other element must provide
a trigger for the linking behavior.

 ✦ Things that are links should look like links. This is actually easy to do
when you write plain HTML because all links have a standard (if ugly)
appearance. Links are usually underlined blue text. When you can create
color schemes, you may no longer want links to look like the default
appearance, but they should still be recognizable as links.

Making Your Text Hyper68

Figure 5-1:
You can
click the
links to visit
the other
sites.

 ✦ The browser needs to know where to go. When the user clicks the
link, the browser is sent to some address somewhere on the Internet.
Sometimes that address is visible on the page, but it doesn’t need to be.

 ✦ It should be possible to integrate links into text. In this example, each
link is part of a sentence. It should be possible to make some things act
like links without necessarily standing on their own (like heading tags do).

 ✦ The link’s appearance sometimes changes. Links sometimes begin as
blue underlined text, but after a link has been visited, the link is shown
in purple, instead. After you know CSS, you can change this behavior.

 Of course, if your web page mentions some other website, you should pro-
vide a link to that other website.

Introducing the anchor tag
The key to hypertext is an oddly named tag called the anchor tag. This tag is
encased in an <a> set of tags and contains all the information needed
to manage links between pages.

The code for the basicLinks.html page is shown here:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>basicLinks.html</title>

Making Your Text Hyper 69

Book I
Chapter 5

M
aking

Connections
w

ith Links

 </head>

 <body>
 <h1>Some of my favorite sites</h1>
 <h2>Wikipedia</h2>
 <p>
 One of my favorite websites is called
 wikipedia.
 This terrific site allows ordinary users to enter
 encyclopedia definitions. Over time, the entries
 can be as reliable as a commercial encyclopedia,
 and a lot more complete.
 </p>

 <h2>Dummies</h2>
 <p>
 You can find out a lot about upcoming and current
 Dummies books at
 www.dummies.com. You might even find this
 book mentioned there.
 </p>

 <h2>PopURLS</h2>
 <p>
 If you want
 to know what's happening on the Internet today,
 check out
 popurls.com. This site aggregates a bunch of
 social networking sites.
 </p>
 </body>
</html>

As you can see, the anchor tag is embedded into paragraphs. The text gener-
ally flows around an anchor, and you can see the anchor code is embedded
inside the paragraphs.

Comparing block-level and inline elements
All the tags described so far in this book have been block-level tags. Block-
level tags typically begin and end with carriage returns. For example, three
<h1> tags occupy three lines. Each <p></p> set has implied space above
and below it. Most HTML tags are block-level.

Some tags are meant to be embedded inside block-level tags and don’t interrupt
the flow of the text. The anchor tag is one such tag. Anchors never stand on
their own in the HTML body. This type of tag is an inline tag. They’re meant to be
embedded inside block-level tags, such as list items, paragraphs, and headings.

Analyzing an anchor
The first link shows all the main parts of an anchor in a pretty straightfor-
ward way:

Making Your Text Hyper70

 wikipedia.

 ✦ The anchor tag itself: The anchor tag is simply the <a> pair. You
don’t type the entire word anchor, just the a.

 ✦ The hypertext reference (href) attribute: Almost all anchors contain
this attribute. It’s very rare to write <a without href. The href attribute
indicates a web address will follow.

 ✦ A web address in quotes: The address that the browser will follow is
encased in quotes. See the next section in this chapter for more informa-
tion on web addresses. In this example, http://www.wikipedia.org
is the address.

 ✦ The text that appears as a link: The user will typically expect to click
specially formatted text. Any text that appears between the <a href>
part and the part is visible on the page and formatted as a link. In
this example, the word wikipedia is the linked text.

 ✦ The marker: This marker indicates that the text link is finished.

Introducing URLs
The special link addresses are a very important part of the web. You prob-
ably already type web addresses into the address bar of your browser
(http://www.google.com), but you may not be completely aware of
how they work. Web addresses are technically URLs (Uniform Resource
Locators), and they have a very specific format.

 Sometimes, you’ll see the term URI (Uniform Resource Identifier) instead of
URL. URI is technically a more correct name for web addresses, but the term
URL has caught on. The two terms are close enough to be interchangeable.

