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PREFACE

“The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.”

—Albert Einstein

Anyone, who has taken the trouble to explore the rich legacy that James Clerk Maxwell
left to the scientific world, cannot fail to be impressed. Because he made such outstanding
and profound contributions in multiple disciplines within a life-span of only 48 years, his
achievements are all the more remarkable. They include seminal work in thermodynamics,
statistical mechanics, and electromagnetic theory, but it is the latter that we here consider.

Although this text was written to instruct advanced undergraduate and first-year grad-
uate students in the basic concepts of classical macroscopic electromagnetic fields, it
was done so with the hope of providing new insights into and appreciation for what
is surely one of the supreme achievements in science. Certain topics (described below),
that do not appear in traditional texts, are deserving of inclusion both in their own right
and because they simplify the development of new material concerning electromagnetic
power and energy. The title, The Power and Beauty of Electromagnetic Fields, was
chosen because of its multiple meanings.

During a tour of the campus, more than one M.I.T. student has taken a non-scientist
friend to the lobby of the Eastman Laboratories (Building 6) to stand before the marble
wall on which mathematical symbols that represent Maxwell’s Equations are inscribed
in bronze. Usually, the student attempts to convey to his friend just how powerful and
useful these compact equations are and how they at first predicted (rather than explained)

xxi
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the existence of electromagnetic waves propagating at the speed of light, c. How that,
in turn, led to their widespread application – to radio, microwaves, television, light, and
x-rays; to electrical generators, motors, transducers, control systems, and power-grids;
to integrated-circuits, computers, CD-ROMs, and the Internet; to electrocardiograms,
pacemakers, magnetic resonance imaging (MRI), computer aided tomography (CAT),
biosensors, and other emerging marvels of biomedical technology. And the list goes on
and on .... No one can doubt the utility – the power – of electromagnetic theory.

Mathematicians find beauty and elegance in equations – especially if they have general
applicability and can be expressed with brevity; many other scientists and engineers
share these feelings as well. Surely, Maxwell’s Equations qualify and may be considered
beautiful as well as powerful. After all, Albert Einstein pondered their properties and
shattered Newtonian concepts of space and time with his Theory of Special Relativity.
That in turn led to the introduction (by Minkowski) of four-dimensional space-time (with
ict the imaginary fourth-dimension). Recasting electrodynamics in four-dimensions made
evident new symmetries that led to even higher levels of understanding and beauty.
Finally, the pinnacle was reached when connections to the world of quantumphysics
produced Quantum Electrodynamics (QED) – but the last is not a subject for this text.

But there are other meanings of power and beauty as well. In circuit theory, electrical
power is voltage times current and flows into and out of network nodes; in electromagnetic
theory, the power flux is commonly defined as the Poynting vector, S = E × H (the
vector cross-product of the electric and magnetic fields), which is largely exterior to all
highly conducting pathways. Likewise, rather than being localized to the electric charges
and currents, the Maxwell field energy density, W , with terms proportional to the scalar
products E · E and H · H, is distributed throughout space. These quantities, related to
each other at every point by the Poynting Theorem, invite physical interpretation on a
per unit area or per unit volume basis. Even at very low-frequencies, that interpretation
is very different from the approximate, highly-localized circuit-theory representation.

Nevertheless, as recounted by Julius Stratton [1, pp. 134], the Poynting interpretation
was criticized as early as 1902 by H. M. Macdonald [2], and later by George H. Livens
[3], and Max Mason and Warren Weaver [4, pp. 264] among other writers. In their
thought provoking analogy, Mason and Weaver, while excepting highly localized regions
of space having little or no influence outside of them,

“do not believe that ‘Where?’ is a fair or sensible question to ask concerning energy.
Energy is a function of configuration, just as beauty of a certain black-and-white
design [such as the ’Tiled-Photons’ example] is a function of configuration. [They]
see no more reason or excuse for speaking of a spatial energy density than they
would for saying, in the case of a design, that its beauty was distributed over it with
a certain density. Such a view would lead one to assign to a perfectly blank square
inch in one portion of the design a certain amount of beauty, and to an equally blank
square inch in another portion a certain different amount of beauty.”

Many who have pondered that criticism applaud its cleverness – but consider it a
false analogy that does little to advance one’s understanding of the issue. After all, they
had offered no alternate interpretation of (or replacement for) S and W . If not in the
fields, where does radiating electromagnetic wave power and energy reside? Because
circuit-power is confined to the wires that carry electrical currents, it cannot be used
to explain radiation without the addition of a rather mysterious “radiation-resistance”
to the circuit path. Even with that artifice, when the source-current is turned-off and a
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‘Tiled-Photons’

transmitting circuit stops radiating, one expects that the energy, that has been radiated,
must be located somewhere in free-space prior to its eventual detection – possibly very
far from the transmitter.

During his junior year as an electrical engineering student at M.I.T., this author recalls
an instructor telling the class that “although sophomores believe that electrical power is
confined to the wires that carry electrical currents in a circuit, we [who have learned
about Poynting] know better.” One skeptical student asked the instructor if his belief in
the Poynting vector was strong enough that he would be willing to touch the wires of
a high-voltage circuit. Without hesitation, the instructor responded, “of course, provided
that you show me how I can do so without putting my hand in the field.” We all laughed
and became more than a little smug because of our new found superior knowledge – we
really thought that we did know better! Nearly forty years later, I learned that we (or at
least I) did not; that realization, which came near the end of a long academic career in
electromagnetism, was the principal motivation for the writing of this text. The analysis
that led to that realization forms an essential component of its content.

Although the “circuit” representation is very useful, conventional wisdom considers
it only a low-frequency or quasistatic approximation. In this text, we show that this
is not necessarily true and in the process find alternate representations of electromag-
netic power and energy that differ from the familiar Poynting theorem values – yet are
fully equivalent. The particular choice focussed on features highly-localized power and
energy components and emphasizes the circuit rather than the wave nature of these quan-
tities. Moreover, unlike the Poynting vector, this exact representation merges smoothly
with well-known quasistatic approximations that have long been used to calculate power
flows in both lumped and distributed circuits operating at low-frequencies. As required,
the electromagnetic power-conversion density, E · J (the dot product of electric-field and
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current-density), is the same in both the Poynting and all correct alternate representations
of electromagnetic power. Maxwell’s Equations and the fields they describe are, of course,
left unchanged. It is also possible to alter the Maxwell stress-tensor, T, and the associated
electromagnetic momentum-density, G, in a similar manner without altering the electro-
magnetic force-density; when all four elements (S, W , T, and G) are treated similarly,
any of the resulting alternate-representations can replace the Maxwell-Poynting form
without approximation. One specific choice is termed the Alternate-representation. For
time-harmonic fields, the complex Poynting theorem, energy-theorem, and momentum-
theorem all have alternate-counterparts. Electromagnetic angular-momentum also has an
alternate counterpart that is shown to connect directly with the spin properties of photons.

For certain electromagnetic problems, the Alternate-representation leads to both
conceptual and computational simplicity. It is especially useful when dealing with either
antenna radiation or quasistatic fields. For example, the power radiated from a Hertzian
electric-dipole and its radiation pattern both can be calculated without first finding the
electric and/or magnetic field – not a single curl operation need be performed. For
other problems, it is the Maxwell-Poynting representation that is mathematically simpler;
having a choice adds both flexibility and insight to the process of problem solving. Some
features are surprising; for steady-state single-frequency fields, the free-space Alternate
power-flux and energy-density are time-independent. Consequently, Alternate reactive
power-flows and energies are banished from free-space and restricted to the locations of
the charges and currents.

The text is divided into four-parts: Basic Electromagnetic Theory; Four Dimensional
Electromagnetism; Electromagnetic Examples; Backmatter. Part I is devoted to a fairly
conventional presentation of the integral and differential forms of Maxwell’s Equations in
free-space containing electric charges and currents that are subject to Lorentz-forces. Con-
servation of charge is assumed. The equivalent representation in terms of the magnetic
vector-potential and the electric scalar-potential is also given in both Coulomb and Lorenz
gauges. Materials with polarization and magnetization that may be electrically-conducting
are considered, as are the boundary conditions at material and source interfaces.

When wave-propagation effects are negligible, fields that are mainly electric or mag-
netic are classified as either electroquasistatic (EQS ) or magnetoquasistatic (MQS ). The
properties of quasistatic fields and their analysis by approximate methods are developed.

