
Wiley Series on Technologies for the Pharmaceutical Industry Sean Ekins, Series Editor

Systems Biology in Drug Discovery and Development

Edited by *Daniel L. Young and Seth Michelson*

SYSTEMS BIOLOGY IN DRUG DISCOVERY AND DEVELOPMENT

Wiley Series on Technologies for the Pharmaceutical Industry Sean Ekins, Series Editor

Computational Toxicology: Risk Assessment for Pharmaceutical and Environmental Chemicals Edited by Sean Ekins Pharmaceutical Applications of Raman Spectroscopy Edited by Slobodan Sasic Pathway Analysis for Drug Discovery: Computational Infrastructure and *Applications* Edited by Anton Yuryev Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools Edited by Sean Ekins and Jinghai J. Xu The Engines of Hippocrates: From the Dawn of Medicine to Medical and Pharmaceutical Informatics Barry Robson and O. K. Baek Pharmaceutical Data Mining: Approaches and Applications for Drug Discovery Edited by Konstantin V. Balakin The Agile Approach to Adaptive Research: Optimizing Efficiency in Clinical Development Michael J. Rosenberg Pharmaceutical and Biomedical Project Management in a Changing Global Environment Edited by Scott D. Babler Systems Biology in Drug Discovery and Development Edited by Daniel L. Young and Seth Michelson

Editorial Advisory Board

Dr. Renee Arnold (ACT LLC, USA)
Dr. David D. Christ (SNC Partners LLC, USA)
Dr. Michael J. Curtis (Rayne Institute, St Thomas' Hospital, UK)
Dr. James H. Harwood (Delphi BioMedical Consultants, USA)
Dr. Maggie A.Z. Hupcey (PA Consulting, USA)
Dr. Dale Johnson (Emiliem, USA)
Prof. Tsuguchika Kaminuma (Tokyo Medical and Dental University, Japan)
Dr. Mark Murcko (Vertex, USA)
Dr. Peter W. Swaan (University of Maryland, USA)
Dr. Ana Szarfman (Food and Drug Administration, USA)
Dr. David Wild (Indiana University, USA)

SYSTEMS BIOLOGY IN DRUG DISCOVERY AND DEVELOPMENT

Edited by

Daniel L. Young Seth Michelson

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Systems biology in drug discovery and development / edited by Daniel L. Young, Seth, Michelson.

p. ; cm.
Includes bibliographical references.
ISBN 978-0-470-26123-1 (cloth)
1. Drug development. 2. Systems biology. I. Young, Daniel L., editor.
II. Michelson, Seth., editor.
[DNLM: 1. Drug Discovery-methods. 2. Models, Biological. 3.

Pharmacokinetics. 4. Pharmacological Processes. 5. Systems Biology–methods. QV 744]

RM301.25.897 2011 615'19–dc22

2010043475

Printed in the United States of America

oBook ISBN: 978-1-118-01643-5 ePDF ISBN: 978-1-118-01641-1 ePub ISBN: 978-1-118-01642-8

10 9 8 7 6 5 4 3 2 1

PREFA	CE	xi
CONTI	RIBUTORS	XV
	I INTRODUCTION TO SYSTEMS BIOLOGY PROACH	
and	coduction to Systems Biology in Drug Discovery Development <i>Michelson and Daniel L. Young</i>	3
•	erences	3 5
The	thods for <i>In Silico</i> Biology: Model Construction and Analysis resa Yuraszeck, Peter Chang, Kalyan Gayen, Eric Kwei, ry Mirsky, and Francis J. Doyle III	7
2.2 2.3 2.4 2.5	Introduction Model Building Parameter Estimation Model Analysis Conclusions erences	7 8 21 28 32 32
Dyı	t hods in <i>In Silico</i> Biology: Modeling Feedback namics in Pathways r Wellstead and Olaf Wolkenhauer	37
3.3 3.4 3.5	Introduction Statistical Modeling Mathematical Modeling Feedback and Feedforward Conclusions erences	37 39 46 49 56 56
		v

Simula	ation of Population Variability in Pharmacokinetics	59
Jiansong Yang		
4.1	Introduction	59
4.2	PBPK Modeling	60
4.3	Simulation of Pharmacokinetic Variability	61
1.4	Conclusions and Future Directions	79
Refere	ences	80
1	iansor 1.1 1.2 1.3 1.4	 <i>Yiansong Yang</i> Introduction PBPK Modeling Simulation of Pharmacokinetic Variability

