

Game Character
Creation with Blender
and Unity

Game Character
Creation with Blender
and Unity
C h r i s T o T T e n

A c q u i s i t i o n s E d i t o r : Mariann Barsolo

D e v e l o p m e n t E d i t o r : Laurene Sorensen

Te c h n i c a l E d i t o r : Terry Wallwork

P r o d u c t i o n E d i t o r : Dassi Zeidel

C o p y E d i t o r : Liz Welch

E d i t o r i a l M a n a g e r : Pete Gaughan

P r o d u c t i o n M a n a g e r : Tim Tate

V i c e P r e s i d e n t a n d E x e c u t i v e G r o u p P u b l i s h e r : Richard Swadley

V i c e P r e s i d e n t a n d P u b l i s h e r : Neil Edde

B o o k D e s i g n e r : Caryl Gorska

C o m p o s i t o r : Chris Gillespie and Kate Kaminski, Happenstance Type-O-Rama

P r o o f r e a d e r : Amy Schneider

I n d e x e r : Jack Lewis

P r o j e c t C o o r d i n a t o r, C o v e r : Katherine Crocker

C o v e r D e s i g n e r : Ryan Sneed

C o v e r I m a g e : Chris Totten

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-17272-8
ISBN: 978-1-118-22690-2 (ebk.)
ISBN: 978-1-118-23771-7 (ebk.)
ISBN: 978-1-118-26457-7 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appro-
priate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages aris-
ing herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further
information does not mean that the author or the publisher endorses the information the organization or Web site may provide or
recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care
Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print
versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is
not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more infor-
mation about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012937911

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

10 9 8 7 6 5 4 3 2 1

Dear Reader,
Thank you for choosing Game Character Creation with Blender and Unity. This book is part

of a family of premium-quality Sybex books, all of which are written by outstanding authors
who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing
consistently exceptional books. With each of our titles, we’re working hard to set a new stan-
dard for the industry. From the paper we print on, to the authors we work with, our goal is to
bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about this
or any other Sybex book by sending me an email at nedde@wiley.com. If you think you’ve found
a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is
critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

To Clara, without whom none of this would have been possible

Books like this are the Olympian effort of not just the author but a
great many people, who all deserve recognition for their efforts. I would of course
like to thank the fine folks who make Blender and Unity and distribute them for the
masses to use. You are doing a great thing for independent artists and game devel-
opers. A special thanks goes out to Ton Roosendaal for getting me in touch with
Wiley in the first place to make this book happen. ■ I’d like to thank the teach-
ers who introduced me to 3D art and animation back in college and pushed me to
pursue a career making and studying games. I’d also like to thank the D.C. chapter
of the International Game Developers’ Association for being so encouraging and
including me in many of your great game projects. ■ I’d also like to thank the
people who helped me put this book together, including Mariann Barsolo, Laurene
Sorensen, Pete Gaughan, Connor O’Brien, Jenni Housh, Liz Welch, and Dassi Zeidel.
You guys not only fixed many of my grammatical, technical, and formatting errors
but also taught me a great deal about the publishing process. I also know more
about Blender than I did going into this process because of you. ■ I would also like
to thank the administrators of www.lovetextures.com for their generous permission to
use some of their texture files in the downloadable materials. They do a great job and
everyone reading this should check them out. ■ Lastly, I’d like to thank my family
for their love and support as I worked on this project, especially my mom and dad.
Without you guys I wouldn’t have been capable of writing this. Thanks also to my
fiancée, Clara, for pushing me to pursue this project and putting up with my long
workdays creating art for the book.

Acknowledgments

Christopher Totten is a Washington, D.C.–based professor of game
design and 3D animation. He has participated in several independent game projects
as an artist, animator, and project manager. Chris has written articles featured on both
Gamasutra and Video Game Writers. He has been a guest speaker at Dakota State
University’s Workshop on Integrated Design and at GDC China.