Electromagnetic power, energy, stress, and momentum are presented in both the
Maxwell-Poynting and Alternate representations. So too, are complex versions of power
and energy theorems that apply to sinusoidal steady-state fields. For linear media, both
homogeneous (source free) and inhomogeneous wave equations are studied in one, two,
and three dimensions; extensive use is made of both symmetry and the principle of super-
position The concepts of electromagnetic duality, equivalence, and Babinet’s Principle
for complementary structures are other important topics that are included; the uniqueness-
theorem, induction-theorem, and reciprocity-theorem are also derived.

All derivations contained in Part I are carried out in conventional three-space coor-
dinates with time as a parameter, but it is actually easier to formulate (and generalize)
electrodynamics using four-dimensional representations of both fields and forces. It then
follows that power, energy, stress, and momentum are unified in terms of an energy-
momentum tensor. In Part II, we introduce these concepts and emphasize the utility
of expressing the various tensors in terms of four-vector electric and magnetic fields
and the four-vector-potential. However, no prior knowledge of such representations is
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assumed nor is the reader expected to be familiar with the electrodynamics of moving
media which is also discussed. Although these topics must be considered advanced1, they
depend upon straight-forward extensions of the standard vector-calculus – knowledge of
which is a prerequisite for almost all texts (including this one) on electromagnetic-
theory. Using this approach, an infinity of energy-momentum tensors are found that are
fully equivalent to the usual Maxwell-Poynting form; these change the representation of
the electromagnetic power, energy, momentum and stress in free-space without altering
the four-vector electromagnetic-force density. As noted above, emphasis is given to the
particular choice that directly connects with circuit-theory representations of quasistatic-
fields. These results are generalized to include the presence of field interactions with
matter; special emphasis is given to dielectric and magnetic materials that are lin-
ear. Because multiple representations lead to a deeper understanding, four-dimensional
electromagnetics is presented in order to complement, illuminate, and (in many cases)
simplify, the topics developed in Part I. In addition, the theory certainly possesses great
“mathematical-beauty” and so is deserving of inclusion.

In Part III, classic field problems are considered that illustrate how solutions of
Maxwell’s Equations can be combined in order to satisfy boundary conditions for a wide
variety of examples that, in the main, depend upon topics covered in Part I. Solving
problems is the best (perhaps the only) way for a student of electromagnetics to master
both physical concepts and mathematical techniques. Gradually, one develops physical
intuition concerning fields; most find the process challenging, but the rewards great. It is
reassuring that, once gained, mastery of the subject will not become obsolete. Certainly,
its application to new materials and devices will continue to refresh electromagnetics, but,
if history is any guide, the basic field-equations will not be supplanted; Maxwell seems
to have got it very right. The specific examples were chosen, not only because the fields
themselves are of interest, but because detailed comparisons can be made between the
Alternate and Maxwell-Poynting representations. In many cases, the time-averaged distri-
butions agree exactly. However, in others, there are significant differences and not only is
Alternate power and energy highly-localized on currents and charges, but, astonishingly,
also in regions of free-space. When compared with the usual Poynting energy-density,
the propagation of such distributed and localized forms of Alternate-energy at first seems
to create grave paradoxes. However, on closer inspection and analysis of the measure-
ment process – by means of which power is detected, all of these are resolved. In other
cases, Alternate-power exists in regions free of electric and magnetic fields or vice-versa.
These strange results are also reconciled. In addition to the examples, which are worked
through in detail, a chapter of over 120 practice problems is included so that the reader
can test his/her understanding of the basic concepts and sharpen problem-solving skills.
Many of the problems were created by the author for use in both M.I.T. undergraduate
and graduate courses; however, new ones have been added as well.

Part IV contains the Backmatter including Summary, Appendices, Bibliography, and
Index. A photo gallery of many (unfortunately not all) electromagnetic luminaries is
included so that the reader can humanize the science of electromagnetics. As might
be expected, many of the pioneers lived interesting and multi-faceted lives; fascinating

1If considered too demanding (or when there is insufficient time), Part II may be delayed (or bypassed altogether)
until selected chapters of Part III have been studied. These contain topics and illustrative examples that depend
mainly on knowledge of Part I. Used in this way, the text can serve both undergraduate and graduate students.
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biographical information is readily available both in libraries and on the Internet. Eight
appendices complete the text. Appendix-A includes elements of Special-Relativity includ-
ing space-time coordinates and the Lorentz-transformation. Appendix-B is devoted to
three-space vector identities and their four-space vector and tensor equivalents. Appendix-
C contains important properties of Laplacian-fields and tabulates solutions of Laplace’s
Equation. Appendix-D provides expressions for Alternate-power, energy, stress, and
momentum in Cartesian, cylindrical, and spherical coordinate systems. Lorentz-torques
and electromagnetic angular momentum formulations in both Maxwell-Poynting and
Alternate formulations are also included. In Appendix-E, free-space fields associated
with pre-specified electric charge and current distributions are considered. The method
of images is included, as are formulas for the characteristic impedances of a variety
of uniform TEM transmission-lines. Appendix-F reviews properties of Bessel functions
and both Chebyshev and Hermite polynomials and provides useful recursion formu-
las and normalization integrals. Appendix-G discusses a very useful computer program:
4d-em.mac that has built-in knowledge of four-space electrodynamics; it runs under
Macsyma and is included on the DVD that accompanies the text. For readers without
access to Macsyma, the largely equivalent and freely available Maxima can be substituted
and is included. Finally, Appendix-H contains a list of the avi movie files for several of
the electromagnetic transients analyzed in the text. These animations are also included
and can be viewed with standard media players.

The DVD also includes three electronic versions of the book. [Advanced Level] is
the complete text (described above) that is the suitable for graduate courses, reference,
and self study. [Introductory Level] is intended for undergraduates; [Intermediate Level]
for graduate and well prepared undergraduate students. Both omit Part II and abridge
Parts III and IV by including appropriate selections of the [Advanced Level] examples,
practice problems, and appendicies. All three Levels are in PDF form suitable for on-line
viewing using Adobe Reader; bookmarks and hyperlinks from the table of contents allow
convenient browsing. The on-line versions of Appendix-H permit both the Macsyma
Notebooks and the animations to be launched directly from icon hyperlinks.

The difference between the energy-momentum tensors in the Alternate and Maxwell-
Poynting representation is itself a four-tensor, IIb, that produces neither electromagnetic-
force nor E · J power-density. It is therefore an ephemeral quantity – yet one with
components that can be calculated and presented graphically. In a bit of whimsy, that
honors the insights of Mason and Weaver, this author has dubbed IIb the “electromagnetic-
beauty;” this tensor joins electromagnetic-power to form still another set of meanings for
the book title. The author believes that graphical rendering of the “beauty-power-flux” of
an electromagnetic-field makes that final meaning plausible. Because selected examples
are included in the Summary, the reader can either confirm or deny that judgement.

F. R. Morgenthaler

Wellesley Hills, Massachusetts

November 2010
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PART I

BASIC ELECTROMAGNETIC
THEORY

INTRODUCTION TO PART I

Michael Faraday, James Clerk Maxwell, and others1 postulated that the electromagnetic
forces generated by electric charge and current densities (ρ and J) are transmitted by
electric and magnetic vector fields (E and H) that exist in the surrounding free-space.
This insight led to rapid progress in understanding the interconnections between time-
varying sources and these fields and culminated in Maxwell’s Equations as set forth in
1864. Their properties led to the prediction of electromagnetic waves traveling at the
speed of light. A more complete understanding of the power and energy associated with
these fields followed twenty years later.

1Originally, electricity and magnetism were separate fields of inquiry, each with its own nomenclature and
units. That changed in 1819 when the Danish physicist Hans Christian Oersted (1777–1851) discovered the
interaction of electric currents on a compass needle and coined the word “electromagnetism.” Following up on
this revelation, the French physicist Andre Ampere (1775–1836) studied the forces between electric currents.

1



2 BASIC ELECTROMAGNETIC THEORY

The interaction of fields and macroscopic matter is complicated by the fact that
(fortunately) materials have very diverse forms that include insulators, metals, and semi-
conductors. Almost all of these have dielectric properties; a few are strongly magnetic—
sometimes even when no external fields are applied. The principal responses of electro-
magnetic character that are generated in materials are: conduction currents due to the
motion of mobile unpaired charges,2 electric dipoles created by bound-charge pairs of
opposite polarity, and magnetic dipoles generated by either tiny current loops or the
coupling of the intrinsic magnetic moments of individual electrons (sometimes protons).
Three vector fields are found to characterize a wide range of materials: They are the
conduction-current density, Ju , the electric-dipole density, P, and the magnetic-dipole
density, M. The constitutive laws that relate the material responses to E and H are usu-
ally nonlinear (especially in the case of ferromagnets), but are often approximated as
linear—at least for weak fields.