A URL usually contains the following parts:

 ✦ Protocol: A web protocol is a standardized agreement on how communi-
cation occurs. The web primarily uses HTTP (hypertext transfer proto-
col), but occasionally, you encounter others. Most addresses begin with
http:// because this is the standard on the web. Protocols usually end
with a colon and two slashes (://).

 ✦ Host name: It’s traditional to name your primary web server www.
There’s no requirement for this, but it’s common enough that users
expect to type www right after the http:// stuff. Regardless, the text
right after http:// (and up to the first period) is the name of the actual
computer you’re linking to.

 ✦ Domain name: The last two or three characters indicate a particular
type of web server. These letters can indicate useful information about
the type of organization that houses the page. Three-letter domains usu-
ally indicate the type of organization, and two-letter domains indicate a
country. Sometimes, you’ll even see a combination of the two.

http://www.wikipedia.org
http://www.google.com

Making Lists of Links 71

Book I
Chapter 5

M
aking

Connections
w

ith Links

 ✦ Subdomain: Everything between the host name (usually www) and the
domain name (often .com) is the subdomain. This is used so that large
organizations can have multiple servers on the same domain. For exam-
ple, my department web page is http://www.cs.iupui.edu. www is
the name of the primary server, and this is the computer science depart-
ment at IUPUI (Indiana University–Purdue University Indianapolis),
which is an educational organization.

 ✦ Page name: Sometimes, an address specifies a particular document
on the web. This page name follows the address and usually ends with
.html. Sometimes, the page name includes subdirectories and username
information, as well. For example, my web development course is in the
N241 directory of my (aharris) space at IUPUI, so the page’s full address is
http://www.cs.iupui.edu/~aharris/n241/index.html.

 ✦ Username: Some web servers are set up with multiple users. Sometimes,
an address will indicate a specific user’s account with a tilde (~) charac-
ter. My address has ~aharris in it to indicate the page is found in my
(aharris) account on the machine.

 The page name is sometimes optional. Many servers have a special name
set up as the default page, which appears if no other name is specified.
This name is usually index.html but sometimes home.htm. On my server,
index.html is the default name, so I usually just point to www.cs.iupui.
edu/~aharris/n241, and the index page appears.

Domain Explanation

.org Non-profit institution

.com Commercial enterprise

.edu Educational institution

.gov Governing body

.ca Canada

.uk United Kingdom

.tv Tuvali

Making Lists of Links
Many web pages turn out to be lists of links. Because lists and links go so
well together, it’s good to look at an example. Figure 5-2 illustrates a list of
links to books written by a certain (cough) devilishly handsome author.

This example has no new code to figure out, but the page shows some inter-
esting components:

 ✦ The list: An ordinary unordered list.

http://www.cs.iupui.edu
http://www.cs.iupui.edu/~aharris/n241/index.html
http://www.cs.iupui.edu/~aharris/n241
http://www.cs.iupui.edu/~aharris/n241

Making Lists of Links72

 ✦ Links: Each list item contains a link. The link has a reference (which you
can’t see immediately) and linkable text (which is marked like an ordi-
nary link).

 ✦ Descriptive text: After each link is some ordinary text that describes the
link. Writing some text to accompany the actual link is very common.

Figure 5-2:
Putting links
in a list is
common.

This code shows the way the page is organized:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>listLinks.html</title>
 </head>

 <body>
 <h1>Some nice programming books</h1>

 HTML / CSS / JavaScript ALL in One for Dummies
 A complete resource to web development

 JavaScript / AJAX for Dummies
 Using JavaScript, AJAX, and jQuery

 Game Programming - the L Line
 Game development in Python

 HTML5 Game Development for Dummies
 Building web and mobile games in HTML5

 </body>
</html>

Working with Absolute and Relative References 73

Book I
Chapter 5

M
aking

Connections
w

ith Links

The indentation is interesting here. Each list item contains an anchor and
some descriptive text. To keep the code organized, web developers tend to
place the anchor inside the list item. The address sometimes goes on a new
line if it’s long, with the anchor text on a new line and the description on suc-
ceeding lines. I normally put the tag at the end of the last line, so the
beginning tags look like the bullets of an unordered list. This makes it
easier to find your place when editing a list later.

