
San Francisco • London

.NET Web
Services Solutions

Kris Jamsa

4172c00.qxd 2/11/03 12:36 AM Page iii

File Attachment
C1.jpg

4172c00.qxd 2/11/03 12:36 AM Page ii

.NET Web
Services Solutions

4172c00.qxd 2/11/03 12:36 AM Page i

4172c00.qxd 2/11/03 12:36 AM Page ii

San Francisco • London

.NET Web
Services Solutions

Kris Jamsa

4172c00.qxd 2/11/03 12:36 AM Page iii

Associate Publisher: Joel Fugazzotto

Acquisitions Editor: Denise Santoro Lincoln

Developmental Editor: Tom Cirtin

Production Editor: Donna Crossman

Technical Editor: Acey Bunch

Copyeditor: Linda Stephenson

Compositor: Maureen Forys, Happenstance Type-O-Rama

Graphic Illustrator: Jeff Wilson, Happenstance Type-O-Rama

Proofreaders: Emily Hsuan, Eric Lach, Laurie O’Connell,
Yariv Rabinovitch, Nancy Riddiough, Sarah Tannehill

Indexer: Ted Laux

Cover Designer: Carol Gorska/Gorska Design

Cover Photographer: Carlos Navajas, The Image Bank

Copyright © 2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any
way, including but not limited to photocopy, photograph, magnetic, or other record, without the prior
agreement and written permission of the publisher.

Library of Congress Card Number: 2002116880

ISBN: 0-7821-4172-2

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United
States and/or other countries.

Transcend Technique is a trademark of SYBEX Inc.

Screen reproductions produced with Collage Complete.
Collage Complete is a trademark of Inner Media Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon
final release software whenever possible. Portions of the manuscript may be based upon pre-release ver-
sions supplied by software manufacturer(s). The author and the publisher make no representation or war-
ranties of any kind with regard to the completeness or accuracy of the contents herein and accept no
liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from
this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4172c00.qxd 2/11/03 12:36 AM Page iv

SOFTWARE LICENSE AGREEMENT: TERMS
AND CONDITIONS
The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the “Software”) to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject
to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless
otherwise indicated and is protected by copyright to SYBEX or
other copyright owner(s) as indicated in the media files (the
“Owner(s)”). You are hereby granted a single-user license to use
the Software for your personal, noncommercial use only. You may
not reproduce, sell, distribute, publish, circulate, or commercially
exploit the Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of any com-
ponent software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of condi-
tion, disclaimers, limitations or warranties (“End-User License”),
those End-User Licenses supersede the terms and conditions
herein as to that particular Software component. Your purchase,
acceptance, or use of the Software will constitute your acceptance
of such End-User Licenses.

By purchase, use or acceptance of the Software you further
agree to comply with all export laws and regulations of the United
States as such laws and regulations may exist from time to time.

Reusable Code in This Book
The author(s) created reusable code in this publication expressly for
reuse by readers. Sybex grants readers limited permission to reuse
the code found in this publication, its accompanying CD-ROM or
available for download from our website so long as the author(s) are
attributed in any application containing the reusable code and the
code itself is never distributed, posted online by electronic transmis-
sion, sold, or commercially exploited as a stand-alone product.

Software Support
Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that mater-
ial, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the
information provided in the appropriate read.me files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no responsi-
bility. This notice concerning support for the Software is provided
for your information only. SYBEX is not the agent or principal of
the Owner(s), and SYBEX is in no way responsible for providing
any support for the Software, nor is it liable or responsible for any
support provided, or not provided, by the Owner(s).

Warranty
SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is
not available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain a
replacement of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur-
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer
SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, its distributors, or dealers be liable to you or
any other party for direct, indirect, special, incidental, consequen-
tial, or other damages arising out of the use of or inability to use
the Software or its contents even if advised of the possibility of
such damage. In the event that the Software includes an online
update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the allo-
cation of risk and limitations on liability contained in this agree-
ment of Terms and Conditions.

Shareware Distribution
This Software may contain various programs that are distributed
as shareware. Copyright laws apply to both shareware and ordi-
nary commercial software, and the copyright Owner(s) retains all
rights. If you try a shareware program and continue using it, you
are expected to register it. Individual programs differ on details of
trial periods, registration, and payment. Please observe the
requirements stated in appropriate files.

Copy Protection
The Software in whole or in part may or may not be copy-protected
or encrypted. However, in all cases, reselling or redistributing these
files without authorization is expressly forbidden except as specifi-
cally provided for by the Owner(s) therein.