Part I is devoted to a fairly conventional, but compact, presentation of both the
integral and differential forms of Maxwell’s Equations in free-space containing electric
charges and currents. Rather than follow the historical development, we simply postulate
the validity of conservation of charge, the Lorentz-force density, Faraday’s Law, and
Ampere’s Law—as amended by Maxwell. All sources are assumed to be averaged over
microscopic distances and times; therefore, the fields that they generate must also be
considered macroscopic in nature. An equivalent representation of these fields, in terms
of the magnetic vector potential and the electric scalar potential, is also given for both
Coulomb and Lorenz gauges.

Next, inhomogeneous wave equations governing the electric and magnetic fields are
derived—as are those governing the vector and scalar potentials in both the time and
frequency domains. Solutions are found by direct integration of the currents and charges
(assumed known). As an important example, the potentials associated with a line current
of incremental length are derived; they provide the basis for understanding electromag-
netic radiation. Materials with polarization and magnetization that may be electrically
conducting are then considered as are the boundary conditions at material and source
interfaces. When wave-propagation effects are negligible, fields that are mainly elec-
tric or magnetic are classified as either electroquasistatic (EQS ) or magnetoquasistatic
(MQS ). The equations governing quasistatic fields are derived, and analysis by approxi-
mate methods is outlined; the approach taken follows that of earlier M.I.T. textbooks by
Fano, Chu, and Adler [5] and Haus and Melcher [6].

As is customary, electromagnetic power, energy, stress, momentum, and angular
momentum are defined within the Maxwell–Poynting representation that is based upon
the Poynting vector and Maxwell stress tensor. However, the Alternate representation by
Morgenthaler [8] is also presented that embraces localized circuit-theory concepts and
merges with quasistatic representations, yet is exact ; the unification of power, energy,
stress, and momentum in these, and other representations, is delayed until Part II (where
the appropriate mathematical tools are developed). Power-energy theorems for both rep-
resentations are developed in the time domain. These are used to calculate Poynting
power and energy of a uniform plane wave and a radiating electric dipole and compare
them with the Alternate counterparts.

2In most metals, diffusion currents are negligible because conduction and charge neutrality combine to remove
concentration gradients that drive diffusion, In semiconductors, diffusion can be made to dominate; the bipolar
transistor depends upon it.
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Next, homogeneous wave equations and free-space waves propagating in one, two,
and three dimensions are studied in both the time and frequency domains. Waves of high
symmetry are given special attention because their superposition can be used to represent
inhomogeneous waves generated by arbitrary, but known, sources. Homogeneous waves
in linear dielectric and magnetic materials (that may also be conductive) are considered;
sinusoidal steady-state (harmonic) waves are given particular attention. In the limit of
high conductivity, simple wave propagation is radically altered and replaced by the
interrelated concepts of charge relaxation, magnetic diffusion, and skin depth. For loss-
free dielectrics, power, energy, stress, and momentum associated with packets of uniform
harmonic plane waves are considered from both wave and particle perspectives; the latter
is shown to follow a Hamiltonian formulation.

The final chapter of Part I is devoted to important theorems and principles. Frequency-
domain theorems involving electromagnetic power, stress, energy, and momentum are
derived. These are followed by duality of fields and sources, the uniqueness theorem,
the equivalence principle, the induction theorem, Babinet’s Principle for complementary
structures, and the reciprocity theorem.

When the Part III examples and explanatory texts are included, the overall coverage
of the standard wave-propagation issues is similar to that of other texts but is built upon
both the Maxwell–Poynting and Alternate representations. The most recent effort [9]
(designed for the M.I.T. EECS undergraduate curriculum) is authored by D. H. Staelin,
A. W. Morgenthaler, and J. A. Kong; older standards include Adler et al. [10] and Ramo
et al. [11].

The text is designed to serve a variety of curriculums. Because much of Part III
depends only upon Part I, an undergraduate course could omit the four-dimensional elec-
trodynamics of Part II and include only basic examples; the focus of a particular graduate
course might be restricted to advanced electrodynamics, antennas and diffraction, or
transmission lines and microwave circuits.





CHAPTER 1

MAXWELL’S EQUATIONS

1.1 MATHEMATICAL NOTATION

Scalar quantities, such as �, are printed in normal type.

Vectors, such as E and H, are printed in bold type; their components are printed
in normal type with subscripts that indicate coordinate directions.

Unit vectors are printed in bold type, but with ̂ over the symbol. Thus, E =
x̂Ex + ŷEy + ẑEz represents the electric field expressed in Cartesian coordinates as
the sum of three orthogonal vectors. Numerical subscripts 1, 2, 3 often substitute
for x , y , z ; for example, Ei can be any one of the components.

The scalar or dot product of two vectors A and B is indicated generally by A · B or

explicitly by either Ax Bx + Ay By + Az Bz or
3∑

i=1
Ai Bi . When (as here) indices are

repeated, the summation symbol is often understood to exist and omitted in order
to simplify the expression.

The vector cross product of two vectors A and B is indicated by A × B.

The Power and Beauty of Electromagnetic Fields, First Edition. F. R. Morgenthaler.
c© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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6 MAXWELL’S EQUATIONS

The del operator is defined by ∇ = x̂ ∂
∂x + ŷ ∂

∂y + ẑ ∂
∂z or in index notation by ∂

∂xi
. It

is used to express the gradient of a scalar and the divergence and curl of a vector.
These operations are defined in Appendix B, Section B.2.

Tensor quantities, such as T are printed in bold type, but with a bar over the
symbol; the components may be expressed in dyadic notation as two adjacent
vectors A B or in component form using normal type. Examples are: T = A B
= (̂xAx + ŷAy + ẑAz )(̂xBx + ŷBy + ẑBz ) or Tij = Ai Bj . Notice that, in general,
Tij �= Tji .

Four-dimensional vectors, such as E and H, and dyads, like A B, are printed in
calligraphic type.

1.2 FREE-SPACE FIELDS AND FORCES

In free-space regions that contain electric and magnetic field vectors, E and H, the Lorentz
force on a charge, qi , moving with velocity, vi (the subscript enumerates the charge and
is not the index of a Cartesian component) is

Fi = qi (E + vi × µoH) (1.1)

We employ SI units1 here and throughout the text.
If there are many charges within a small finite volume, �V , the total force within it

is ∑
i Fi = (

∑
i qi )E + (

∑
i qi vi )× µoH

When divided by �V , Eq. (1.1) reduces to the Lorentz force density,

f = ρE + J × µoH (1.2)

where ρ = lim�V →0

∑
i qi

�V is the macroscopic electric charge density and J = lim�V →0∑
i qi vi
�V is the macroscopic electric-current density. In these averages, the limiting �V

must remain large compared to microscopic dimensions. In the event that all of the
velocities are equal to v, the current, J = ρv, is said to be convective. The E and H fields
arise from all of the charges and currents and are themselves macroscopic averages. The
equations that follow describe the interactions between these macroscopic quantities.

Integral form of Maxwell’s Equations

For a region of free-space containing ρ and J, Maxwell’s Equations, when expressed in
integral form, are ∮

Co

H · ds − d

dt

∫
S
εoE · da =

∫
S

J · da (1.3a)

∮
Co

E · ds + d

dt

∫
S
µoH · da = 0 (1.3b)

1In this system of units, the abbreviations used include:
m (meter), s (second), kg (kilogram), C (coulomb), V (volt), A (ampere), F (farad),
H (henry), S (siemens), S −1 = � (ohms).
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S

Co

n da

t ds

Figure 1.1 Surface spanning closed contour.

where S is an arbitrary surface that spans the closed contour Co that is depicted in
Figure 1.1.

When S is a minimal surface (that of a soap bubble film anchored by the contour),
its positive side is defined as that seen from above as we circle the contour in a counter-
clockwise direction. The unit vector, n̂, normal to that surface (or any other that can
be formed by simple deformation), points outward from its positive side. The vector
differential area of S is defined by da = n̂da; the vector differential distance along the
contour, Co, by ds = t̂ds , with t̂ the unit vector tangential to the contour (and of positive
polarity as we circle it). The first of these equations is Ampere’s Law as amended
by Maxwell to include the time-varying term (renowned as the Maxwell displacement
current density); the second is Faraday’s Law.

