WAY KUO | XIAOYAN ZHU

IMPORTANCE MEASURES IN RELIABILITY, RISK, AND OPTIMIZATION PRINCIPLES AND APPLICATIONS

IMPORTANCE MEASURES IN RELIABILITY, RISK, AND OPTIMIZATION

IMPORTANCE MEASURES IN RELIABILITY, RISK, AND OPTIMIZATION PRINCIPLES AND APPLICATIONS

Way Kuo *City University of Hong Kong, Hong Kong*

Xiaoyan Zhu The University of Tennessee, Knoxville, Tennessee, USA

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Kuo, Way, 1951–
Importance measures in reliability, risk, and optimization : principles and applications / Way Kuo, Xiaoyan Zhu. p. cm.
Includes bibliographical references and index.
ISBN 978-1-119-99344-5 (hardback)
1. Reliability (Engineering) 2. Risk assessment. 3. Industrial priorities. I. Zhu, Xiaoyan. II. Title.

TA169.K855 2012 620'.00452-dc23

2011052840

A catalogue record for this book is available from the British Library.

Print ISBN: 978-1-119-99344-5

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Contents

List of	f Figures	XV
List of	f Tables	xvii
Prefac	ce	xix
Ackno	owledgments	xxiii
Acron	yms and Notation	XXV
Part (Dne INTRODUCTION AND BACKGROUND	
	Introduction References	3 3
1	Introduction to Importance Measures References	5 12
2	Fundamentals of Systems Reliability	15
2.1	Block Diagrams	15
2.2	Structure Functions	16
2.3	Coherent Systems	19
2.4	Modules within a Coherent System	20
2.5	Cuts and Paths of a Coherent System	22
2.6	Critical Cuts and Critical Paths of a Coherent System	24
2.7	Measures of Performance	27
	2.7.1 Reliability for a Mission Time	27
	2.7.2 Reliability Function (of Time t)	29
	2.7.3 Availability Function	31
2.8	Stochastic Orderings	32
2.9	Signature of Coherent Systems	33
2.10	Multilinear Functions and Taylor (Maclaurin) Expansion	35
2.11	Redundancy	37
2.12	Reliability Optimization and Complexity	38
2.13	Consecutive-k-out-of-n Systems	39
2.14	Assumptions	41
	References	42

Part	Two PR	INCIPLES OF IMPORTANCE MEASURES	
	Introduc	tion	47
	Reference	es	47
3	The Esse	ence of Importance Measures	49
3.1	Importan	ce Measures in Reliability	49
3.2	Classifica	ations	50
3.2	<i>c</i> -Type ar	nd <i>p</i> -Type Importance Measures	51
3.4	Importan	ce Measures of a Minimal Cut and a Minimal Path	51
3.5	Terminol	ogy	52
	Reference	es	53
4	Reliabili	ty Importance Measures	55
4.1	The B-re	liability Importance	55
	4.1.1	The B-reliability Importance for System Functioning	
		and for System Failure	61
	4.1.2	The Criticality Reliability Importance	61
	4.1.3	The Bayesian Reliability Importance	62
4.2	The FV F	Reliability Importance	63
	4.2.1	The c-FV Reliability Importance	63
	4.2.2	The p-FV Reliability Importance	63
	4.2.3	Decomposition of State Vectors	64
	4.2.4	Properties	65
	Reference	es	67
5	Lifetime	Importance Measures	69
5.1	The B-tir	ne-dependent-lifetime Importance	69
	5.1.1	The Criticality Time-dependent Lifetime Importance	71
5.2	The FV 7	lime-dependent Lifetime Importance	72
	5.2.1	The c-FV Time-dependent Lifetime Importance	72
	5.2.2	The p-FV Time-dependent Lifetime Importance	74
	5.2.3	Decomposition of State Vectors	75
5.3	The BP T	ime-independent Lifetime Importance	75
5.4	The BP 1	ime-dependent Lifetime Importance	81
5.5	Numerica	al Comparisons of Time-dependent Lifetime	
= (Importan	ce Measures	82
5.6	Summary		84
	Keterenc	es	83
6	Structur	e Importance Measures	87
6.1	The B-i.i	.d. Importance and B-structure Importance	87
6.2	The FV S	Structure Importance	90
6.3	The BP S	Structure Importance	91
6.4	Structure	Importance Measures Based on the B-i.i.d. Importance	94