He has a master’s degree in architecture with a concentration in digital media from the
Catholic University of America in Washington, D.C. Chris wants to help shape a new gen-
eration of game designers who look deeper into their designs. He works with students and
other designers to challenge gaming conventions through cross-disciplinary research.

About the Author

C O N T E N T S AT A GL A NC E

Introduction ■ xv

Chapter 1 ■ Basic Game Art Concepts 1

Chapter 2 ■ Blender Basics for Game Characters 23

Chapter 3 ■ Modeling the Character 45

Chapter 4 ■ Prepping for Zombie Details with UV Unwrapping 87

Chapter 5 ■ Sculpting for Normal Maps 105

Chapter 6 ■ Digital Painting Color Maps 135

Chapter 7 ■ Rigging for Realistic Movement 157

Chapter 8 ■ Animating the Zombie 193

Chapter 9 ■ Unity Engine Basics 217

Chapter 10 ■ Implementing Your Zombie in a Unity Game 237

Index ■ 279

Contents
Introduction xv

 Chapter 1 ■ Basic Game Art Concepts 1

Game Design Workflows 2

Creating Game Assets 4

Understanding and Optimizing
3D Game Art 9

Working with Game Engines 20

Scripting Happens 21

 Chapter 2 ■ Blender Basics for
Game Characters 23

Working with Blender’s Unique Features 24

Working with Editor Arrangement
and Types 26

Navigating and Viewing 3D Space 32

Creating and Manipulating Objects 33

Using the Properties Editor 36

Know Your Hotkeys 37

Making a Simple Block Character 39

Useful Techniques 44

 Chapter 3 ■ Modeling the Character 45

Working with Model Sheets 46

Shaping the Torso for Low Polygon Count 48

Extruding the Legs and Feet 51

Making the Arms and Hands 56

Separating Body Components to
Create Clothing 62

Creating the Head with
Poly-by-Poly Modeling 65

Carving Out Zombie Damage 82

 Chapter 4 ■ Prepping for Zombie Details
with UV Unwrapping 87

The Uses of UV Layouts 88

Drawing Seams 89

Using Blender’s UV/Image Editor 97

Laying Out a UV Sheet 100

Using Blender’s Live Unwrap Functions 102

 Chapter 5 ■ sculpting for normal Maps 105

The Purpose of Sculpting 106

Introducing the Multires Modifier 107

Using Blender’s Sculpting Interface 110

Sculpting the Zombie in Blender 120

Baking Normal Maps 128

 Chapter 6 ■ Digital Painting Color Maps 135

Understanding Digital Painting 136

Preparing for Color Map Painting 142

Digital Painting Best Practices 144

Applying Your Color Map to the Zombie 154

 Chapter 7 ■ rigging for realistic Movement 157

Understanding Rigging 158

Creating a Simple Armature 164

Finishing the Armature with Constraints 175

Linking the Armature and Zombie 184

 Chapter 8 ■ Animating the Zombie 193

Understanding and Planning
Game Animation 194

Using Blender’s Animation System 200

Creating an Idle Animation 203

Creating a Walk Animation 208

Creating a Chase Animation 210

Creating a Run Animation 212

Organizing Your Animations 214

1

24

5

13

21

9

17

1

24

15

21

17

7 13

 Chapter 9 ■ Unity engine Basics 217

Understanding Unity’s Logic and Interface 218

Building a Whiteblock Level with
Unity Primitives 223

Creating and Editing Materials in Unity 232

Organizing Assets with Unity Empties 234

 Chapter 10 ■ implementing Your
Zombie in a Unity Game 237

Importing Models into Unity 238

Unity Scripting—A Crash Course 240

Adding Interactivity to the Zombie 247

Turning the First Person Controller
into an FPS Hero 259

Adding Other Gameplay Elements 270

Wrapping Up 278

 index 279

When video games first entered the consumer market scene in the 1970s,
they were incredibly simple, abstract affairs when compared to today’s multi-million-
dollar projects. An Internet search for “Pong source code” shows that the game can be
made with about 200 lines of C++ code, whereas a game like Crysis runs on over one
million. Back in the days of Pong and other early games, it was within the reach of enthu-
siasts, albeit those with programming skills, to make their own games on home computers.
The founders of CodeMasters, Philip and Andrew Oliver, used to write games on their
home PC and distribute them by having the source code published in magazines for other
children to type.