4172c00.qxd 2/11/03 12:36 AM Page v

4172c00.qxd 2/11/03 12:36 AM Page vi

To my good friend, Dr. Guy Hodgson,
For your endless support and words

of encouragement and your willingness to
share your knowledge and expertise.

4172c00.qxd 2/11/03 12:36 AM Page vii

4172c00.qxd 2/11/03 12:36 AM Page viii

Acknowledgments

A lthough only the author’s name appears on a book’s cover, the publication of a book
requires the tireless efforts of a team of talented and dedicated individuals. Please take a

moment and turn to this book’s copyright page to view the members of the Sybex team that
worked hard on this book.

To start, I want to thank Dr. Rodnay Zaks for the opportunity to work with Sybex on this
book. I have great respect for Dr. Zaks both for his ability to drive Sybex for over 25 years
and for his technical and business acumen.

Next, I want to thank Denise Lincoln for her patience and support throughout this project.
My special thanks also go to Tom Cirtin for his development efforts and to Acey Bunch for
his technical-editing expertise. In addition, I appreciate the work of Donna Crossman and
Linda Stephenson for managing and editing the book’s manuscript. The efforts of the Sybex
team greatly improved this book’s content.

4172c00.qxd 2/11/03 12:36 AM Page ix

Introduction xxii

Part I Laying the Foundation

Chapter 1: Taking Web Services for a Test Drive 3

Chapter 2: Creating Your First Web Services 39

Chapter 3: Accessing Web Services from within HTML Pages 83

Chapter 4: Looking Behind the Scenes at Web Service Protocols 109

Chapter 5: Looking at Key Operations 131

Part II Publishing Your .NET Web Services

Chapter 6: Making .NET Web Services Available to Others 161

Chapter 7: Connecting Web Services to Databases 177

Chapter 8: Authenticating Users within .NET Services 207

Chapter 9: Securing Communication between a Web Service and a Client 221

Chapter 10: Extending the Lines of Communication 247

Chapter 11: Integrating Binary Data into .NET Web Services 267

Part III Advanced Concepts

Chapter 12: Examining Key Web Service Files 287

Chapter 13: Unlocking Remote Access 303

Chapter 14: Improving Web Page Performance 333

Chapter 15: Making Money with Web Services 361

Chapter 16: Putting It All Together 395

Index 427

Contents at a Glance

4172c00.qxd 2/11/03 12:36 AM Page x

Contents

Introduction xxii

Part I Laying the Foundation 1

Chapter 1 Taking Web Services for a Test Drive 3

What’s a Web Service? 4
Understanding Operations That Are Well Suited for Web Services 6
Retrieving Weather Information 7

Looking Behind the Scenes at the FastWeather Web Service 8
Retrieving Weather Information within a C# Program 11

Using a Web Service 101 15
Retrieving Stock Quotes 16

Looking Behind the Scenes at the StockQuote Web Service 16
Retrieving Stock Prices within a C# Program 19

Retrieving Book Information 23
Behind the Scenes of the Amazon Web Service 25
Behind the Scenes of the Barnes & Noble Web Service 27

Retrieving Caller-ID Information 29
Behind the Scenes of the GeoPhone Web Service 29

Retrieving Traffic Information 32
Behind the Scenes of the CATraffic Web Service 33

Retrieving Airport Information 35
Behind the Scenes of the AirportInfo Web Service 35

Where to Find Web Services on the Web 37
Summary 38

Chapter 2 Creating Your First Web Services 39

Getting Started with the Hello Web Service 40
Putting the Hello Web Service to Use 42

Changing the Hello Web Service 43

4172c00.qxd 2/11/03 12:36 AM Page xi

xii

Remembering What Makes a Good Web Service 45
Putting the GreetSpecific Web Service to Use 47

Passing Parameters to a Web Service 48
Putting the DayTimeGreeting Web Service to Use 50

Returning a Non-String Value from a Web Service 51
Putting the DetermineAge Web Service to Use 53

Handling Multiple Parameters in a Web Service Method 54
Putting the SalesTax Web Service to Use 57

Changing Parameter Values within a Web Service Method 59
Putting the Swap Web Service to Use 60

Getting a Feel for Web Service Overhead 62
Passing an Array of Values to a Web Service 65

Putting the SimpleStatistics Web Service to Use 66
Changing Array Values in a Web Service 68

Putting the IncrementArray Web Service to Use 69
Returning an Array of Values from a Web Service Method 71

Putting the Presidents Web Service to Use 72
Returning a Structure from a Web Service 74