6.5	The Per	mutation Importance and Permutation Equivalence	95
	6.5.1	Relations to Minimal Cuts and Minimal Paths	96
	6.5.2	Relations to Systems Reliability	100
6.6	The Do	mination Importance	101
6.7	The Cu	t Importance and Path Importance	103
	6.7.1	Relations to the B-i.i.d. Importance	104
	6.7.2	Computation	107
6.8	The Ab	soluteness Importance	109
6.9	The Cu	t-path Importance, Min-cut Importance,	
	and Mi	n-path Importance	109
6.10	The Fire	st-term Importance and Rare-event Importance	111
6.11	<i>c</i> -type a	and <i>p</i> -type of Structure Importance Measures	112
6.12	Structur	re Importance Measures for Dual Systems	112
6.13	Domina	ant Relations among Importance Measures	114
	6.13.1	The Absoluteness Importance with the Domination	
		Importance	114
	6.13.2	The Domination Importance with the Permutation	
		Importance	114
	6.13.3	The Domination Importance with the Min-cut Importance	
		and Min-path Importance	115
	6.13.4	The Permutation Importance with the FV Importance	115
	6.13.5	The Permutation Importance with the Cut-path Importance,	
		Min-cut Importance, and Min-path Importance	119
	6.13.6	The Cut-path Importance with the Cut Importance	
		and Path Importance	120
	6.13.7	The Cut-path Importance with the B-i.i.d. Importance	121
	6.13.8	The B-i.i.d. Importance with the BP Importance	122
6.14	Summa	ry	122
	Referen	ices	126
7	Import	ance Measures of Pairs and Groups of Components	127
7.1	The Joi	nt Reliability Importance and Joint Failure Importance	128
	7.1.1	The Joint Reliability Importance of Dependent	
		Components	130
	7.1.2	The Joint Reliability Importance of Two Gate Events	131
	7.1.3	The Joint Reliability Importance for k-out-of-n Systems	132
	7.1.4	The Joint Reliability Importance of Order k	133
7.2	The Dif	ferential Importance Measure	133
	7.2.1	The First-order Differential Importance Measure	133
	7.2.2	The Second-order Differential Importance Measure	135
	7.2.3	The Differential Importance Measure of Order k	135
7.3	The Tot	al Order Importance	136
7.4	The Rel	liability Achievement Worth and Reliability	
	Reducti	on Worth	137
	Referen	ices	139

8	Import	ance Measures for Consecutive-k-out-of-n Systems	141	
8.1	Formul	Formulas for the B-importance		
	8.1.1	The B-reliability Importance and B-i.i.d. Importance	142	
	8.1.2	The B-structure Importance	144	
8.2	Patterns	s of the B-importance for $Lin/Con/k/n$ Systems	145	
	8.2.1	The B-reliability Importance	146	
	8.2.2	The Uniform B-i.i.d. Importance	146	
	8.2.3	The Half-line B-i.i.d. Importance	149	
	8.2.4	The Nature of the B-i.i.d. Importance Patterns	149	
	8.2.5	Patterns with Respect to p	152	
	8.2.6	Patterns with Respect to n	153	
	8.2.7	Disproved Patterns and Conjectures	155	
8.3	Structure Importance Measures			
	8.3.1	The Permutation Importance	160	
	8.3.2	The Cut-path Importance	160	
	8.3.3	The BP Structure Importance	160	
	8.3.4	The First-term Importance and Rare-event Importance	161	
	Referer	nces	162	

Part Three IMPORTANCE MEASURES FOR RELIABILITY DESIGN

	Introdu	iction	167
	Referen	ices	167
9	Redund	dancy Allocation	169
9.1	Redund	ancy Importance Measures	170
9.2	A Com	mon Spare	172
	9.2.1	The Redundancy Importance Measures	172
	9.2.2	The Permutation Importance	174
	9.2.3	The Cut Importance and Path Importance	175
9.3	Spare Io	dentical to the Respective Component	175
	9.3.1	The Redundancy Importance Measures	175
	9.3.2	The Permutation Importance	177
9.4	Several	Spares in a <i>k</i> -out-of- <i>n</i> System	178
9.5	Several	Spares in an Arbitrary Coherent System	178
9.6	Cold St	andby Redundancy	180
	Referen	nces	180
10	Upgrad	ling System Performance	183
10.1	Improvi	ing Systems Reliability	184
	10.1.1	Same Amount of Improvement in Component Reliability	185
	10.1.2	A Fractional Change in Component Reliability	186
	10.1.3	Cold Standby Redundancy	187
	10.1.4	Parallel Redundancy	187
	10.1.5	Example and Discussion	187