Years later gaming computers and consoles became more powerful, and new worlds
of artistic and narrative possibilities opened up. Commercial game production was no
longer accomplished by a single talented programmer but rather by an entire team of pro-
grammers, writers, sound technicians, artists, and other creative professionals. As games
became more complex, however, the vision of making a “do it yourself” game that was as
good as, if not better than, what was in stores grew increasingly further away from gamers.

That is…until now…
You hold in your hand a guidebook that will put you on your way to making your own

commercial-quality games. You may be holding it because you are interested in making
your own games or because you want to learn about how 3D art works together with
game engines. Whatever your reasons, the important part is that with this book the
power is back in the hands of you, the independent game maker…part of it anyway.

Game production in this new do-it-yourself world is still largely the domain of several
talented individuals working on one project. Even Jonathan Blow, the rockstar indie
developer behind Braid, had help from artists and musicians.

Game design theorist Jesse Schell, in his book The Art of Game Design (Morgan
Kaufmann, 2008), said that a well-rounded game designer needs to have working knowl-
edge of animation, anthropology, architecture, brainstorming, business, cinematography,
communication, creative writing, economics, engineering, history, management, mathemat-
ics, music, psychology, public speaking, sound design, technical writing, and visual arts—a
body of knowledge that no one book can impart. However, this book will show you how
to complete one of the more complex parts of game content creation: character creation.

Introduction

xvi ■ Introduction

One of the most rewarding and challenging portions of game development is creating
good characters. It is rewarding because you get to make enemies or even the character
on the box. It is challenging because 3D content creation programs like 3ds Max, Maya,
ZBrush, and commercial game engines are both expensive and incredibly difficult to learn.
However, by mastering the concepts in this book, you can apply your newfound uber-talents
in game art to much simpler (yet still incredibly important) visual elements of games, like
environmental modeling and props.

As previously stated, the tools used by the “big guys” to accomplish the tasks that lie
before you are expensive, and each tool is specialized in only one or two parts of the entire
process, requiring lots of time spent importing and exporting. You, as part of the new DIY
movement, are more resourceful and economical than that, however, and will streamline
your process with two powerful and financially accessible tools: Blender and the Unity
game engine.

What Is Blender?
Many Blender books begin with a sort of sales pitch for the program. This comes from the
era and mind-set where Blender was an underdog in the animation and games industry.
Although it’s not at the point of being a so-called industry standard yet, it is far from the
up-and-comer that it was even a few years ago. As it stands, Blender is an incredibly full-
featured and powerful program that has found its way into the productions of Spider-Man 2,
Oscar nominee The Secret of the Kells, Sega’s Virtua Tennis 4, and scads of other movie
and mobile game projects. Blender is demonstrating the decline of reliance on one or two
“industry standard” programs and instead a workflow of experimentation that results in
studios having their own “office standards.” So what is Blender?

The short answer to this question is that Blender is the world’s foremost free and open-
source 3D graphics application. That’s right, free, as in free software: required balance =
$0.00. The long answer takes us back to the 1990s when Blender was developed as an in-
house application for the Dutch animation studio NeoGeo. The program was authored pri-
marily by Ton Roosendaal, who eventually started Not a Number Technologies (NaN) to
distribute the program. It was released as shareware until 2002 when NaN went bankrupt
and Blender was released under the GNU General Public License (GPL). Blender’s licensing
is important to note, as it is the crux of how flexible the program is in terms of fitting into
the game designer’s workflow.

The GPL is a license that stipulates that the source code for programs under the GPL is
freely available for anyone to download, use, copy, change, and distribute as they see fit.