Putting the ServerInfo Web Service to Use 75
Throwing an Exception within a Web Service 76

Putting the Exception Demo Web Service to Use 78
Calling a Web Service from within a Web Service 80

Putting the NestedCall Web Service to Use 81
Summary 82

Chapter 3 Accessing Web Services from within HTML Pages 83

Understanding and Applying HTML Behaviors 84
Downloading the Webservice.htc Behavior 84
Attaching a Web Service to an HTML Document 84

Calling a Web Service 85
Calling the Hello Web Service 86
Calling the GreetSpecific Web Service 88
Calling the Swap Web Service 90
Calling the Array Web Service 92
Calling the ServerInfo Web Service 94
Calling the Presidents Web Service 96

Contents

4172c00.qxd 2/11/03 12:36 AM Page xii

Handling Web Service Errors 97
Using a Web Service As a Proxy 99
Using the Google Web Service 101

Searching for Text Using the Google Search Engine 103
Calling the Google Web Service Using the Webservice Behavior 105

Summary 107

Chapter 4 Looking Behind the Scenes at Web Service Protocols 109

XML 101 110
Parsing XML 112
XML Support for Attributes 113

Understanding the Web Service Description Language (WSDL) 113
Thinking About How Visual Studio .NET Uses a WSDL Document 119

How Programmers Can Use the Proxy-Class Source Code 122
Understanding the Simple Object Access Protocol (SOAP) 122
Test Driving Web Services Methods within Your Browser 124
Taking a Quick Look at Universal Description Discovery

and Integration (UDDI) 127
Summary 129

Chapter 5 Looking at Key Operations 131

Using the Application Object 132
Using the Application Object within a Web Service 135

Using the Session Object 142
Storing and Retrieving Cookie-Based Data 146

Using Cookies within a Web Service 147
Revisiting Session Objects 150
Using Server Variables 152
Removing a Web Service from an Application 157
Summary 157

Part II Publishing Your .NET Web Services 159

Chapter 6 Making .NET Web Services Available to Others 161

Preparing to Publish Your Web Service 162
Assigning a Unique Namespace to a Web Service 164
Placing Web Services on the Web 165

Contents xiii

4172c00.qxd 2/11/03 12:36 AM Page xiii

xiv

Understanding Universal Description Discovery Integration (UDDI) 166
Taking a Closer Look at UDDI 169
Taking Advantage of the UDDI Software Development Kit 170

Helping Other Programmers Discover Your Web Services 172
Understanding the .map File 174
Summary 176

Chapter 7 Connecting Web Services to Databases 177

Becoming Familiar with ADO.NET Operations 178
Understanding the Data Provider 179
Understanding the Steps to Access a Database 179
Using a DataSet Object to Update a Database 185

Using a Web Service to Interact with a Database 189
Performing Database Operations from within an HTML Page 193
Taking a Look at ADO.NET’s Behind-the-Scenes Use of XML 195

Building a DataSet Using XML-Based Data 197
Retrieving a DataSet from an XML-Based File 203

Summary 206

Chapter 8 Authenticating Users within .NET Services 207

Allowing and Controlling Anonymous Access 208
Understanding Basic Authentication 210
Understanding Digest Authentication 213
Understanding Windows Integrated Authentication 213
Understanding Forms Authentication 213
Understanding Certificate-Based Authentication 214
Providing Username and Password Information

from within an Application 215
Using the Web.config File to Configure Security Settings 218
Summary 220

Chapter 9 Securing Communication between a Web Service and a Client 221

Understanding the Threat 222
Viewing HTTP Messages Firsthand 224

Encrypting HTTP Messages Using the Secure Sockets Layer (SSL) 227
Understanding Public-Key Encryption 228
Obtaining Your Own Public and Private Key Pair 230

Contents

4172c00.qxd 2/11/03 12:36 AM Page xiv

Visiting a Secure Website 232
Understanding Where SSL Resides within the Network Layers 233
Looking Behind the Scenes at an SSL Connection 235

Configuring a Web Server to Support Secure SSL-Based Connections 236
Keep in Mind that SSL Protects the Exchange of Data Across the

Network Only 237
Connecting to a Web Service Using a Secure Connection 237
Making an SSL Connection Mandatory for a Program to Use a Web

Service 239
Calling a Web Service Across an SSL Connection 243

Summary 245

Chapter 10 Extending the Lines of Communication 247

Sending an E-Mail Message with .NET 248
Using a Web Service to Provide E-Mail Access 251

Putting the MailAccess Web Service to Use 255
Building an Online Chat Web Service 259
Building a Chat Client 262
Summary 264