10.2	Improvin	g Expected System Lifetime	188
	10.2.1	A Shift in Component Lifetime Distributions	189
	10.2.2	Exactly One Minimal Repair	189
	10.2.3	Reduction in the Proportional Hazards	197
	10.2.4	Cold Standby Redundancy	199
	10.2.5	A Perfect Component	201
	10.2.6	An Imperfect Repair	201
	10.2.7	A Scale Change in Component Lifetime Distributions	202
	10.2.8	Parallel Redundancy	202
	10.2.9	Comparisons and Numerical Evaluation	203
10.3	Improvin	g Expected System Yield	205
	10.3.1	A Shift in Component Lifetime Distributions	206
	10.3.2	Exactly One Minimal Repair, Cold Standby Redundancy, a Perfect	
		Component, and Parallel Redundancy	213
10.4	Discussio	on	215
	Referenc	es	215
11	Compon	ent Assignment in Coherent Systems	217
11.1	Descripti	on of Component Assignment Problems	218
11.2	Enumera	tion and Randomization Methods	220
11.3	Optimal	Design Based on the Permutation Importance	
	and Pairv	vise Exchange	220
11.4	Invariant	Optimal and Invariant Worst Arrangements	222
11.5	Invariant	Arrangements for Parallel-series and Series-parallel Systems	224
11.6	Consister	nt B-i.i.d. Importance Ordering and Invariant Arrangements	225
11.7	Optimal	Design Based on the B-reliability Importance	228
11.8	Optimal	Assembly Problems	230
	Referenc	es	231
12	Compon	ent Assignment in Consecutive-k-out-of-n and	
	Its Varia	int Systems	233
12.1	Invariant	Arrangements for $Con/k/n$ Systems	234
	12.1.1	Invariant Optimal Arrangements for Lin/Con/k/n Systems	234
	12.1.2	Invariant Optimal Arrangements for Cir/Con/k/n Systems	235
	12.1.3	Consistent B-i.i.d. Importance Ordering and Invariant	
		Arrangements	237
12.2	Necessar	y Conditions for Component Assignment in Con/k/n Systems	237
12.3	Sequenti	al Component Assignment Problems in Con/2/n:F Systems	241
12.4	Consecut	tive-2 Failure Systems on Graphs	243
	12.4.1	Consecutive-2 Failure Systems on Trees	243
12.5	Series Ca	on/k/n Systems	244
	12.5.1	Series Con/2/n:F Systems	245
	12.5.2	Series Lin/Con/k/n:G Systems	245
12.6	Consecut	tive-k-out-of-r-from-n Systems	247

12.7	Two-din	nensional and Redundant Con/k/n Systems	249
	12.7.1	Con/(r, k)/(r, n) Systems	251
12.8	Miscella	ineous	253
	Referen	ces	254
13	B-impo	rtance-based Heuristics for Component Assignment	257
13.1	The Kor	ntoleon Heuristic	258
13.2	The LK-	-Type Heuristics	259
	13.2.1	The LKA Heuristic	259
	13.2.2	Another Three LK-type Heuristics	261
	13.2.3	Relation to Invariant Optimal Arrangements	262
	13.2.4	Numerical Comparisons of the LK-type Heuristics	263
13.3	The ZK-	-Type Heuristics	264
	13.3.1	Four ZK-type Heuristics	264
	13.3.2	Relation to Invariant Optimal Arrangements	266
	13.3.3	Comparisons of Initial Arrangements	267
	13.3.4	Numerical Comparisons of the ZK-type Heuristics	268
13.4	The B-in	mportance-based Two-stage Approach	268
	13.4.1	Numerical Comparisons with the GAMS/CoinBomin Solver	
		and Enumeration Method	269
	13.4.2	Numerical Comparisons with the Randomization Method	270
13.5	The B-in	mportance-based Genetic Local Search	271
	13.5.1	The Description of Algorithm	271
	13.5.2	Numerical Comparisons with the B-importance-based Two-stage	
		Approach and a Genetic Algorithm	275
13.6	Summar	ry and Discussion	277
	Referen	ces	279

Part Four RELATIONS AND GENERALIZATIONS

	Introdu	iction	283
	Referen	ice	283
14	Compa	risons of Importance Measures	285
14.1	Relation	ns to the B-importance	286
14.2	Ranking	gs of Reliability Importance Measures	288
	14.2.1	Using the Permutation Importance	288
	14.2.2	Using the Permutation Importance and Joint Reliability	
		Importance	290
	14.2.3	Using the Domination Importance	291
	14.2.4	Summary	291
14.3	Importa	nce Measures for Some Special Systems	292
14.4	Comput	tation of Importance Measures	293
	Referen	ices	294