Introduction ■ xvii

Blender itself, and the source code that runs it, is available to anyone who wants it. Those
looking to modify the code also have the freedom to do so as they wish, as long as they
explicitly identify the changes they have made and release the code as they got it: open
source and free of charge. What this means is that Blender is absolutely free, “as in free
speech” as GPL author Richard Stallman would say. For artists this means that 3D model-
ing and animation is no longer the domain of corporations or the very rich but whoever
believes that 3D is the proper medium for their next design production or work of art.

For many studios, however, the low price tag is a moot point. Many studios use Blender
because they can freely modify the program and develop their own in-house versions of
the software. This serves as a huge boon to Blender itself, as many of the features created
by these production houses find their way back into the versions released by the Blender
Foundation. These changes also occur incredibly fast: where other programs release a new
version once a year, Blender is constantly in development both by the Blender Foundation
and independent users. This collaborative development model means that the Blender
Foundation runs with only four employees, one of whom is Roosendaal himself.

Why Make Game Assets in Blender?
What Blender’s open-source outlook and community focus means to you, our DIY game
auteur/intrepid hero, is that Blender is an ideal tool not only for its price tag but also for its
flexibility. Even if you are not programming literate, you can access the massive Blender
community for help with using the program or directing you to a build of Blender that
will best serve your needs.

Additionally, Blender features a variety of modes that are analogous to other industry-
level packages like ZBrush and Maya. While the workflow of someone making characters
in other programs may have them exporting, importing, and re-exporting their models,
all of the 3D content creation can be accomplished within Blender.

Beyond cost and time concerns with using proprietary software packages, Blender also
excels in compatibility. The program is cross-platform, meaning that it works not only in
Windows but also in Mac OS (both Power PC and Intel models) and in Linux, the operating
system on which Blender originated. Best of all, files from one version of Blender are com-
patible with others, even older versions (minus some of the animations created in post-2.5
versions).

When I go off into one of my unintentional sales pitches for Blender, people often ask
me, “If it’s so great, then why doesn’t every studio just use it?” To be honest, programs
like Maya and 3ds Max are still the so-called industry standards and due to the mighty

xviii ■ Introduction

funding power of Autodesk will likely remain that way for a long time. The other answer
is user preferences. A lot of current game studio employees began their 3D careers in propri-
etary programs, and jumping ship for a new content creation environment in the middle of
development is a nightmare, no matter how amazing that new environment is. That being
said, Blender is still an amazing tool to have at your disposal, whether you are a professional
looking into open-source software options or a student looking to beef up your portfolio.

What Is the Unity Game Engine?
Unity is a game engine created by Unity Technologies for Windows and Mac OS. For those
who are unfamiliar with game engines, a game engine is a program within which someone
can create a video game. These programs include a rendering engine for displaying game
art assets, physics engines for controlling object interaction, sounds, scripting, animations,
and many other functions we associate with the modern video game. Unity itself can pro-
duce 3D games for Windows and Mac OS. With special licenses it can also make games
for the Nintendo Wii, Xbox 360, PlayStation 3, iOS platforms such as the iPhone and iPad,
and Android devices. One of Unity’s unique features is that it can also deliver 3D game con-
tent through web browsers by way of the Unity Player plug-in, which works with Internet
Explorer, Firefox, Safari, Chrome, Opera, Mozilla, Netscape, and Camino. It can also deliver
content to Adobe’s Flash Web Player. Unity is notable for receiving the Wall Street Journal’s
2010 Technology Innovation Award in the software category. Unity Technologies was also
named one of Gamasutra’s “top 5 game companies of 2009.”