Chapter 11 Integrating Binary Data into .NET Web Services 267

Understanding the Process of Working with Binary Data 268
Returning an Image File from a Web Service 270

Requesting a File from the Web Service 272
Displaying an Image File 274

Providing Multimedia Files Using a Web Service 276
Retrieving and Using Multimedia Data 277

Receiving a Binary File Using a Web Service 281
Uploading a Binary File to a Web Service 282
Summary 284

Part III Advanced Concepts 285

Chapter 12 Examining Key Web Service Files 287

Taking a Quick Look at a Web Service’s Support Files 288
Using the AssemblyInfo File to Customize Assembly Settings 289
Revisiting a Web Service’s .asmx Files 294

Contents xv

4172c00.qxd 2/11/03 12:36 AM Page xv

xvi

Using Global.asax to Specify Startup, Termination,
and Request Processing 296

Using the Web.config File to Customize Application Settings 297
Using the .WebInfo File to Move a Web Service 300
Using the .vsdisco File to Control a Web Service’s Discovery 301
Summary 302

Chapter 13 Unlocking Remote Access 303

Providing Excel and Word Files Using a Web Service 304
Retrieving an Excel or Word File 305

Making Remote File Access More Flexible 308
Installing the PlaceFileCopy Windows Service 314
Using the PlaceFileCopy Windows Service 314

Helping a Remote User Locate a File on the Server 319
Searching a Server for a Specific File 320

Locating and E-Mailing a File 322
Sending a Remote File to an E-Mail Address 323

Allowing a Web Service to Access Files on a User’s PC 324
Using a Web Service to Coordinate a Shared File’s Use 325
Summary 331

Chapter 14 Improving Web Page Performance 333

Understanding the Big Picture
(AKA How Programs Use Your Web Service) 334

Using Events to Monitor Web Service Operations 335
Monitoring a Web Service’s Operations 337
Using a Web Service to Monitor Specific Entries 339

Using Caching to Improve Web Service Performance 342
Understanding How Lack of a Cache Decreases a Web Service’s

Performance 344
Caching a Web Service’s Output 346
Understanding When Caching a Web Service’s Data Make Sense 346
Understanding How Parameters Affect Web Service Caching 349

Using Asynchronous Web Services 352
Making Your First Asynchronous Call to a Web Service Method 353
Calling the LocateFile Web Service Asynchronously 356

Summary 359

Contents

4172c00.qxd 2/11/03 12:36 AM Page xvi

Chapter 15 Making Money with Web Services 361

Preparing the Database 362
Offering and Managing User Keys 369

Understanding the Overhead of Handling License Keys 371
Taking a Close Look at the Registration Database 371

Allowing Users to Upgrade a Web Service 375
Handling Lost Keys 380
Restricting a Web Service to 30 Days’ Use 383
Restricting a Web Service to Specific Hours of the Day 385
Restricting the Number of Calls to a Web Service Each Day 388
Billing on a Per-Use Basis 390
Summary 393

Chapter 16 Putting It All Together 395

Understanding How the Jobs Web Service Works 396
Taking a Quick Look at the Employee Interface 396
Taking a Quick Look at the Employer Interface 397
Integrating a Database into the Jobs Web Service 399
Controlling Site Access 399

Building the Jobs Web Service 400
Posting an RTF-Based Job or Resume 401
Submitting RTF-Based Text to the Jobs Web Service 404
Posting a Resume or Job Description Manually 407
Submitting a Manual Resume or Job Description 410
Deleting a Resume or Job Listing 412

Retrieving Resumes and Job Opportunities 414
Viewing Job Opportunities 418
Viewing Employee Resumes 421

Summary 425

Index 427

Contents xvii

4172c00.qxd 2/11/03 12:36 AM Page xvii

4172c00.qxd 2/11/03 12:36 AM Page xviii

Introduction:
Why Web Services Will Drive the Growth of the Web

O ver the past 10 years, the World Wide Web has exploded into billions of pages of con-
tent. Each day, the Web touches our lives either directly, as we surf the Web, or indi-

rectly, as companies use the Web to provide the products and services we consume.

Although HTML continues to evolve, many developers will agree that a key force that
drove the Web’s expansion was the ability for developers to automate web-page content using
Active Server Pages. By automating content, Active Server Pages provided programmers
with the ability to develop interactive e-commerce sites (such as Ebay and Amazon), infor-
mation retrieval sites (such as Yahoo and Google), as well as sites that interacted with data-
bases behind the scenes to place vast amounts of information within a user’s browser.

