$\mu = 0.2$ Ordináry Differential Equations

Michael D. Greenberg

 $C \quad x = -1 \mid x = 1$

x=1

Ordinary Differential Equations

Ordinary Differential Equations

Michael D. Greenberg

Department of Mechanical Engineering University of Delaware Newark, DE

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Greenberg, Michael D., 1935– Ordinary differential equations / Michael D. Greenberg. p. cm. Includes bibliographical references and index. ISBN 978-1-118-23002-2 (hardback) 1. Differential equations—Textbooks. 2. Differential equations, Partial—Textbooks. I. Title. QA372.G725 2012 515'.352—dc23 2011042287

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Preface

1 FIRST-ORDER DIFFERENTIAL EQUATIONS 1 1.1 MOTIVATION AND OVERVIEW 1 1.1.1 1 1.1.2 3 1.1.3 4 1.1.4 5 1.1.5 6 1.1.6 7 1.1.7 Computer software 8 1.2 LINEAR FIRST-ORDER EQUATIONS 11 1.2.1 11 1.2.2 12 1.2.3 Solving the full equation by the integrating factor method 14 1.2.4Existence and uniqueness for the linear equation 17 1.3 APPLICATIONS OF LINEAR FIRST-ORDER EQUATIONS . . 24 1.3.1 24 Population dynamics; exponential model 1.3.2 26 1.3.3 Mixing problems; a one-compartment model 28 1.3.4 The phase line, equilibrium points, and stability 30 1.3.5 Electrical circuits 31 NONLINEAR FIRST-ORDER EQUATIONS THAT ARE 1.4 43 50 1.5 1.5.1 An existence and uniqueness theorem 50 1.5.2 51 1.5.3 Application to free fall; physical significance of 53 APPLICATIONS OF NONLINEAR FIRST-ORDER 1.6 59

xiii

2

	1.6.1	The logistic model of population dynamics	59
	1.6.2	Stability of equilibrium points and linearized stability	
		analysis	61
1.7	EXAC	T EQUATIONS AND EQUATIONS THAT CAN BE	
	MADI	E EXACT	71
	1.7.1	Exact differential equations	71
	1.7.2	Making an equation exact; integrating factors	75
1.8	SOLU	TION BY SUBSTITUTION	81
	1.8.1	Bernoulli's equation	81
	1.8.2	Homogeneous equations	83
1.9	NUMI	ERICAL SOLUTION BY EULER'S METHOD	87
	1.9.1	Euler's method	87
	1.9.2	Convergence of Euler's method	90
	1.9.3	Higher-order methods	92
CHA	APTER 1	REVIEW	95
		ORDER LINEAR EQUATIONS	99
2.1		AR DIFFERENTIAL EQUATIONS OF SECOND ORDER	99
	2.1.1	Introduction	99
	2.1.2	Operator notation and linear differential operators	100
	2.1.3	Superposition principle	101
2.2		STANT-COEFFICIENT EQUATIONS	103
	2.2.1	Constant coefficients	103
	2.2.2	Seeking a general solution	104
	2.2.3	Initial value problem	110
2.3		PLEX ROOTS	113
	2.3.1	Complex exponential function	113
	2.3.2	Complex characteristic roots	115
2.4		AR INDEPENDENCE; EXISTENCE, UNIQUENESS,	
		ERAL SOLUTION	118
	2.4.1	Linear dependence and linear independence	119
	2.4.2	Existence, uniqueness, and general solution	121
	2.4.3	Abel's formula and Wronskian test for linear	
		independence	124
	2.4.4	Building a solution method on these results	125
2.5		JCTION OF ORDER	128
	2.5.1	Deriving the formula	128
	2.5.2	The method rather than the formula	131
	2.5.3	About the method of reduction of order	132
2.6		CHY-EULER EQUATIONS	134
	2.6.1	General solution	135
	2.6.2	Repeated roots and reduction of order	136

		2.6.3	Complex roots	138
	2.7	THE C	GENERAL THEORY FOR HIGHER-ORDER	
		EQUA	TIONS	142
		2.7.1	Theorems for <i>n</i> th-order linear equations	143
		2.7.2	Constant-coefficient equations	144
		2.7.3	Cauchy–Euler equations	146
	2.8	NONF	IOMOGENEOUS EQUATIONS	149
		2.8.1	General solution	149
		2.8.2	The scaling and superposition of forcing functions	151
	2.9	PART	ICULAR SOLUTION BY UNDETERMINED	
		COEF	FICIENTS	155
		2.9.1	Undetermined coefficients	155
		2.9.2	A special case; the complex exponential method	160
	2.10	PART	ICULAR SOLUTION BY VARIATION OF	
		PARA	METERS	163
		2.10.1	First-order equations	163
		2.10.2	Second-order equations	165
	CHA	PTER 2	2 REVIEW	170
3		TICAT	IONS OF HIGHED ODDED FOLIATIONS	173
3			IONS OF HIGHER-ORDER EQUATIONS	173
	3.1 3.2		ODUCTION	
	3.2		AR HARMONIC OSCILLATOR; FREE OSCILLATION .	174
		3.2.1	Mass-spring oscillator	174
		3.2.2	Undamped free oscillation	176
	2.2	3.2.3		179
	3.3		OSCILLATION WITH DAMPING	186
		3.3.1	Underdamped	187
		3.3.2	Critically damped	188
	2.4	3.3.3		188
	3.4			193
		3.4.1	Undamped, $c = 0$	193
	25	3.4.2	Damped, $c > 0$	196
	3.5		DY-STATE DIFFUSION; A BOUNDARY VALUE	202
			LEM	202
		3.5.1	Boundary value problems; existence and uniqueness	202
		3.5.2	Steady-state heat conduction in a rod	203
	3.6		ODUCTION TO THE EIGENVALUE PROBLEM;	
			JMN BUCKLING	211
		3.6.1	An eigenvalue problem	211
		3.6.2	Application to column buckling	213
	CHA	PTER 3	3 REVIEW	218