PART II APPLICATIONS TO DRUG DISCOVERY

5.	Ident	cations of Systems Biology Approaches to Target ification and Validation in Drug Discovery Hendriks	95
	5.1	Introduction	95
	5.2	Typical Drug Discovery Paradigm	97
	5.3	Integrated Drug Discovery	99
	5.4	Drivers of the Disease Phenotype: Clinical Endpoints	
		and Hypotheses	100
	5.5	Extracellular Disease Drivers: Mechanistic	
		Biotherapeutic Models	106
	5.6	Relevant Cell Models for Clinical Endpoints	109
	5.7	Intracellular Disease Drivers: Signaling Pathway	
		Quantification	110
	5.8	Target Selection: Dynamic Pathway Modeling	117
	5.9	Conclusions	123
	Refer	ences	125
6.		Identification and Optimization Aichelson	135
	6.1	Introduction	135
	6.2	The Systems Biology Tool Kit	139
	6.3	Conclusions	142
	Refer	ences	143
7.	An E	of Core Biological Motifs in Dose–Response Modeling: xample with Switchlike Circuits Bhattacharya, Qiang Zhang, and Melvin E. Andersen	147
	7.1 7.2	Introduction: Systems Perspectives in Drug Discovery Systems Biology and Toxicology	147 148

7.3	Mechanistic and Computational Concepts in a Molecular or Cellular Context	151
74		131
7.4	Response Motifs in Cell Signaling and Their Role in Dose	150
75	Response	152
7.5	Discussion and Conclusions	165
Refe	rences	169
8. Mec	hanism-Based Pharmacokinetic–Pharmacodynamic	
	eling During Discovery and Early Development	175
Hans	Peter Grimm, Ying Ou, Micaela Reddy, Pascale David-Pierson,	
and T	Shierry Lavé	
8.1	Introduction	175
8.2	Challenges in Drug Discovery and Development	176
8.3	Methodological Aspects and Concepts	179
8.4	Use of PK–PD Models in Lead Optimization	183
8.5	Use of PK–PD Models in Clinical Candidate Selection	188
8.6	Entry-into-Human Preparation and Translational PK–PD	
	Modeling	189
8.7	Use of PK–PD Models in Toxicology Study Design and	107
017	Evaluation	189
8.8	Justification of Starting Dose, Calculation of Safety	10)
0.0	Margins, and Support of Phase I Design	191
8.9	Phase I and Beyond	193
8.10	Support of Early Formulation Development	195
8.10	Outlook and Conclusions	195
	rences	
Rele	1011008	197

PART III APPLICATIONS TO DRUG DEVELOPMENT

9.	Dev	eloping Oncology Drugs Using Virtual Patients of	
	Vasc	ular Tumor Diseases	203
		Agur, Naamah Bloch, Boris Gorelik, Marina Kleiman, Kogan, Yael Sagi, D. Sidransky, and Yael Ronen	
	9.1	Introduction	203
	9.2	Modeling Angiogenesis	205
	9.3	Use of Rigorous Mathematical Analysis to Gain Insight	
		into Drug Development	213
	9.4	Use of Angiogenesis Models in Theranostics	220
	9.5	Use of Angiogenesis Models in Drug Salvage	226
	9.6	Summary and Conclusions	230
	Refe	rences	231

10.		ems Modeling Applied to Candidate Biomarker	
		tification	239
	Ananth Kadambi, Daniel L. Young, and Kapil Gadkar		
	10.1	Introduction	239
	10.2	Biomarker Discovery Approaches	245
	10.3		
		Identification of Candidate Biomarkers	252
	10.4		260
	Refe	rences	260
11.	Simu	lating Clinical Trials	265
	Tom	Parke	
	11.1	Introduction	265
	11.2	Types of Models Used in Clinical Trial Design	272
	11.3	Sources of Prior Information for Designing Clinical Trials	276
	11.4		277
	11.5		279
	11.6	1 0 0	281
		Real-World Examples	283
	11.8		284
	Refe	rences	284
PA	RT I	V SYNERGIES WITH OTHER TECHNOLOGIES	
12.	Path	way Analysis in Drug Discovery	289
	Antoi	ı Yuryev	
	12.1	Introduction: Pathway Analysis, Dynamic Modeling,	
		and Network Analysis	289
	12.2	•	292
	12.3	Pathway Analysis in the Modern Drug Development	
		Pipeline	293
	12.4	Conclusions	298
	Refe	rences	299
13.	Func	tional Mapping for Predicting Drug Response and	
		ling Personalized Medicine	303
	Yao Li, Wei Hou, Wei Zhao, Kwangmi Ahn, and Rongling Wu		
	13.1	Introduction	304
	13.2	Functional Mapping	306
	13.3		311
	13.4	Future Directions	315

318

References

CONTENTS ix

	re Outlook for Systems Biology el L. Young and Seth Michelson	323
14.1	Introduction	323
14.2	System Complexity in Biological Systems	324
14.3	Models for Quantitative Integration of Data	325
14.4	Changing Requirements for Systems Approaches	
	During Drug Discovery and Development	328
14.5	Better Models for Better Decisions	330
14.6	Advancing Personalized Medicine	334
14.7	Improving Clinical Trials and Enabling More	
	Complex Treatment Approaches	337
14.8	Collaboration and Training for Systems Biologists	340
14.9	Conclusions	342
Refe	rences	343

INDEX

349

Despite the wealth of data describing mechanisms underlying health and disease in living systems, health care costs continue to rise, and there is a growing need for improved and more affordable treatments. Efficient drug discovery and development requires methods for integrating preclinical data with patient data into a unified framework to project both efficacy and safety outcomes for new compounds and treatment approaches.