Because the electric charge is conserved, the total current flowing out of the closed-
surface, So, that encloses an arbitrary volume, V , must equal the negative time-rate of
change of the charge contained within it. Therefore,∮

So

J · da + d

dt

∫
V
ρ dV = 0 (1.4)

is the integral form of the Law of Conservation of Charge. If the contour Co is allowed
to shrink to zero as S → So, Eq. (1.3a) becomes

− d

dt

∮
So

εoE · da =
∮

So

J · da

provided that the magnetic-field tangential to Co is finite and so cannot contribute to the
limiting contour integral. When combined with Eq. (1.4) the result,

d

dt

(∮
So

εoE · da −
∫

V
ρ dV

)
= 0

can be integrated with respect to time to yield∮
So

εoE · da −
∫

V
ρ dV = constant

Consider a very small volume, V , centered upon some chosen point. Because ρ and E
can be forced to vanish in that region for at least one instant of time, the constant must
be zero for that and (by extension) every region.
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It follows that ∮
So

εoE · da =
∫

V
ρ dV (1.5a)

applies to an arbitrary volume. Equation (1.5a) is known as Gauss’ Law. Similar argu-
ments applied to Eq. (1.3b) lead to∮

So

µoH · da = 0 (1.5b)

These equations are often included in the set of Maxwell’s Equations, but are not inde-
pendent. From Eqs. (1.3a) and (1.3b) and either Conservation of Charge or Gauss’ Law
the other equation follows.

Units and fundamental constants

The units of the field vectors are [E ] = Vm−1and [H ] = Am−1, those of the electric
charge and current densities are [ρ] = Cm−3, and [J ] = Am−2, and that of the Lorentz
force density is [f ] = N m−3. The constants µo and εo are, respectively, the permeability
and permittivity of free-space. The former is legislated to have the value

µo = 4π × 10−7 Hm−1

whereas the latter is a measured quantity,

εo = 8.854187817 × 10−12 Fm−1

Because
c = 1√

µoεo
= 2.99792458 × 108 ms−1 (1.6)

(the velocity of light in vacuum) is so close to 3 × 108 m s−1, it is often convenient to
approximate the permittivity by the exact value,

εo = 1

36π
× 10−9 Fm−1

We shall adhere to that practice. Another combination of these constants that is extremely
useful is cµo defined as the characteristic impedance of free-space. Given the symbol,
ηo, it has the value

ηo = cµo =
√
µo

εo
= 120π � 377� (S −1)

Linearity and superposition

Because Maxwell’s Equations are linear with respect to the fields and the charges and
currents, superposition may be applied after dividing the sources into components with
respect to either space or time (or some combination). In particular, if

ρ =
∑

i

ρ(i ) (1.7a)

J =
∑

i

J(i ) (1.7b)



FREE-SPACE FIELDS AND FORCES 9

and each i th set of sources (not to be confused with a Cartesian index) is chosen so as
to satisfy conservation of charge, then

E =
∑

i

E(i ) (1.7c)

H =
∑

i

H(i ) (1.7d)

where E(i ) and H(i ) are the Maxwellian fields generated when ρ(i ) and J(i ) act alone.
The components may be either discrete or differential; in the latter case the summa-
tions are replaced by integrals. When it is possible to decompose the sources into
elements each providing a high degree of spatial symmetry, finding the field solutions
is greatly facilitated. Fields generated by stationary spatially symmetric charge or cur-
rent sources with either spherical, cylindrical, or planar symmetry are considered in
Appendix C, Section C.1. Time-dependent sources are often considered to be the super-
position of sinusoidal functions. This gives rise to representations employing Fourier
series and Fourier integrals in the respective cases of periodic or aperiodic functions.
As we shall learn in later sections of this chapter, representation in terms of complex
exponential functions is also a standard technique—applicable to the fields as well as the
sources.

Symmetric field-transient example

When a highly symmetric source is suddenly switched on at t = 0 and remains con-
stant thereafter, it is sometimes possible to deduce the field solutions using only the
integral form of the Maxwell Equations together with symmetry considerations. This
method depends solely upon the material that has been presented up to this point and
is employed in Part III, Chapter 15, Section 15.1. A more traditional solution of the same
problem is presented in Section 15.2; it is based upon the symmetries that are made evi-
dent by the differential form of Maxwell’s Equations. These are developed and built upon
in the remainder of this chapter. Before continuing, the reader is encouraged to jump
ahead to the first example in order to gain a preliminary understanding of both prop-
agating electromagnetic transients and the quasistatic fields that follow in their wake.
Both the speed of light and the ratio of electric to magnetic radiation field strengths (the
characteristic impedance of free-space) emerge from that example.

Differential form of Maxwell’s Equations

If the contour Co is chosen to lie in the y − z plane and it and the surface S spanning
the contour are allowed to shrink to vanishingly small dimensions, the contour integral∮

Co
A · ds (on a per unit area basis) equals the x component of the curl A. Suitable

orientation of the contour (in the z − x and x − y planes) will produce the y and z
components. Likewise, when the closed surface shrinks toward a point, the integral of
the normal flux of a vector over that surface is (on a per unit volume basis) the divergence
of that vector.
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The set of integral equations is therefore equivalent to the differential forms

∇ × H = J + εo
∂E
∂t

(1.8a)

∇ × E = −µo
∂H
∂t

(1.8b)

∇ · εoE = ρ (1.8c)

∇ · µoH = 0 (1.8d)

where the curl (∇×) and divergence (∇·) operators are written in terms of the gradient
operator, ∇ (del). Alternatively, the Divergence Theorem and Stoke’s Theorem (Appendix
B, Eqs. (B.7) and (B.8)) can be applied to produce the same results. We prove in Chapter
6 that both the curl and divergence of a field vector are determining factors in specifying
that vector, and so it is not surprising that Maxwell’s Equations constrain these quantities
for both E and H.

Because ∇ · (∇ × H) = ∇ · J+ ∂
∂t (∇ · εoE) = 0, the first and third equations imply

conservation of electric charge,

∇ · J + ∂ρ

∂t
= 0 (1.8e)

This result also follows directly from Eq. (1.4).

1.3 VECTOR AND SCALAR POTENTIALS

From renewed use of the vector identity, ∇ · (∇ × A) = 0, it follows that Eq. (1.8d) is
automatically satisfied by

µoH = ∇ × A (1.9)

When substituted into Eq. (1.8b), the result is

∇ × E + ∂

∂t
(∇ × A) = ∇ ×

(
E + ∂A

∂t

)
= 0

A second vector identity, ∇ × (∇�) = 0, then permits one to express the electric field
as

E = −∂A
∂t

− ∇� (1.10)

The vector (A) and scalar (�) potentials (defined with the conventional polarities) are
not unique because the set

A′ = A + ∇� (1.11a)

�′ = �− ∂�

∂t
(1.11b)

produces the same values of both E and µoH. The primed and unprimed potentials are
said to be related by a gauge transformation (set by the scalar function, �). Evidently,
the value of ∇ · A is not unique and may be specified as desired; two possibilities are of
special interest.
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Lorenz gauge

The Lorenz gauge2 is defined by

∇ · A + 1

c2

∂�

∂t
= 0 (1.12)

with c given by Eq. (1.6).
If that value is selected and Eqs. (1.9) and (1.10) are substituted into Eqs. (1.8e), the

result is

∇2A − 1

c2

∂2A
∂t2

= −µoJ (1.13a)

∇2�− 1

c2

∂2�

∂t2
= − ρ

εo
(1.13b)

where A and J are assumed to be expressed in Cartesian components. All four components
(Ax , Ay , Az ,�) are solutions of inhomogeneous wave equations; they are not independent
because conservation of charge must be satisfied. The current and charge densities are
those existing in free-space and must satisfy Eq. (1.8e); additional sources that model
dielectric and magnetic materials are described in Section 1.7 and, more thoroughly, in
Chapter 9.

Coulomb gauge

The Coulomb gauge (sometimes called the radiation gauge) is defined by

∇ · A = 0 (1.14)

If that value is selected and Eqs. (1.9) and (1.10) are substituted into Eqs. (1.8e), the
result is

∇2� = −ρ/εo (1.15a)

∇2A = −µo

(
J + εo

∂E
∂t

)
(1.15b)

∇2A − 1

c2

∂2A
∂t2

= −µo

(
J − εo∇ ∂�

∂t

)
(1.15c)

Equation (1.15a) is Poisson’s Equation, which does not contain time derivatives; conse-
quently, the scalar potential at any position must respond instantaneously and simultane-
ously to all changes in the electric charge density, ρ(r, t). Consideration of Eq. (1.15b)
reveals that the same is true of the vector potential, with respect to J(r,t)+ εo

∂E(r,t)
∂t

– the current density that includes the Maxwell displacement current. However, when
E is expressed in terms of both the scalar and vector potentials, the wave equation,

2The Lorenz gauge formulated by the Danish mathematician and physicist, Ludwig V. Lorenz (1829–1891), is
often incorrectly attributed to Hendrick Lorentz; the latter is noted for the Lorentz transformation, the Lorentz
contraction, and his theory of the electron.
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Eq. (1.15c), emerges. Of course, the values of E and H calculated from the Coulomb
gauge must (and do) agree with those calculated from the Lorenz (or any other) gauge.