4	SYS	TEMS	OF LINEAR DIFFERENTIAL EQUATIONS	219
	4.1	INTR	ODUCTION, AND SOLUTION BY ELIMINATION	219
		4.1.1	Introduction	219
		4.1.2	Physical examples	220
		4.1.3	Solutions, existence, and uniqueness	221
		4.1.4	Solution by elimination	222
		4.1.5	Auxiliary variables	225
	4.2	APPL	ICATION TO COUPLED OSCILLATORS	230
		4.2.1	Coupled oscillators	230
		4.2.2	Reduction to first-order system by auxiliary variables	231
		4.2.3	The free vibration	231
		4.2.4	The forced vibration	234
	4.3	N-SP	ACE AND MATRICES	238
		4.3.1	Passage from 2-space to <i>n</i> -space	238
		4.3.2	Matrix operators on vectors in <i>n</i> -space	240
		4.3.3	Identity matrix and zero matrix	242
		4.3.4	Relevance to systems of linear algebraic equations	242
		4.3.5	Vector and matrix functions	244
	4.4	LINE	AR DEPENDENCE AND INDEPENDENCE OF	
		VECT	TORS	247
		4.4.1	Linear dependence of a set of constant vectors in <i>n</i> -space	247
		4.4.2	Linear dependence of vector functions in <i>n</i> -space	250
	4.5	EXIS	TENCE, UNIQUENESS, AND GENERAL SOLUTION .	253
:		4.5.1	The key theorems	253
		4.5.2	Illustrating the theorems	257
	4.6	MATI	RIX EIGENVALUE PROBLEM	261
		4.6.1	The eigenvalue problem	261
		4.6.2	Solving an eigenvalue problem	262
		4.6.3	Complex eigenvalues and eigenvectors	266
	4.7	HOM	OGENEOUS SYSTEMS WITH CONSTANT	
		COEF	FICIENTS	270
		4.7.1	Solution by the method of assumed exponential form	270
		4.7.2	Application to the two-mass oscillator	274
		4.7.3	The case of repeated eigenvalues	276
		4.7.4	Modifying the method if there are defective eigenvalues .	278
		4.7.5	Complex eigenvalues	279
	4.8	DOT	PRODUCT AND ADDITIONAL MATRIX ALGEBRA	283
		4.8.1	More about <i>n</i> -space: dot product, norm, and angle	283
		4.8.2	Algebra of matrix operators	285
		4.8.3	Inverse matrix	289
	4.9		LICIT SOLUTION OF $\mathbf{x}' = \mathbf{A}\mathbf{x}$ AND THE MATRIX	
		EXPO	DNENTIAL FUNCTION	297

		4.9.1	Matrix exponential solution	297
		4.9.2	Getting the exponential matrix series into closed form	300
	4.10	NONH	IOMOGENEOUS SYSTEMS	307
		4.10.1	Solution by variation of parameters	307
		4.10.2	Constant coefficient matrix	310
		4.10.3	Particular solution by undetermined coefficients	311
	CHA	APTER 4	REVIEW	314
5	LAP		FRANSFORM	317
	5.1		DDUCTION	317
	5.2	THE T	TRANSFORM AND ITS INVERSE	318
		5.2.1	Laplace transform	318
		5.2.2	Linearity property of the transform	321
		5.2.3	Exponential order, piecewise continuity, and conditions	
			for existence of the transform	323
		5.2.4	Inverse transform	326
		5.2.5	Introduction to the determination of inverse transforms .	327
	5.3		ICATION TO THE SOLUTION OF DIFFERENTIAL	
		~	TIONS	334
		5.3.1	First-order equations	334
		5.3.2	Higher-order equations	336
		5.3.3	Systems	339
		5.3.4	Application to a nonconstant-coefficient equation;	
			Bessel's equation	341
	5.4		ONTINUOUS FORCING FUNCTIONS; HEAVISIDE	
			FUNCTION	347
		5.4.1	Motivation	347
		5.4.2	Heaviside step function and piecewise-defined functions	347
		5.4.3	Transforms of Heaviside and time-delayed functions	349
		5.4.4	Differential equations with piecewise-defined forcing func-	251
		E 1 E		351
	55	5.4.5	Periodic forcing functions	353
	5.5			358
			Definition of Laplace convolution	358
		5.5.2	Convolution theorem	359
		5.5.3	Applications	360
	56	5.5.4	Integro-differential equations and integral equations	362
	5.6	FUNC	LSIVE FORCING FUNCTIONS; DIRAC DELTA	366
		5.6.1		366
		5.6.2	Dirac delta function	368
		5.6.3	The jump caused by the delta function	370
		5.0.5	The jump caused by the denta function	510