15	Genera	lizations of Importance Measures	297
15.1	Noncoh	erent Systems	297
	15.1.1	Binary Monotone Systems	298
15.2	Multista	ate Coherent Systems	300
	15.2.1	The μ , ν <i>B</i> -importance	301
	15.2.2	The μ , ν Cut Importance	302
15.3	Multista	ate Monotone Systems	304
	15.3.1	The Permutation Importance	305
	15.3.2	The Utility-decomposition Reliability Importance	306
	15.3.3	The Utility B-reliability Importance	307
	15.3.4	The Utility B-structure Importance, Joint Structure Importance,	
		and Joint Reliability Importance	308
15.4	Binary-	Type Multistate Monotone Systems	310
	15.4.1	The B-TDL Importance, BP TIL Importance, and L_1	
		TIL Importance	311
15.5	Summa	ry of Importance Measures for Multistate Systems	313
15.6	Continu	um Systems	314
15.7	Repairable Systems		317
	15.7.1	The B-availability Importance	318
	15.7.2	The c-FV Unavailability Importance	318
	15.7.3	The BP Availability Importance	318
	15.7.4	The L_1 TIL Importance	320
	15.7.5	Simulation-based Importance Measures	321
15.8	Applica	tions in the Power Industry	322
	Referen	ces	323

Part Five BROAD IMPLICATIONS TO RISK AND MATHEMATICAL PROGRAMMING

	Introdu	iction	329
	Referen	ces	329
16	Networ	ks	331
16.1	Networl	c Flow Systems	331
	16.1.1	The Edge Importance Measures in a Network Flow System	332
	16.1.2	The Edge Importance Measures for a Binary	
		Monotone System	334
	16.1.3	The B-importance, FV Importance, Reliability Achievement	
		Worth, and Reliability Reduction Worth	336
	16.1.4	The Flow-based Importance and Impact-based Importance	338
16.2	K-terminal Networks		339
	16.2.1	Importance Measures of an Edge	341
	16.2.2	A K-terminal Optimization Problem	343
	Referen	ces	344

xi

17	Mather	natical Programming	345
17.1	Linear I	Programming	346
	17.1.1	Basic Concepts	346
	17.1.2	The Simplex Algorithm	348
	17.1.3	Sensitivity Analysis	350
17.2	Integer	Programming	352
	17.2.1	Basic Concepts and Branch-and-bound Algorithm	353
	17.2.2	Branch-and-bound Using Linear Programming	
		Relaxations	356
	17.2.3	Mixed Integer Nonlinear Programming	359
	Referen	ces	359
18	Sensitiv	vity Analysis	361
18.1	Local S	ensitivity and Perturbation Analysis	361
	18.1.1	The B-reliability Importance	361
	18.1.2	The Multidirectional Sensitivity Measure	362
	18.1.3	The Multidirectional Differential Importance Measure and	
		Total Order Importance	368
	18.1.4	Perturbation Analysis	369
18.2	Global S	Sensitivity and Uncertainty Analysis	371
	18.2.1	ANOVA-decomposition-based Global Sensitivity Measures	371
	18.2.2	Elementary-effect-based Global Sensitivity Measures	376
	18.2.3	Derivative-based Global Sensitivity Measures	377
	18.2.4	Relationships between the ANOVA-decomposition-based	
		and the Derivative-based Sensitivity Measures	379
	18.2.5	The Case of Random Input Variables	380
	18.2.6	Moment-independent Sensitivity Measures	381
18.3	Systems	Reliability Subject to Uncertain Component Reliability	384
	18.3.1	Software Reliability	386
18.4	Broad A	applications	390
	Referen	ces	391
19	Risk an	d Safety in Nuclear Power Plants	395
19.1	Introduc	ction to Probabilistic Risk Analysis and Probabilistic	
	Safety A	Assessment	395
19.2	Probabi	listic (Local) Importance Measures	397
19.3	Uncerta	inty and Global Sensitivity Measures	399
19.4	A Case	Study	399
19.5	Review	of Applications	402
19.6	System	Fault Diagnosis and Maintenance	404
	Referen	ces	406
After	word		409
	Referen	ces	412

Appendix A Proofs		413
A.1	Proof of Theorem 8.2.7	413
A.2	Proof of Theorem 10.2.10	414
A.3	Proof of Theorem 10.2.17	415
A.4	Proof of Theorem 10.3.11	416
A.5	Proof of Theorem 10.3.15	417
	References	418
Bibliography		419
Index		435