Finally, when � = 0 (because, either there is no electric charge anywhere or else Eqs.
(1.11) have been used), the Lorenz and Coulomb gauges can be identical, but only in
charge-free regions of space. The reader should verify that the requisite � satisfies the
homogeneous wave equation, except where ∂(∇ · A)/∂t = −ρ/εo causes the Coulomb
gauge to fail.

1.4 INHOMOGENEOUS WAVE EQUATIONS FOR E AND H

The electric and magnetic fields, interwoven by Maxwell’s Equations, can be decoupled
by use of the vector identities,

∇ × (∇ × H) = ∇(∇ · H)− ∇2H

∇ × (∇ × E) = ∇(∇ · E)− ∇2E

and substitution of the curls and divergences of H and E. The result (after reordering
partial derivatives) is a pair of inhomogeneous wave equations (expressed in terms of
Cartesian components),

∇2H − 1

c2

∂2H
∂t2

= −∇ × J (1.16a)

∇2E − 1

c2

∂2E
∂t2

= 1

εo
∇ρ + µo

∂J
∂t

(1.16b)

The solutions are not independent because, as noted previously, the current and charge
densities must satisfy conservation of charge. The velocity of light, c, is given by Eq.
(1.6).

An alternate, though less direct, derivation of Eqs. (1.16a) and (1.16b) follows (in the
Lorenz gauge) from

∇ ×
(

∇2A − 1

c2

∂2A
∂t2

+ µoJ
)

= 0

∂

∂t

(
∇2A − 1

c2

∂2A
∂t2

+ µoJ
)

+ ∇
(

∇2�− 1

c2

∂2�

∂t2
+ ρ

εo

)
= 0

and (after again interchanging the order of the derivatives) substitution of Eqs. (1.9) and
(1.10). Naturally, the final result is independent of the choice of gauge.

1.5 STATIC FIELDS

When there is no time variation in the charges and/or currents, the steady-state fields are
also static and related by

∇2E = 1

εo
∇ρ (1.17a)
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∇2� = − ρ

εo
(1.17b)

∇2A = −µoJ (1.17c)

Static electric charge generates electrostatic fields � and E; static electric current gen-
erates magnetostatic fields, A and H. When the vectors are expressed in Cartesian
coordinates, each of the scalar equations takes the form of Poisson’s Equation:

∇2� = −s (1.18)

When s = 0, the homogeneous equation is termed Laplace’s Equation. Solutions in var-
ious coordinate systems are discussed in Appendix C, Section C.4; they are of great
importance in solving both static and quasistatic boundary-value problems. For now, we
assume that s is a known function of position and attempt to integrate Poisson’s Equation
directly.

Integration of Poisson’s Equation

Because Eq. (1.18) is a linear partial differential equation, both the source density, s , and
the response function, �, can be expressed as the superposition of differential components
that individually satisfy this equation.

When s is a three-dimensional unit impulse (delta function) located at the origin of
spherical coordinates, the spherically symmetric solution satisfies

∇2�(r) = 1

r2

∂

∂r

(
r2 ∂�

∂r

)
= −δ(r) (1.19)

with δ(r) = 1
4πr2 u0(r). Here u0(r) is the derivative of the unit step function, u−1(r)

(both are defined in Appendix B, Section B.1, but with origins shifted to r = 0+ so
that

∫∞
0 u0(r)dr = 1). It follows that � = 1/(4πr) and (with a shift of origin) d�p =

sq dVq/(4πrqp) where, as indicated in Figure 1.2,
rqp = rp − rq is the vector between the differential source located at rq and the

response evaluated at rp and rqp = |rp − rq |. After integration, the general solution of
Eq. (1.18) is found to be

�p(rp) =
∫

V

sq (rq )dVq

4πrqp
(1.20)

p

rqp

rp

rq

q

o

Figure 1.2 Origin, source point, q , and field point, p.
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When the field point is distant from all of the sources, 1/rqp can be expanded in a series
of powers of 1/rp . Together these constitute the multipole expansion that is developed
in Appendix C, Section C.2; the 1/rp term is the monopole, 1/r2

p the dipole, 1/r3
p the

quadrupole, and so on.

Electrostatics

The equations of electrostatics in integral form are

�p(rp) =
∫

V

ρq (rq ) dVq

4πεorqp
(1.21a)

Ep(rp) =
∫

V
r̂qp

ρq (rq ) dVq

4πεor2
qp

(1.21b)

and together form Coulomb’s Law.

Sphere of uniform charge

As a simple example, consider a sphere of radius R that contains a uniform volume
charge density, ρo. Without loss of generality we may define spherical coordinates so
that the point p lies on the negative z axis. Then Eq. (1.21a) becomes

�(rp) =
∫ R

0

∫ π

0

ρo2πr2
q drq sin θq dθq

4πεo

√
r2

p + r2
q + 2rprq cos θq

where rp may be smaller or larger than R. The result of the two integrations (after
dropping the subscript p) is

�(r) = ρo

εo


1
2 R2 − 1

6 r2, r ≤ R

R3

3r
, r ≥ R

From the gradient operator, or from Eq. (1.21b), the electrostatic electric field is

E(r) = r̂
ρo

3εo


r , r ≤ R

R3

r2
, r ≥ R

This solution was carried out only to illustrate the procedure; the preferred method of
solution is to use symmetry and Gauss’ Law to immediately solve for the electric field.

Magnetostatics

The equations of magnetostatics in integral form are (with ∇ · J = 0):

Ap(rp) =
∫

V

µoJq (rq ) dVq

4πrqp
(1.22a)

µoHp(rp) = ∇p × Ap = µo

4π

∫
V

∇p ×
[

Jq (rq )

rqp

]
dVq

= µo

4π

∫
V

∇p

(
1

rqp

)
× Jq (rq )dVq (1.22b)
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Because ∇p

(
1

rqp

)
= −∇q

(
1

rqp

)
= − r̂qp

r2
qp

,

Hp(rp) = 1

4π

∫
V

Jq × rqp

r3
qp

dVq (1.22c)

Equation (1.22c) is known as the Biot–Savart Law.

Circular current loop

As an important example, we calculate the magnetic field on the axis of a planar circular
loop of wire carrying current Io; the wire radius is assumed to be very small compared
to the loop radius, R. Integrating over the area of the wire results in

Hp(rp) = Io

4π

∮
dsq × rqp

r3
qp

(1.23a)

where dsq is the differential vector length of the current element. If the current loop lies
in the plane z = 0 with its center at the origin, the on-axis field (which by symmetry is
z -directed) is easily evaluated and found to be

H(r = 0, z ) = ẑ
IoR2

2(R2 + z 2)3/2
(1.23b)

The current direction and H obey the right-hand rule (with fingers curled in the direction
of the current, the thumb points in the direction of the field).

1.6 INTEGRATION OF THE INHOMOGENEOUS WAVE EQUATION

The inhomogeneous scalar wave equation is defined by

∇2� − 1

c2

∂2�

∂t2
= −s(r, t) (1.24)

If the spatial derivatives dominate over those with respect to time, the inhomogeneous
wave equation reduces to Poisson’s Equation, and an approximation to the solution is

�p(rp , t) �
∫

V

sq (rq , t) dVq

4πrqp
(1.25)

Such quasistatic solutions are often useful approximations to the exact solution.
Because there is a time delay of rqp/c before �p can respond to changes in the source

located at rq , the simplest correction to Eq. (1.25) that might be expected to improve the
approximation is to replace t with the retarded time, t − rqp/c, where

rqp =
√

r2
q + r2

p − 2rq · rp (1.26)

Remarkably,

�p(rp , t) =
∫

sq(rq , t − rqp/c) dVq

4πrqp
(1.27)

is an exact solution of the wave equation. Although this result can be verified by direct
substitution, we postpone proofs until Chapter 4, Section 4.5 and Chapter 7, Section 7.7.
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In cases where the source term, sq(rq , t) has a sinusoidal time dependence at frequency
ω, it is advantageous to introduce complex functions sq (rq , jω) and �p(rp , jω) such that

sq(rq , t) = Re{sq (rq , jω) exp(jωt)}

�p(rp , t) = Re{�p(rp , jω) exp(jωt)}
where Re { } is the operator that extracts the real part of the expression contained within
the curly brackets.