In this book we present the foundations of systems biology, a growing multidisciplinary field, applied specifically to drug discovery and development. Systems biology formally integrates knowledge and information from multiple biological sources into a coherent whole by employing proven engineering and mathematical modeling approaches. The integrated system allows rapid analysis and simulation that can inform and optimize the drug research and development processes, by formalizing, and testing, the set of acceptable hypotheses *in silico*, thereby reducing development time and costs and ultimately improving the efficacy of novel treatments.

This book is the first systems biology text to focus on how systems biology can be specifically applied to enhance drug discovery and development, with particular emphasis on real-world examples. Other texts on systems biology to date have focused on particular subdisciplines of systems biology (such as cellular networks) and have not specifically addressed drug discovery and development. This book introduces key methodologies and technical approaches for helping to solve many of the current challenges facing the pharmaceutical and biotechnology industries.

The target audience for the book includes those training or currently involved in all phases of drug discovery and development. Specific examples include life scientists, pharmacologists, computational and systems biology modelers, bioinformaticians, clinicians, and pharmaceutical/biotech management. The methods and case studies presented here will help researchers understand the diverse applications of the systems approach and integrate these technologies into their drug discovery and development programs. Those who incorporate these approaches successfully should increase their organization's competitiveness to address unmet market needs as well as more complex diseases and therapies.

The book is divided into four complementary parts. Providing a foundation for the techniques of systems biology, Part I provides an introduction to engineering and mathematical methods employed to characterize biological systems. In particular, Chapter 2 overviews model construction and analysis, focusing on model building, parameter estimation, model validation, and sensitivity analysis. Chapter 3 presents general statistical modeling approaches as well as methods for representing and analyzing nonlinear dynamical biochemical networks, of which feedback and feedforward loops are central players. In addition to modeling fundamental biological interactions and dynamics, an essential element of the systems biology approach is the study and simulation of population-level variability. To this end, Chapter 4 presents how drug pharmacokinetics is affected by variations in drug absorption, distribution, metabolism, and excretion, illustrating methods for predicting interindividual variability essential for rationale compound evaluation.

Part II highlights systems biology techniques aimed at enhancing the drug discovery process. An essential component of drug discovery is target identification and validation. To tackle many of the challenges inherent in these processes, Chapter 5 introduces a variety of complementary systems approaches, including text-mining, disease and therapeutics modeling, large multicontext data sets, regression modeling, and network and dynamic pathway modeling. In Chapter 6, systems biology approaches are applied to lead identification and optimization disciplines. In particular, systems approaches are shown to enable building bridges between compounds' chemical and biological activities. In this way, lead identification and optimization are enhanced by the systematic quantification of the optimal pharmacokinetic and pharmacodynamic compound profiles, defined potentially for specific patient populations. Chapter 7 addresses drug safety by exploring the role of biological motifs, in particular switchlike circuits, critical for dose-response models. Such models help uncover complex emergent behaviors and reveal factors driving variable patient responses to drugs that could limit efficacy or even lead to low-incidence adverse responses. Finally, Chapter 8 presents the use of mechanistic systems models for the study of pharmacokinetics and pharmacodynamics during discovery and early development. These models integrate a mechanistic understanding of biology and disease processes into a framework to aid in the selection of lead compounds, evaluation of dosing regimens, and support of optimal study design for specific patient populations.

Part III addresses particular applications of systems biology to drug development. Illustrating practical drug development challenges, Chapter 9 details the development and validation of a multiscale mathematical model for angiogenesis, integrating molecular and tissue-level processes. Here the exemplary model is applied for treatment personalization, and results suggest that an arrested drug candidate can be efficacious if applied in combination with current standards of care. Chapter 10 presents methods for applying systems biology to candidate biomarker identification. In particular, the chapter highlights the biomarker discovery process, its application to drug development, and the utility of mechanistic systems modeling to biomarker development in cardiovascular disease and rheumatoid arthritis. Finally, to aid in the design and execution of costly clinical programs, essential aspects of clinical trial simulations are presented in Chapter 11, where both clinical efficacy and safety are essential considerations.

In the final section of the book, Part IV, we address how systems biology technologies can synergize with other approaches. To this end, Chapter 12 presents how biological pathway analysis can be integrated into drug discovery systems approaches. Chapter 13 addresses aspects of personalized medicine and how functional mapping aimed at understanding genes and genetic networks can be used to help predict drug responses in patients. The book concludes in Chapter 14 with a broad overview of opportunities and challenges in systems biology that should ultimately help to extend both its reach and its acceptance, thereby further enhancing pharmaceutical productivity and the success of drug discovery and development for the benefit of patients.

In addition to the contributing authors of this book, we would like to thank our collaborators and colleagues throughout the years who have helped develop and apply systems biology approaches to drug discovery and development. We look forward to future advances and successes in the coming years as these approaches are applied and extended by dedicated researchers for enhanced drug discovery and development and ultimately, better care for patients.

Palo Alto, California Redwood City, California DANIEL L. YOUNG SETH MICHELSON