Awards and features aside, Unity is one of the up-and-comers in the game industry both
for its ability to reach so many users on multiple platforms and for its ease of development.
Unlike other game engines that are built as esoteric, expensive, studio-specific tools that
are later released to the public, Unity has developed more as a consumer product. Where
this makes a difference is in the user interface: compared to the other game engines out
there, Unity is user friendly and financially accessible. This combination of flexibility and
economy has allowed it to be a favorite of both independent studios and larger companies
for games such as EA’s Tiger Woods PGA Tour Online, Marvel Super Hero Squad Online,
Cartoon Network Fusion Fall, and the Battlestar Galactica MMO.

Unity comes in two basic forms: basic (free) Unity and Unity Pro. Unity gets much of
its user base with the basic version, which is free of charge. This free version gives anyone
making games access to a fully featured game development environment. It lacks some
of the graphic and deployment features that are integrated into the Pro version, and users

Introduction ■ xix

of the free version must publish their games with a preinstalled Unity splash screen at the
beginning of their games. These issues aside, the free version of the Unity engine is excel-
lent for tackling game projects of all scales.

The Pro version of Unity is priced at $1,500 for one seat (or copy of the program). If you
are part of a studio that makes over $100,000 a year, this is also the version you must use if
you are going to sell a game made in Unity. Even if you are one of these big guys, however,
Unity Pro comes with no yearly subscription fee or royalty fee for delivering game content,
unlike other so-called freely available engines like the Unreal Development Kit. This book
will use (and was created with) the free version, as it is assumed that most of you will be
using it.

The engine makes itself more user-friendly with several features. One of them is Unity’s
WYSIWYG environment. WYSIWYG stands for “what you see is what you get,” as in
the image on the screen is what will appear in your game. This makes it different from
other game engines that rely mainly on coding for game development. The most important
features, however, are its drag-and-drop interface and its asset manager. Unity manages
assets—3D models, textures, sound files, scripting files, and so forth—by creating a proj-
ect folder on a user-specified location on the hard drive. This project folder is viewable
directly in the Unity interface, and any assets saved into it are automatically added to the
project, eliminating the need for troublesome importing of potentially incompatible files.
These assets can then be dragged and dropped into place in Unity itself, whether they are
a 3D model that needs to be somewhere specific in a level or a behavior script that is added
to that model as a “component” of it. Once these relationships are established, the result-
ing objects can even be saved as prefabs, prefabricated collections of objects that can be
dragged and dropped again and again into the game scene.

Where Do I Get Blender and Unity?
Blender and Unity are available for download directly from their developers’ websites as
shockingly small download files. For example, 3ds Max and Maya can take up several giga-
bytes of hard drive space, whereas Unity’s install file is under 700 MB. Blender takes the
prize for smallest install file at 21 MB. The websites are:

•	 Blender: www.blender.org

•	 Unity: www.unity3d.com

These sites also update their versions regularly, so you are always sure to have the latest
version of the software if you check often.

xx ■ Introduction

For Blender, there is also a separate website called GraphicAll where you can download
the latest user-generated or development versions of the software. While these are not the
Foundation’s stable releases, they feature a ton of useful plug-ins that could potentially ben-
efit your workflow. These can be found at www.graphicall.org.

Who Should Buy This Book
This book will teach you how to use Blender and Unity to create characters in a game
development workflow. If you have not yet bought this book and are perhaps reading it in
your bookstore’s computer section, then perhaps you may want to see if you fit into one of
these groups:

You’re a motivated person who is new to 3D modeling and animation and wants to make

games. Are you a general artist who says to yourself, “Gee, I’d really like to make my
own video game,” but you don’t know where to start? You may be afraid to step into the
potentially overwhelming world of other 3D modeling packages and the variety of software
needed to make a game due to expense or perceived level of difficulty. This book will not
only give you an overview of Blender and Unity but will also help you on your way to
making the next big indie hit.

You know how to use Blender’s modeling and animation tools, but you’re not sure how to

get them to work for a game workflow. Do you already have all the basic Blender skills
you need but feel unsure about how to use them to create game characters or import them
into a game engine? Maybe you are an animator who is used to working with things like
the subsurface modifier to create smooth Pixar-like characters but can never quite get a
handle on how to make a low-poly character look good. If so, you may want to skip the
basic stuff in the book and move ahead to the chapters on modeling and other techniques.