Substitution into Eq. (1.24) produces the complex form of the inhomogeneous wave
equation,

∇2� + k 2� = −sq (rq ) (1.28)

where the wavenumber k is defined by

k = ω
√
µoεo (1.29)

Because it is customary to define ω = 2π f and k = 2π/λo, the frequency f and free-space
wavelength λo are related by

f λo = c (1.30)

From Eq. (1.27), the integral form of the complex solution of Eq. (1.28) is

�p(rp) =
∫ sq(rq ) exp(−jkrqp) dVq

4πrqp
(1.31)

The complex exponential accounts for time retardation through the phase factor krqp .
Integrals of this form are commonly encountered in diffraction and antenna theory; they
can often be approximated with simpler forms when the observation point, rp , is very
distant from all source locations, rq . In such cases, Eq. (1.26) is well-approximated by

rqp � rp − rq · rp

rp

and the so-called “far-field” solution is

�p(rp) � exp(−jkrp)

4πrp

∫
V

sq(rq ) exp

(
jk

rq · rp

rp

)
dVq (1.32)

where the amplitude has been safely approximated using, rqp � rp .
We note that in either the time or frequency domain, � can be replaced by the scalar

� or any Cartesian component of A, E, or H with the corresponding s evaluated from
ρ and J. Equation (1.32) will be made use of repeatedly in the examples analyzed in
Part III, Chapter 22.

Current element (Hertzian electric dipole)

As an important example, we calculate the vector potential of a line current, of length
d and magnitude Io sinωt , that is parallel to the z axis and is “electrically short,” that
is d � λo(kd � 1). Because we are assuming a steady-state current, it is convenient to
employ complex vectors and scalars. With sq (rq ) = J z (xq , yq , zq) and �p(rp) = Az (rp),
it follows that for all rp � d , Eq. (1.32),

Az (rp) = µo
exp(−jkrp)

4πrp

∫∫∫
J z (xq , yq , zq) exp(jk

rq · rp

rp
) dxqdyq dzq
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can be used. After integrating over the cross section of the current and realizing that
exp(jk rq ·rp

rp
) � 1 (because the argument of the exponential never exceeds kd), the result

(after dropping the subscript p) is

Az (r) = µo
exp(−jkr)

4πr

∫ d

0
I(zq) dzq

If the current is uniform, the integral is simply Iod ; if not, it can be written as Iodeff and

Az (r) = µo
exp(−jkr)

4πr
Iodeff (1.33)

Because of charge conservation, the current cannot go to zero at the ends of the line ele-
ment without electric charges being created at the ends and/or along the length according
to

∂I(z )

∂z
+ jωQ ′(z ) = 0

If ∂I(z )
∂z = 0 (except at the ends), point charges of equal magnitude,

Q
o

= Io/ω, but opposite polarity, will exist at the ends and together create an electric
dipole of moment, Q

o
d ; otherwise a line-charge density, Q ′(z ), will exist along the

current and form a distributed dipole. In all cases, bipolar charges are the source of a
complex scalar potential that satisfies

�(rp) = exp(−jkrp)

−jω4πεorp

∫ d

0

∂I(zq )

∂zq
exp

(
jk

rq · rp

rp

)
dzq (1.34)

This integral is a little tricky to evaluate correctly, so we choose the alternate approach
of simply invoking the Lorenz gauge, ∇ · A + jωµoεo� = 0 (which by itself imposes
conservation of charge). The result is

� = −1

jωµoεo

∂Az (r)
∂z

= −Iodeff

jω4πεo

∂

∂z

[
exp(−jkr)

r

]
= Iodeff

jω4πεo

(
jk + 1

r

)
exp(−jkr)

r
cos θ

The reader should verify that the same result is obtained from Eq. (1.34).
For the sinωt dependence specified at the outset, Io = −j Io; therefore the time-

dependent versions of the potentials (evaluated by multiplying by exp(jωt) and taking
the real part) are

Az (r, t) = µoIodeff
sin(ωt − kr)

4πr
(1.35a)

�(r, t) =
√

µo
εo

Iodeff

sin(ωt − kr)− 1

kr
cos(ωt − kr)

4πr
cos θ (1.35b)

The Hertzian electric dipole is revisited in Chapter 3, Section 3.5 and Part III, Chapter
13, Section 13.1.

Current loop (Hertzian magnetic dipole)

As a second example, consider a small circular loop of radius R that lies in the x − y
plane, centered at z = 0. A uniform current, I(t) = Io cosωt , circulates around the loop.
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We continue to define k = ω/c and employ spherical coordinates with φ̂ the unit vector
in the azimuthal direction. For kR � 1, the complex vector and scalar retarded potentials
are

A(rp) = µo
exp(−jkrp)

4πrp

∮
loop

Ioφ̂q exp

(
jk

rq · rp

rp

)
dsq

� = 0

The reader is cautioned to remember that although the current is Ioφ̂, the unit vector
cannot simply be moved from inside to outside the integral. Instead, it must be converted
to its Cartesian components before the integrations that determine A are attempted. After-
wards, the components can be converted to spherical coordinates; of course, only the φ

component will survive. The electric potential is zero because the time-varying current is
uniform and does not produce electric charges. The complex exponential when expanded
in a Taylor series becomes

exp

(
jk

rq · rp

rp

)
� 1 + jk

rq · rp

rp
+ · · ·

Because the leading term vanishes when integrated around the closed loop, the first-order
term must be retained (unlike the case of the electric dipole). The far-field complex vector
potential evaluates to

A(r) = jk

(
1 + 1

jkr

)
R
µoIoR

4

exp(−jkr)

r
sin θ φ̂

The time-dependent form is

A(r) = φ̂
µo

4π

mo[−kr sin(ωt − kr)+ cos(ωt − kr)]

r2
sin θ (1.36)

where mo = IoπR2 is defined as the magnetic dipole moment.
The Hertzian magnetic dipole is revisited in Part III, Chapter 13, Section 13.2. We post-

pone further discussion of complex fields or the introduction of the complex Maxwell’s
Equations until after the time-domain version has been generalized to include dielectric
and magnetic materials.

1.7 POLARIZABLE, MAGNETIZABLE, AND CONDUCTING MEDIA

In the free-space formulation considered so far, only free charges and their associated
electric currents are present. When dielectric and magnetic materials are considered, the
response of electric and/or magnetic dipoles must be considered. Commonly, these are
considered to be paired electric charges (bound to each other), in the case of dielectrics,
and small electric-current loops (or their equivalent), in the case of magnetics. Other
models (permitted by the equivalence principle) are possible; these include using fictitious
magnetic charges of opposing polarities to model magnetic dipoles and/or small current
loops carrying fictitious magnetic current to model electric dipoles. Moreover, various
superpositions of all four types can be employed. In all models, the individual dipoles are
of microscopic or mesoscopic dimensions; this permits one to characterize the material
in terms of its polarization (P) and magnetization (M) vectors. Each is defined as the
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appropriate macroscopically averaged dipole-moment density. There may be spontaneous
values of M or P; more generally, they arise in response to applied electric or magnetic
fields. The response of dielectric materials can often be approximated as linear with
respect to the excitation. That of magnetic materials is generally nonlinear and hysteretic,
yet linear operation with respect to some operating point is sometimes possible. When the
material is deforming and/or accelerating, additional complexity and subtlety is involved.

Because, at present, we wish to continue using a vector-potential formulation, it is
convenient to employ a model for materials that is based solely on electric charge and
current. The previous formulation can then be generalized by adding additional electric
currents to those generated by the free (unpaired) charges. The form of Maxwell’s Equa-
tions remains unchanged. Other ways of incorporating magnetization into electrodynamic
theories are reviewed in Part II; the Chu formulation is of special interest because electric
and magnetic dipoles are modelled symmetrically.

Polarization and Amperian electric currents

The dielectric polarization can be modeled as identical charge distributions of opposite
polarity, ±ρo, displaced from one another by a small vector distance d. This is depicted
in Figure 1.3 with the separation greatly exaggerated.

d

–ρo

+ρo

Figure 1.3 Separated bipolar charge densities.