		5.6.4	Caution	
		5.6.5	Impulse response function	
	CHA	APTER :	5 REVIEW	
6	SERIES SOLUTIONS			
	6.1	INTR	ODUCTION	
	6.2	POWI	ER SERIES AND TAYLOR SERIES	
		6.2.1	Power series	
		6.2.2	Manipulation of power series	
		6.2.3	Taylor series	
	6.3	POWI	ER SERIES SOLUTION ABOUT A REGULAR POINT .	
		6.3.1	Power series solution theorem	
		6.3.2	Applications	
	6.4	LEGE	ENDRE AND BESSEL EQUATIONS	
		6.4.1	Introduction	
		6.4.2	Legendre's equation	
		6.4.3	Bessel's equation	
	6.5	THE I	METHOD OF FROBENIUS	
		6.5.1	Motivation	
		6.5.2	Regular and irregular singular points	
		6.5.3	The method of Frobenius	
	CHA	APTER	6 REVIEW	
7	SYS	TEMS	OF NONLINEAR DIFFERENTIAL EQUATIONS	
	7.1		ODUCTION	
	7.2	THE	PHASE PLANE	
		7.2.1	Phase plane method	
		7.2.2	Application to nonlinear pendulum	
		7.2.3	Singular points and their stability	
	7.3	LINE	AR SYSTEMS	
		7.3.1	Introduction	
		7.3.2	Purely imaginary eigenvalues (CENTER)	
		7.3.3	Complex conjugate eigenvalues (SPIRAL)	
		7.3.4	Real eigenvalues of the same sign (NODE)	
		7.3.5	Real eigenvalues of opposite sign (SADDLE)	
	7.4		LINEAR SYSTEMS	
		7.4.1	Local linearization	
		7.4.2	Predator-prey population dynamics	
		7.4.3	Competing species	
	7.5		T CYCLES	
	7.6		ERICAL SOLUTION OF SYSTEMS BY EULER'S	
		MET	HOD	

7.6.1 Initial value problems	468
7.6.2 Existence and uniqueness for nonlinear systems	471
7.6.3 Linear boundary value problems	472
CHAPTER 7 REVIEW	476
APPENDIX A: REVIEW OF PARTIAL FRACTION EXPANSION	IS 479
APPENDIX B: REVIEW OF DETERMINANTS	483
APPENDIX C: REVIEW OF GAUSS ELIMINATION	491
APPENDIX D: REVIEW OF COMPLEX NUMBERS AND THE	
COMPLEX PLANE	497
ANSWERS TO EXERCISES	501
INDEX	521

Preface

PURPOSE AND PREREQUISITES

This book is intended for students of science, engineering, and mathematics, as a textbook for a first course in differential equations, typically in the student's third or fourth semester. It is expected that the student has completed a differential and integral calculus sequence, but prior knowledge of linear algebra is not a prerequisite, and that material is provided here when it is needed.

TO THE INSTRUCTOR

The following points are to describe and explain some of the pedagogical decisions and approaches adopted in this text.

1. Transition to higher-order equations. The passage from first-order equations to equations of higher order is, we believe, often made more difficult for the student than necessary. Typically, the discussion of higher-order equations begins with the citing of an existence-and-uniqueness theorem and the introduction of linear independence and Wronskians, none of which is needed for the important case of equations with constant coefficients, which is indeed the first case to be studied. Consequently, second-order equations tend to look like a "new subject" to the student. Instead, we focus immediately on second-order equations with constant coefficients and derive their general solution in only a few pages (Theorem 2.2.1 of Section 2.2), using only results obtained in Chapter 1 for first-order equations. Proof of Theorem 2.2.1 is elementary, relying only on the factoring of the differential operator and the known solution of first-order equations with constant coefficients. The latter is not put forward as a solution method, but only to prove the theorem, and we are careful to caution the student that factorization cannot be expected to be useful for nonconstant-coefficient equations.

The advantage of this approach is that the general solution of $y'' + p_1y' + p_2y = 0$ (in which the p_j 's are constants) is obtained quickly and easily, without first introducing an existence-and-uniqueness theorem, linear independence, or Wronskians. The remainder of Sections 2.2 and 2.3 is devoted to familiarizing the student with the various solution forms: (a) the real exponentials and hyperbolic functions and (b) the complex exponentials and the circular functions. With that done, linear independence, Wronskians, existence, uniqueness, and general solution are introduced next, in Section 2.4, at which point the discussion can then be more readily grasped by the student, by virtue of the already completed discussion of the constant-coefficient case in Sections 2.2 and 2.3.