You are familiar with game art creation in other software packages. Do you already know
how to model low-poly characters to create game assets but want to know how to do the same
in Blender? There are many reasons to know multiple software packages: to look good in job
interviews, to get work done when you’re not at your office computer, or even to make Blender
part of the workflow of your game studio. You may skip around this book, because you already
know the workflow required for low-poly game assets and instead can use the book to get an
idea of how Blender can streamline your workflow. You’ll see how Blender is a useful all-in-
one environment and eliminates the need to export models to and from other programs.

Introduction ■ xxi

You know all that 3D stuff and want to get your hands dirty in an engine. While this
book will mostly focus on Blender game character creation, there will be a fair amount of
information on how to get the model up and running in Unity. Chapter 9, “Unity Engine
Basics,” and Chapter 10, “Implementing Your Zombie in a Unity Game,” explore Unity’s
interface and importing workflow. These chapters also show you how to implement the
character into an arcade-style shooter.

Overall, if you have an interest in games and 3D modeling or animation, this book is
probably for you.

Whether you are a hobbyist game developer or an industry insider looking for new tools,
this book will help you diversify your skill set and potentially reach new audiences with
Unity’s wide-ranging delivery options. With the rise of the casual gaming market, plat-
forms where games are played are beginning to be as diverse as the people who play them.
Blender and Unity can help you create your projects with efficiency of time and money and
give you the ability to reach a broad user base.

What You Will Learn
So let’s get into it, O intrepid DIY gaming warrior, and talk about what you’ll be doing with
this book. As stated earlier, through the exercises in this book you will be creating a game
character and adding it to a game program in the Unity engine. This is a much more dif-
ficult task than many people realize, so we will attack it step by step. The book gives you a
basic lesson in game art, and then introduces you to the Blender interface. From there you
will model, texture, sculpt, rig, and animate your character before moving into the Unity
engine, where you will import the character and use scripting to give it behaviors. At the
end of our quest, you will have your very own game enemy to fight.

For these exercises, you will create a common enemy found in many games. Though it
is not the greatest warrior around, this character can be particularly terrifying as it tries to
eat your brains with hordes of its friends.

While many people think that zombies are a bit cliché in today’s gaming landscape, they
provide a good basis for learning how to create an animated character model and give them
simple behaviors. They are also a lot of fun to fight (Figure I.1).

xxii ■ Introduction

How to Use This Book
The chapters in this book go step by step and you are free to take them on either in a linear
fashion or take your pick and skip around. Each chapter demonstrates part of the 3D char-
acter creation process and brings you closer to the final showdown at the end of the book
with your horde of zombies.

Hardware and Software Requirements
To do the exercises in this book, you will need a copy of both Blender and Unity.
Specifically, make sure you have Unity version 3.5 or above. They are both available for
download from their respective product websites:

•	 Blender: www.blender.org

•	 Unity: www.unity3d.com

Figure I.1
This book will lead

you through the
process of creating

and implementing a
zombie character.

Introduction ■ xxiii

To run these programs, you should check your hardware against the specifications listed
on the Blender and Unity websites at these sites:

www.blender.org/features-gallery/requirements/

http://unity3d.com/unity/system-requirements.html

Generally, you will want a computer with at least a 2 GHZ dual-core processor, 2 GB
of RAM, and an open GL graphics card with a minimum of 64 MB of RAM. As the Unity
website so wonderfully puts it, “any card made in this millennium will work.” For Blender,
you will want a three-button mouse with a scroll wheel, because many navigation functions
are mapped to the middle mouse button (MMB).