The electric-dipole moment of an incremental volume of the dielectric is the increment
�p = ρod �V [refer to Appendix C, Eq. (C.9)]; therefore

p =
∫

PodV (1.37)

where the polarization vector is defined as Po = ρod.3

The time rate of change of the polarization produces a current density,

Jpolarization = ρo
∂d
∂t

= ∂Po

∂t
(1.38)

and an associated charge density, ρpolarization. Because the latter is conserved indepen-
dently of the free charge, we obtain

∇ · ∂Po

∂t
= ∂

∂t
(∇ · Po) = −∂ρpolarization

∂t

3The superscript o is added because we reserve unscripted variables for field quantities in the Chu formula-
tion of electrodynamics. When the material is stationary and nondeformable, there is no difference between
corresponding quantities with and without a superscript.
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and
ρpolarization = −∇ · Po (1.39)

Notice that this charge density is not ρo. Indeed, if Po is spatially uniform, ρpolarization = 0,
except on the boundaries of the dielectric. There, surface polarization charges reside
wherever Po · n̂ is nonzero (̂n is the normal to the surface).

For magnetic materials, the magnetization is assumed to arise from tiny Amperian-
current loops (shown schematically in Figure 1.4) that produce magnetic-dipole moments.

Figure 1.4 Amperian current loops.

If the current circulating around each loop is uniform, no electric charge will be
present. Because conservation of Amperian electric charge requires that

∇ · Jamperian = −∂ρamperian

∂t
= 0

it follows that

Jamperian = ∇ × Mo (1.40a)

ρamperian = 0 (1.40b)

where Mo is, as yet, an undefined vector.
However, the net magnetic moment, m, of an electric-current distribution is defined

as
∫ 1

2 r′ × J dV [refer to Appendix C, Eq. (C.14)], which in this case is

m =
∫

1

2
r′ × (∇ × Mo) dV

and where the choice of the origin of r′ is arbitrary. The material volume is the sum of
increments �V ; each contributes an incremental magnetic moment �m. As we consider
each increment in turn, the origin of r′ = r can be redefined so as to be centered upon it.
Each incremental moment is therefore of the form �m = [ limr→0

1
2 r × (∇ × Mo)]�V .

But
r × (∇ × Mo) = (∇ · r − 1)Mo + ∇(Mo · r)− ∇ · (Mo r)
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Therefore, because ∇ · r = 3 and the other terms vanish in the limit, we obtain �m =
Mo�V . Consequently, the total magnetic moment of the material volume can also be
written as

m =
∫

Mo dV (1.41)

with Mo now identified as the magnetization vector (the magnetic-dipole moment per
unit volume). If Mo is spatially uniform, Jamperian = 0, except on the boundaries of the
magnetic material. There, surface magnetization currents reside wherever Mo × n̂ is
nonzero (̂n is the normal to the surface).

When polarization currents and Amperian currents are added to Ju, the current asso-
ciated with the free (unpaired) charge, it follows that

Jtotal = Ju + Jpolarization + Jamperian = Ju + ∂Po

∂t
+ ∇ × Mo (1.42a)

ρtotal = ρu + ρpolarization + ρamperian = ρu − ∇ · Po + 0 (1.42b)

With these field sources, it is customary to express Maxwell’s Equations in terms of the
field vector B/µo rather than H. With Eo substituted for E to distinguish the electric
field from that used in the Chu formulation, the result is

1

µo
∇ × B − εo

∂Eo

∂t
= Jtotal = Ju + ∂Po

∂t
+ ∇ × Mo (1.43a)

εo∇ · Eo = ρtotal = ρu − ∇ · Po (1.43b)

∇ × Eo + ∂B
∂t

= 0 (1.43c)

∇ · B = 0 (1.43d)

where

B = ∇ × A (1.44a)

Eo = −∂A
∂t

− ∇� (1.44b)

In this Amperian formulation, the Lorentz force density is

f = ρtotalEo + Jtotal × B (1.45)

It is customary to define

D = εoEo + Po (1.46a)

B = µo(Ho + Mo) (1.46b)

because, with their use, Maxwell’s Equations simplify to the Minkowski form,

∇ × Ho = Ju + ∂D
∂t

(1.47a)

∇ · D = ρu (1.47b)

∇ × Eo = −∂B
∂t

(1.47c)

∇ · B = 0 (1.47d)



22 MAXWELL’S EQUATIONS

Chu formulation

An alternate formulation, due to Lan Jen Chu, uses electric charges to model the polar-
ization and magnetic charges to model the magnetization. In this case, the sources are
duals of one another (as discussed in Chapter 6, Section 6.5) and Maxwell’s Equations
become

∇ × H − εo
∂E
∂t

= Je = Ju + ∂P
∂t

+ ∇ × (P × v) (1.48a)

εo∇ · E = ρe = ρu − ∇ · P (1.48b)

∇ × E + µo
∂H
∂t

= −Jm = −µo

[
∂M
∂t

+ ∇ × (M × v)
]

(1.48c)

µo∇ · H = ρm = −µo∇ · M (1.48d)

These are consistent with Eqs. (1.47) provided

Eo = E+µoM × v (1.49a)

Ho = H − P × v (1.49b)

Po = P − µoεoM × v (1.49c)

Mo = M + P × v (1.49d)

Notice that neither D nor B requires superscript labeling because

D = εoE + P = εoEo + Po (1.50a)

B = µo(H + M) = µo(Ho + Mo) (1.50b)

In the Chu formulation, there are separate Lorentz-force densities acting upon both the
electric and magnetic charges:

fe = ρeE + Je × µoH (1.51a)

fm = ρmE − Jm × εoE (1.51b)

The total force density is their sum which is different from Eq. (1.45) because magnetic
charges have been employed; the Minkowski formulation leads to yet another force
density. These are all forces of “electromagnetic origin” that are dependent on how the
sources are modelled; they must be augmented by mechanical and/or other forces. When
done so properly, the total force density is independent of the electromagnetic formulation
chosen. Despite the explicit velocity dependence, the Chu formulation is often (but not
always) simpler to use. However, because we wish to employ the vector-potential, we
continue at present with the Amperian formulation (expressed in terms of the Minkowski
electric and magnetic fields).

For regions of free-space it follows that the constitutive laws that relate the four field
vectors are (with Eo = E, Ho = H):

D = εoE (1.52a)

B = µoH (1.52b)
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Electrically conducting materials

For linear isotropic (stationary) conductors that obey Ohm’s Law,

Ju = σE (1.53a)

where σ is the electrical-conductivity with units of S m−1 = A V −1m−1.
For such materials, conservation of charge becomes

∇ · (σE)+ ∂ρu

∂t
= 0 (1.53b)

These materials may also have dielectric/magnetic properties.

Perfect conductors

A perfect conductor is defined by σ → ∞ and therefore unless Ju is infinite, the electric
field inside it must vanish. It follows that current must flow only in surface layers
of thickness δ → 0 and Ju → ∞ such that there is a finite surface current density, Ku

= limδ→0 Juδ. Because the time rate of change of any magnetic field inside the conductor
would produce electric fields, only static magnetic fields are tenable. Nevertheless, we
define a perfect conductor as one that is completely field-free.

Dielectric and magnetic materials

For linear isotropic (stationary) materials, the constitutive laws that relate the four field
vectors are

D = εE (1.54a)

B = µH (1.54b)

or equivalently

P = (ε − εo)E = χeεoE (1.55a)

M = (µ/µo − 1)H = χmH (1.55b)

where ε and µ are, respectively, the dielectric permittivity and the magnetic permeability.
The ratios, ε/εoand µ/µo are defined as the relative permittivity (dielectric constant) and
relative permeability. The electric and magnetic susceptibilities are the dimensionless
quantities defined by

χe = ε/εo − 1 (1.56a)

χm = µ/µo − 1 (1.56b)

The reader should again be cautioned that when the material is moving and/or deform-
ing, the values of E and H in this formulation are not identical to those in the free-space
equations. These complications are taken up in Part II of the text.
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1.8 BOUNDARY CONDITIONS

The form of Maxwell’s Equations reveals that in regions where the charges and currents
are continuous functions of position and time, the divergence, curl, and time-derivative
operators must all produce continuous functions. This fact requires the electric and mag-
netic fields to be continuous functions of space and time. However, there may be locations
(such as the surface of a conductor or the interface between different materials) where
there is an accumulation of charge and/or current that can be modeled as a finite surface
density that within zero thickness has infinite volume density. At such locations ∇ · E
and/or ∇ × H are infinite; these singularities lead to discontinuities in the respective
field. We wish to determine exactly how large these will be.

S
∆Α

n2

n1

n3∆h

Figure 1.5 Closed surface (normal fields).