Working with Absolute and Relative References
There’s more than one kind of address. So far, you’ve seen only absolute
references, used for links to outside pages. Another kind of reference — a
relative reference — links multiple pages inside your own website.

Understanding absolute references
The type of link used in basicLinks.html is an absolute reference. Absolute
references always begin with the protocol name (usually http://). An
absolute reference is the complete address to a web page, just as you’d use
in the browser’s address bar. Absolute references are used to refer to a site
somewhere else on the Internet. Even if your website moves (say, from your
desktop machine to a web server somewhere on the Internet), all the abso-
lute references will work fine because they don’t rely on the current page’s
position for any information.

Introducing relative references
Relative references are used when your website includes more than one
page. You might choose to have several pages and a link mechanism for
moving among them. Figure 5-3 shows a page with several links on it.

Figure 5-3:
These
little piggies
sure get
around . . .

74 Working with Absolute and Relative References

The page isn’t so interesting on its own, but it isn’t meant to stand alone.
When you click one of the links, you go to a brand-new page. Figure 5-4
shows what happens when you click the market link.

Figure 5-4:
The market
page lets
you move
back.

The market page is pretty simple, but it also contains a link back to the ini-
tial page. Most websites aren’t single pages at all, but an interconnected web
of pages. The relative reference is very useful when you have a set of pages
with interlacing links.

The code for pigs.html shows how relative references work:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>pigs.html</title>
 </head>

 <body>
 <h1>Destinations of Porcine Mammals</h1>

 This little pig went to
 market
 This little pig stayed
 home.
 This little pig had
 roast beef
 This little pig had
 none.
 This little pig went
 'wee wee wee'
 all the way home.

 </body>
</html>

Working with Absolute and Relative References 75

Book I
Chapter 5

M
aking

Connections
w

ith Links

Most of the code is completely familiar. The only thing surprising is what’s
not there. Take a closer look at one of the links:

 home.

There’s no protocol (the http:// part) and no address at all, just a file-
name. This is a relative reference. Relative references work by assuming
the address of the current page. When the user clicks market.html, the
browser sees no protocol, so it assumes that market.html is in the same
directory on the same server as pigs.html.

Relative references work like directions. For example, if you’re in my lab
and ask where the water fountain is, I’d say, “Go out into the hallway,
turn left, and turn left again at the end of the next hallway.” Those direc-
tions get you to the water fountain if you start in the right place. If you’re
somewhere else and you follow the same directions, you don’t really know
where you’ll end up.

Relative references work well when you have a bunch of interconnected web
pages. If you create a lot of pages about the same topic and put them in the
same directory, you can use relative references between the pages. If you
decide to move your pages to another server, all the links still work
correctly.

 In Book VIII, you discover how to set up a permanent web server. It’s often
most convenient to create and modify your pages on the local machine and
then ship them to the web server for the world to see. If you use relative ref-
erences, it’s easy to move a group of pages together and know the links will
still work.

If you’re referring to a page on somebody else’s site, you have to use an
absolute reference. If you’re linking to another page on your site, you typi-
cally use a relative reference.

76 Book I: Creating the HTML Foundation

Chapter 6: Adding
Images, Sound, and Video

In This Chapter
✓ Understanding the main uses of images

✓ Choosing an image format

✓ Creating inline images

✓ Using IrfanView and other image software

✓ Changing image sizes

✓ Adding audio clips

✓ Working with video

Y
ou have the basics of text, but pages with nothing but text are… well,
a little boring. Pictures do a lot for a web page, and they’re pretty easy

to work with. Today’s web is really a multimedia environment, and HTML5
finally offers great support for audio and video. Find out how to add all
these great features to your web pages.

Adding Images to Your Pages
Every time you explore the web, you’re bound to run into tons of pictures
on just about every page you visit. Typically, images are used in four ways
on web pages:

 ✦ External link: The page has text with a link embedded in it. When the
user clicks the link, the image replaces the page in the web browser.
To make an externally linked image, just make an ordinary link (as I
describe in Chapter 5 of this minibook), but point toward an image file,
rather than an HTML (HyperText Markup Language) file.