Additionally, you may want a 2D art program with which to create textures for the char-
acter. Adobe Photoshop is the program of choice, but ArtRage Studio Pro and GIMP are
both viable substitutions for artists on a budget. They can be found here:

•	 ArtRage: www.artrage.com/artrage-studiopro.html

•	 GIMP: www.gimp.org

Online Resources
Online resources for this book can be found at:

www.sybex.com/go/gameblenderunity

These project files will help guide you through the exercises if you wish to skip around
or even if you would like to compare your own work to the example files.

It’s important to understand that both game design and game art are not easy. They
can be a hectic business of long hours and hard work. However, they can also be incredibly
rewarding when you see something you created bring a smile to another person’s face.
Game art and especially 3D modeling can be frustrating at times, but press on, if not only
to improve your own skills but also for the chance to unleash your frustration on a video
game version of the author (the zombie is me, after all). What other software books offer that?

With that, let’s dive headfirst into your adventures in Blender and Unity. It’s going to
be fun.

What’s Inside
Your missions, should you choose to accept them, are thus:

Chapter 1, “Basic Game Art Concepts” This chapter describes the process of preparing art
for video games and important things that you, the 3D artist, should know. Game artists

xxiv ■ Introduction

don’t have the technical leeway that animators and filmmakers have, so this chapter will
make sure you are aware of concepts such as polygon count, normals, game engines, and
yes, even scripting.

Chapter 2, “Blender Basics for Game Characters” Here you will get your feet wet in the
open-source modeling program Blender. If you are a beginner with the program, this is the
chapter for you—it will introduce you to the interface and to some of the tools you will be
using during your quest as a 3D game artist. If you already have experience with Blender,
feel free to skip this chapter and move ahead. Or not—despite my experience I often dis-
cover something new from reading these types of chapters, so you may too.

Chapter 3, “Modeling the Character” This chapter introduces you to the character you will
be modeling and walks you through the step-by-step process of modeling it in Blender. You
will learn two different modeling methods—box modeling and poly-by-poly modeling—
that you will use to create different parts of the character.

Chapter 4, “Prepping for Zombie Details with UV Unwrapping” This chapter begins the
process of bringing your model to life with Blender’s sophisticated UV unwrapping tools.
You will discover how to draw seams on your model that will become the basis for UV lay-
outs. You’ll then take these layouts into the UV editor interface for some fine-tuning and
export them for painting in other programs.

Chapter 5, “Sculpting for Normal Maps” In this action-packed chapter, you will make the
zombie appear to have high-definition detailing with Blender’s Multires modifier and
sculpting mode. Intuitive for artists, the sculpting features in Blender will be useful
for creating gory details on the zombie model, such as facial damage and rotting flesh.
Additionally, you will learn how to add detail and wrinkles to clothing. Finally, you will
learn how these high-resolution details can be brought back to the low-polygon model that
will be imported into the game through the magic of normal maps.

Chapter 6, “Digital Painting Color Maps” In this chapter, you and your UV layout will
venture beyond the borders of Blender into an external painting program and create the
texture that will bring your zombie to life (or afterlife). Here you will learn some best prac-
tices for another important aspect of game art and digital painting and understand how
this will help you build better game characters.

Chapter 7, “Rigging for Realistic Movement” In this chapter, you will learn to use Rigify,
one of the more powerful plug-ins now available in Blender. This will help you make your
zombie posable and capable of (re)animation. Like modeling, rigging is a step-by-step

Introduction ■ xxv

process that will be covered here, from lining up the rig with the model to weight-painting
the bones so they influence only certain parts of your zombie’s body. Finally, you will take
a brief moment to pose and render your model for future portfolio display.

Chapter 8, “Animating the Zombie” In this chapter, you will learn how the Blender anima-
tion system works and create three simple animations that will be used in your zombie
game: idle, chase, and attack. These animations will be utilized later when you enter the
Unity engine.

Chapter 9, “Unity Engine Basics” Your quest has now brought you to the Unity engine,
where you will put your character in a level and fight hordes of zombies. Before you do this,
however, you must learn how the engine works. This chapter introduces you to the inter-
face and basic functions of the Unity game engine and shows you how to set up a simple
prototype level with Unity’s native primitive geometry.