Electric surface charges

Assume that an unpaired electric surface charge of density σ s
u resides on the surface

shown in Figure 1.5. A circular pillbox is constructed with equal top and bottom areas,
�A, that are located on opposite sides of the surface; the height of the box is �h . We
apply Eqs. (1.5a) and (1.47b) to the closed surface defined by the Gaussian pillbox

∮
top+bottom+sides

D · n̂ da =
∫

area
σ s

u da

[D(1) · n̂1 + D(2) · n̂2]�A + D(3) · n̂32
√
π�A�h = σ s

u�A

If �h � √
�A → 0 and E is finite, it follows that because n̂1 = −n̂2 = n̂, we obtain

n̂ · [D(1) − D(2)] = σ s
u (1.57)

Electric surface currents

Assume that an unpaired electric surface current of density Ks
u resides on the horizontal

surface shown in Figure 1.6.
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n

S

C

(1)

(2)

t ds

dA

n × t
∆s

∆h

Figure 1.6 Closed contour (tangential fields).

A rectangular area is constructed with equal top and bottom lengths, �s , that are
located on opposite sides of the surface; the height of the rectangle is �h . We apply Eqs.
(1.3a) and (1.47a) to the surface that is the plane of the rectangle:∮

perimeter
H · t̂ ds =

∫
area

Ju · (̂n × t̂) da =
∫

length
Ks

u · (̂n × t̂) ds

[H(1) · t̂1 + H(2) · t̂2]�s + [H(3) · t̂3 + H(4) · t̂4]�h = Ks
u · (̂n × t̂)�s

If �h � �s → 0 and H is finite, it follows that because t̂1 = −̂t2 = t̂ and n̂ · t̂ = 0,
we have

[H(1) − H(2)] · t̂ = Ks
u · (̂n × t̂) = (Ks

u × n̂) · t̂ (1.58a)

H(1) − H(2) = Ks
u × n̂ (1.58b)

n̂ × [H(1) − H(2)] = Ks
u (1.58c)

Conservation of charge

If a surface of discontinuity supports σ s
u and/or Ks

u and the material on one or both sides
supports volume currents, Ju, the boundary conditions must maintain conservation of
unpaired electric charge. A Gaussian pillbox is again erected to provide a closed surface
over which

∇ · Ju + ∂ρu

∂t
= 0

can be integrated. Comparison with Eq. (1.47b) suggests that

n · [J(1)u − J(2)u ] = −∂σ s
u

∂t

However, in this case, Ju → ∞, and so contributions from the sides cannot be ignored
in the limit �h → 0. The correct boundary condition is

n · [J(1)u − J(2)u ] + ∇� · Ks
u + ∂σ s

u

∂t
= 0 (1.59)

where ∇� · Ks
u is the two-dimensional surface divergence that accounts for the net out-

ward flow along the surface. It is defined by
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∇� · Ks
u = lim

�A→0

∮
Co

Ks
u · (t × n) ds

�A
(1.60)

Because polarization charges are separately conserved, this form of boundary condition
applies to them as well as to the total current and charge densities. There is no elec-
tric charge density associated with the Amperian current density, ∇ × M; but a surface
density,

Ks
M = n̂ × [M(1) − M(2)]

exists wherever there are discontinuities in the tangential magnetization vector.
Because there are no magnetic charges or magnetic currents, the boundary conditions

for E and B are

n × [E(1) − E(2)] = 0 (1.61a)

n · [B(1) − B(2)] = 0 (1.61b)

It also follows that

n · εo[E(1) − E(2)] = σ s
total = σ s

u + σ s
polarization (1.62a)

n · [P(1) − P(2)] = −σ s
polarization (1.62b)

n · [H(1) − H(2)] = −n · [M(1) − M(2)] (1.62c)

1.9 THE COMPLEX MAXWELL EQUATIONS

In the sinusoidal steady state, time-harmonic vectors and scalars can be conveniently
expressed as

F(r,t) = Re
{
F(r) exp(jωt)

}
� = Re

{
�(r) exp(jωt)

}
where the symbol Re stands for the real part of the expression in the curly brackets {},
and the vector or scalar that is underscored is a complex quantity that may be a constant
or a function of position. Because spatial and temporal derivatives are operations that
commute with taking the real part, one may initially suppress the Re until the very last
stage of analysis and simply insert the bracketed terms into Maxwell’s Equations. When
this is done, each time derivative will cause multiplication by the factor jω, but exp(jωt)
will remain a common factor in every term; these are cumbersome and can be ignored
if we remember to reinsert it before taking the real part.

The complex forms of Eqs. (1.47a)–(1.47d) (with the time dependence suppressed)
are therefore

∇ × Ho − jωD = Ju (1.63a)

∇ · D = ρu (1.63b)

∇ × Eo + jωB = 0 (1.63c)

∇ · B = 0 (1.63d)



THE COMPLEX MAXWELL EQUATIONS 27

The complex forms of Eqs. (1.44a) and (1.44b) are

B = ∇ × A (1.64a)

Eo = −jωA − ∇� (1.64b)

In most cases, we assume that the material is stationary and nondeforming; then, the
superscripts can be removed from the electric and magnetic fields.





CHAPTER 2

QUASISTATIC APPROXIMATIONS

There are many electromagnetic-field configurations in which propagation effects are
negligible. For example, if the time required for the field to travel through a structure is
very small compared to the time variation of the sources that generate the fields, then
the wave velocity can be considered to be infinite. In such cases, the electromagnetic
wave equation is well approximated by Laplace’s Equation, and the superposition of
Laplacian fields1 that match the appropriate boundary conditions provides a satisfactory
solution. In the limit of slow time variation (low frequency for sinusoidal steady-state
fields), it often occurs that the electric field predominates over the magnetic field or vice
versa. This leads to the classification of quasistatic fields that are either electroquasistatic
(EQS ) or magnetoquasistatic (MQS ); references 5 [Chapter 6, p. 213] and 6 both contain
treatments of quasistatic analysis, especially for sinusoidal steady-state fields. In some
cases involving electrical conduction, the fields may be comparable yet both quasistatic
in character. These three types of fields will be considered separately. In all cases the

1In some cases, such as those involving piezoelectric or magnetoelastic materials, hybrid waves can propagate
with predominatly mechanical energies. Although the weak electric or magnetic fields (associated with what are
basically elastic waves) are subject to quasistatic analysis, they are non-Laplacian in character and statements
made in this text about Laplacian EQS and MQS fields do not apply.

The Power and Beauty of Electromagnetic Fields, First Edition. F. R. Morgenthaler.
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electric and magnetic fields are expressed as

E = E(0) + E(1) + · · ·
H = H(0) + H(1) + · · ·

The main advantage of quasistatic analysis is that for many configurations that model
practical devices, in which propagation effects are secondary, very complicated field
problems can often be broken into comparatively simple pieces that nevertheless provide
a basic understanding of the device operation. In numerous cases, the theoretical analysis
required can be carried out by “back of the envelope calculations.” When this is possi-
ble, the enhanced physical intuition that is gained is of incalculable value. Even when
computer simulations are required (or desired), quasistatic analysis is often a valuable
tool and guide.

2.1 QUASISTATIC EXPANSIONS OF A STANDING WAVE

To make clear the nature of quasistatic fields, we consider the exact solution of a standing
electromagnetic wave of frequency ω and its quasistatic expansion. Linearly polarized
fields formed by a pair of equal and opposite harmonic plane waves directed along the
z axis are

E = x̂Eo cos(kz ) cos(ωt)

H = ŷ
1

cµo
Eo sin(kz ) sin(ωt)

k = ω
√
µoεo

Near z = 0, the field is principally electric in character and so there the expansion is
EQS . Taylor series expansions of the z variations yield

E = E(0) + E(2) + · · · = x̂Eo cos(ωt)

[
1 − 1

2!
(kz )2 + 1

4!
(kz )4 − · · ·

]
H = H(1) + H(3) + · · · = ŷ

1

cµo
Eo sin(ωt)

[
kz − 1

3!
(kz )3 + · · ·

]
where

E(n) = x̂Eo(−1)n/2 (kz )n

n!
cos(ωt) (n even)

H(n) = ŷ
1

cµo
Eo(−1)(n−1)/2 (kz )n

n!
sin(ωt) (n odd)

Near kz = π/2, the dominant field is magnetic and so there the expansion is MQS .
Although a shift of the z -coordinate origin is convenient, a simpler method is to consider
the dual field:

H = x̂Ho cos(kz ) cos(ωt)

E = −̂ycµoHo sin(kz ) sin(ωt)

k = ω
√
µoεo