 ✦ Embedded images: The image is embedded into the page. The text of
the page usually flows around the image. This is the most common type
of image used on the web.

 ✦ Background images: An image can be used as a background for the
entire page or for a specific part of the page. Images usually require
some special manipulation to make them suitable for background use.

 ✦ Custom bullets: With CSS, you can assign a small image to be a bullet
for an ordered or unordered list. This allows you to make any kind of
customized list markers you can draw.

Adding Images to Your Pages78

The techniques you read about in this chapter apply to all type of images,
but a couple of specific applications (such as backgrounds and bullets) use
CSS. For details on using images in CSS, see Book II, Chapter 4.

Linking to an image
The easiest way to incorporate images is to link to them. Figure 6-1 shows
the externalImage.html page.

The page’s code isn’t much more than a simple link:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>externalImage.html</title>
 </head>
 <body>
 <h1>Linking to an External Image</h1>
 <p>

 Susan B. Constant

 </p>
 </body>
</html>

The href points to an image file, not an HTML page. You can point to any
type of file you want in an anchor tag. If the browser knows the file type (for
example, HTML and standard image formats), the browser displays the file.
If the browser doesn’t know the file format, the user’s computer tries to dis-
play the file using whatever program it normally uses to open that type of
file.

Figure 6-1:
This page
has a link to
an image.

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Images to Your Pages 79

 See Chapter 5 of this minibook for a discussion of anchor tags if you need a
refresher.

This works fine for most images because the image is displayed directly in
the browser.

 You can use this anchor trick with any kind of file, but the results can
be very unpredictable. If you use the link trick to point to some odd file
format, there’s no guarantee the user has the appropriate software to view
it. Generally, save this trick for very common formats, like GIF and JPG. (If
these formats are unfamiliar to you, they are described later in this chapter.)

Most browsers automatically resize the image to fit the browser size. This
means a large image may appear to be smaller than it really is, but the user
still has to wait for the entire image to download.

Because this is a relative reference, the indicated image must be in the
same directory as the HTML file. When the user clicks the link, the page is
replaced by the image, as shown in Figure 6-2.

Figure 6-2:
The image
appears in
place of the
page.

External links are easy to create, but they have some problems:

 ✦ They don’t preview the image. The user has only the text description to
figure out what the picture might be.

 ✦ They interrupt the flow. If the page contains a series of images, the user
has to keep leaving the page to view images.

 ✦ The user must back up to return to the main page. The image looks
like a web page, but it isn’t. No link or other explanatory text in the

Adding Images to Your Pages80

image indicates how to get back to the web page. Most users know to
click the browser’s Back button, but don’t assume all users know what
to do.

Adding inline images using the tag
The alternative to providing links to images is to embed your images into the
page. Figure 6-3 displays an example of this technique.

Figure 6-3:
The ship
image is
embedded
into the
page.

The code shows how this image was included into the page:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>embeddedImage.html</title>
 </head>
 <body>
 <h1>The Susan B. Constant</h1>
 <p>
 <img src = "shipStandard.jpg"
 height = "480"
 width = "640"
 alt = "Susan B. Constant" />
 </p>
 <p>
 The Susan B. Constant was flagship of the
 fleet of three small ships that brought settlers to Jamestown, the first
 successful English Colony in the new world. This is a replica housed
 near Jamestown, Virginia.
 </p>
 <body>
</html>

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Adding Images to Your Pages 81

The image (img) tag is the star of this page. This tag allows you to grab an
image file and incorporate it into the page directly. The image tag is a one-
shot tag. It doesn’t end with . Instead, use the /> characters at the
end of the img definition to indicate that this tag doesn’t have content.

 You might have noticed that I italicized Susan B. Constant in the page, and I
used the tag to get this effect. stands for emphasis, and
 means strong emphasis. By default, any text within an
pair is italicized, and text is boldfaced. Of course, you
can change this behavior with CSS.

