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Preface 
PURPOSE AND PREREQUISITES 
This book is intended for students of science, engineering, and mathematics, as a 
textbook for a first course in differential equations, typically in the student's third 
or fourth semester. It is expected that the student has completed a differential and 
integral calculus sequence, but prior knowledge of linear algebra is not a prerequi
site, and that material is provided here when it is needed. 

TO THE INSTRUCTOR 
The following points are to describe and explain some of the pedagogical decisions 
and approaches adopted in this text. 

1. Transition to higher-order equations. The passage from first-order equa
tions to equations of higher order is, we believe, often made more difficult 
for the student than necessary. Typically, the discussion of higher-order 
equations begins with the citing of an existence-and-uniqueness theorem and 
the introduction of linear independence and Wronskians, none of which is 
needed for the important case of equations with constant coefficients, which 
is indeed the first case to be studied. Consequently, second-order equations 
tend to look like a "new subject" to the student. Instead, we focus immedi
ately on second-order equations with constant coefficients and derive their 
general solution in only a few pages (Theorem 2.2.1 of Section 2.2), using 
only results obtained in Chapter 1 for first-order equations. Proof of Theorem 
2.2.1 is elementary, relying only on the factoring of the differential operator 
and the known solution of first-order equations with constant coefficients. 
The latter is not put forward as a solution method, but only to prove the the
orem, and we are careful to caution the student that factorization cannot be 
expected to be useful for nonconstant -coefficient equations. 

The advantage of this approach is that the general solution of y" + PI y' + P2Y 
= 0 (in which the Pj'S are constants) is obtained quickly and easily, without 
first introducing an existence-and-uniqueness theorem, linear independence, 
or Wronskians. The remainder of Sections 2.2 and 2.3 is devoted to famil
iarizing the student with the various solution forms: (a) the real exponentials 
and hyperbolic functions and (b) the complex exponentials and the circu
lar functions. With that done, linear independence, Wronskians, existence, 
uniqueness, and general solution are introduced next, in Section 2.4, at which 
point the discussion can then be more readily grasped by the student, by 
virtue of the already completed discussion of the constant-coefficient case in 
Sections 2.2 and 2.3. 

xiii 