Chapter 10, “Implementing Your Zombie in a Unity Game” In this final chapter, you will
bring your zombie into Unity and utilize scripts to make him chase and attack you in large
hordes. In this chapter you will also gain the weapons to defend yourself from the oncom-
ing zombie horde and hopefully make it out alive.

How to Contact the Author
I’d love to hear back from you with feedback on the book or questions about the exercises,
or even just to get in touch. I love hearing from others involved in gaming. You can reach
me at chris.totten1985@gmail.com. You can also visit my website at www.ChrisTotten3D.com
to find images from my latest projects.

Game Character
Creation with Blender
and Unity

Basic Game Art Concepts

Some people don’t want to take games seriously. This isn’t a lament
against parents lashing out over gore or people who think that games are a waste of time.
It is instead a statement about a popular assumption that making video games doesn’t
involve a lot of work. This assumption is a problem in many game schools, whether they
focus on the art, programming, or overall design of games.

In many ways, the art produced for a video game is not “art” in the traditional sense of
“fine art”—content created solely for enjoyment by the senses or for aesthetic value. The art
created for video games is, rather, part of the process of design or “applied art.” But there
are two important reasons why video game art is different from either animation or fine
art. First, game art is interactive for a player. Second, game art is rendered in real time.

Many quests begin not with an instant foray into death and danger, but instead with
an initial gathering of knowledge. Indeed, Sun Tzu’s The Art of War does not begin
by discussing battle right away, but with a chapter on planning. This is how we will
approach your own quest to be a game character artist—and perhaps your leap from
game consumer to creator.

This chapter covers the following topics:

■■ Game design workflows

■■ Creating game assets

■■ Understanding and optimizing 3D game art

■■ Working with game engines

■■ Scripting happens

C h a p T E r 1

2 ■ Chapter 1 : Basic Game Art Concepts

Game Design Workflows
As a young field, game design has no prescribed “workflow” or “design method.” This
fact means that game studios can establish their own ways of working—within cer-
tain parameters, of course. Unless you are the rare person who can program like John
Carmack and draw like da Vinci, you will most likely be working with a team. In many
ways, this is one of the current strengths of the gaming industry: Game designers come
from all fields and all walks of life. Consequently, team members have a broad range of
influences to pull from that helps them create the best game possible.

Of course, games have to be fun. Game designers test this aspect with playtesting:
inviting people to play early versions of a video game. Typically, games may see outside
playtesters coming in at a stage of near completion known as the “beta” stage. At this
point, many of the mechanics are already set in stone and the game has its artwork added
to the engine. Because of this, some designers urge playtesting earlier in the process.

Other “set in stone” parts of the game design process involve the business end of
things. This aspect is most directly embodied in the relationship between developers and
publishers. The development team, which puts the game together, can consist of program-
mers, artists, writers, testers, producers, and composers—anyone involved in the legwork
of making the game. Publishers oversee financial affairs, legal issues, public relations, and
marketing of the game, turning it into a viable product.

Projects are often structured in milestone-based schedules, where the publisher pays
the developer in phases. These phases generally include:

Concept Concept planning, budget, and contract negotiation

Preproduction Prototypes, design documentation, sketches, and basic design

Production

“Alpha” Development Assets, levels, and early code

Beta/Quality Assurance Playtesting with outside testers, utilizing beta code, and try-
ing to reach launch or “gold” status by eliminating bugs

Gold The point where the game is ready for mass production and retail and review
copies are sent out to press

Beyond these phases, the developer has freedom to follow their own design methods
as long as their obligations to the publishers are met. This has led to several distinctive
design methods employed by studios; we’ll look at some useful ones next. Try them in
your projects and mix and match as you find appropriate.

Phase-Based Design
Phase-based design is a literal interpretation of the milestone-based schedule employed
by many game publishers. It is also one of the most commonly used methodologies in the