The image tag has a number of important attributes, which I discuss in the
following sections.

src (source)
The src attribute allows you to indicate the URL (Uniform Resource
Locator) of the image. This can be an absolute or relative reference. Linking
to an image in your own directory structure is generally best because you
can’t be sure an external image will still be there when the user gets to the
page. (For more on reference types, turn to Chapter 5 of this minibook.)

height and width
The height and width attributes are used to indicate the size of the image.
The browser uses this information to indicate how much space to reserve
on the page.

 The height and width attributes should describe the size of an image. You
can use these attributes to actually change the size of an image, but it’s a
bad idea. Change the image size with your image editor (I show you how
later in this chapter). If you use the height and width attributes, the user
has to wait for the full image, even if she’ll see a smaller version. Don’t make
the user wait for information she won’t see. If you use these attributes to
make the image larger than its default size, the resulting image has poor res-
olution. Find the image’s actual size by looking at it in your image tool and
use these values. If you leave out height and width, the browser deter-
mines the size automatically, but you aren’t guaranteed to see the text until
all the images have downloaded. Adding these attributes lets the browser
format the page without waiting for the images.

alt (alternate text)
The alt attribute gives you an opportunity to specify alternate text describ-
ing the image. Alternate text information is used when the user has images
turned off and by screen-readers. Information in alt tags is also used in
image-searching software like Google Images.

Choosing an Image Manipulation Tool82

 The alt attribute is required on all images.

Additionally, the tag is an inline tag, so it needs to be embedded
inside a block-level tag, like a <p> or .

Choosing an Image Manipulation Tool
You can’t just grab any old picture off your digital camera and expect it to
work on a web page. The picture might work, but it could cause problems
for your viewers. It’s important to understand that digital images (any kind of
images you see on a computer or similar device) are different from the kind
of images you see on paper.

An image is worth 3.4 million words
Digital cameras and scanners are amazing these days. Even moderately
priced cameras can now approach the resolution of old-school analog
cameras. Scanners are also capable of taking traditional images and convert-
ing them into digital formats that computers use. In both cases, though, the
default image can be in a format that causes problems. Digital images are
stored as a series of dots, or pixels. In print, the dots are very close together,
but computer screens have larger dots. Figure 6-4 shows how the ship image
looks straight from the digital camera.

Figure 6-4:
Wow. That
doesn’t look
like much.

My picture (taken on an older digital camera) registers at 6 megapixels (MP).
That’s a pretty good resolution, but modern digital cameras are much higher.
If I print that picture on paper, all those dots are very tiny, and I get a nice
picture. If I try to show the same picture on the computer screen, I see only

Book I
Chapter 6

Adding Im
ages,

Sound, and Video
Choosing an Image Manipulation Tool 83

one corner. This actual picture came out at 2,816 pixels wide by 2,112 pixels
tall. You only see a small corner of the image because the screen shots for
this book are taken at 1024×768 pixels. Less than a quarter of the image is
visible.

When you look at a large image in most browsers, it’s automatically resized
to fit the page. The cursor usually turns into some kind of magnifying glass,
and if you click the image, you can see it in its full size or the smaller size.

 Some image viewers take very large images and automatically resize them so
they fit the screen. (This is the default behavior of Windows’ default image
viewer and most browsers.) The image may appear to be a reasonable size
because of this feature, but it’ll be huge and difficult to download in an
actual web page. Make sure you know the actual size of an image before you
use it.

Although shrinking an image so that it can be seen in its entirety is obviously
beneficial, there’s an even more compelling reason to do so. Each pixel on
the screen requires 3 bytes of computer memory. (A byte is the basic unit
of memory in a computer.) For comparison purposes, one character of text
requires roughly 1 byte. The uncompressed image of the ship weighs a whop-
ping 17 megabytes (MB). If you think of a word as five characters long, one
picture straight from the digital camera takes up the same amount of storage
space and transmission time as roughly 3,400,000 words. This image requires
nearly three minutes to download on a 56K modem!

In a web page, small images are often shown at about 320×240 pixels, and
larger images are often 640×480 pixels. If I use software to resample the
image to the size I actually need and use an appropriate compression algo-
rithm, I can get the image to look like Figure 6-5.

Figure 6-5:
The resized
image is
a lot more
manageable.