Web services are the Web’s next “big opportunity” for developers. You can think of a web
service as a program that resides on a server that other programs can use to accomplish a spe-
cific result. The best way to understand how web services will change the way we use the
Web is to envision having all the capabilities that users exploit on a site, such as the Yahoo!
search engine, the Amazon shopping cart, or Southwest Airlines’ ticketing capabilities, read-
ily available within programs developers create. In other words, rather than having users
leave your website to perform search operations at Yahoo, or to buy a book at Amazon or
Barnes & Noble, your web pages (and the programs you create) can communicate with web
services that reside on the remote sites so that your web pages (and programs) can offer the
same functionality. In other words, by integrating support for a company’s web services into
your applications, your programs can provide users with search-engine capabilities, e-com-
merce support, and much more!

If you design your website correctly, users may have no need to leave your site. By taking
advantage of web services, your web pages can offer the identical functionality the users
would encounter at remote sites anywhere on the Web. It isn’t difficult to imagine the
immense power of web services, the promise they hold, or the great demands they will
place on the skills and knowledge of Internet application developers.

4172c00.qxd 2/11/03 12:36 AM Page xix

xx

Where .NET Comes into Play
This book examines web services within the .NET environment. You do not have to use
.NET to create web services or to create programs that use web services. Many programmers,
for example, use Java to create and call web services. However, the .NET environment makes
the process of building and consuming web services so easy, I cannot imagine why web service
programmers would want to use anything else.

If you have not yet installed Visual Studio .NET on your PC, that’s okay. In Chapter 3, you
will learn how to access web services from within your HTML pages using JavaScript!

What You Are Going to Learn
This book examines all aspects of web services. Web services are still a relatively new con-
cept. As such, the book’s early chapters focus on providing you with hands-on opportunities
to interact with real-world web services that exist at sites across the Web. After that, you will
learn how to create your own web services and how to make your web services available to
other programmers across the Web.

No experience is required—with web services, that is. You’ll learn from the ground up. If
you are anxious to get started, go ahead and jump to Chapter 1 right now, and put a few web
services you can find on the Web to work. This book, however, doesn’t teach the languages
used for creating web services. It assumes that you are an experienced VB.NET and C# pro-
grammer who wants to learn to put those skills to work developing web services.

Less than a decade ago, most of us would not have imagined that each day hundreds of
millions of users would use their PCs to search worldwide for information, to purchase goods
and services, or to work from their homes with access to the files and documents that reside
on their office computers. Just as the Web has changed the way users interact with comput-
ers, web services provide a similar shift in how programmers might create applications in the
future. For example, a programmer who needs the ability to translate text on the fly to a dif-
ferent language may integrate a translation web service into his or her program. Likewise,
a programmer who must allow only authorized users to access a remote database that
contains sensitive information might use a security web service to quickly implement the
authentication.

Just as users search the Web to find information, programmers will use the web service dis-
covery tools, such as the Universal Description, Discovery, and Integration (UDDI) proto-
col, to quickly locate the existing web services that offer a specific solution. This book will
help you get ready for the new paradigm.

Introduction

4172c00.qxd 2/11/03 12:36 AM Page xx

Part I

Laying the Foundation

Chapter 1: Taking Web Services for a Test Drive

Chapter 2: Creating Your First Web Services

Chapter 3: Accessing Web Services from within HTML Pages

Chapter 4: Looking Behind the Scenes at Web Service Protocols

Chapter 5: Looking at Key Operations

4172c01.qxd 2/11/03 12:36 AM Page 1

4172c01.qxd 2/11/03 12:36 AM Page 2

Taking Web Services
for a Test Drive

• What’s a Web Service?

• Understanding Operations That Are Well Suited for Web Services

• Retrieving Weather Information

• Using a Web Service 101

• Retrieving Stock Quotes

• Retrieving Book Information

• Retrieving Caller-ID Information

• Retrieving Traffic Information

• Retrieving Airport Information

• Where to Find Web Services on the Web

Chapter 1

4172c01.qxd 2/11/03 12:36 AM Page 3

4

U nlike most discussions of web services that begin with an examination of the underlying
network protocols, this chapter sets aside the underlying details and lets you test drive a

variety of web services that other developers have created and made available on the Web.
You will first experience many of the web services by using your browser to view active server
pages that use the web service to implement their processing. Then, after you understand the
operation the service performs, you will create a program that puts the service to use.

This chapter’s goal is to give you a hands-on understanding of the types of web services
you can create. This chapter makes extensive use of the Microsoft Visual Studio .NET pro-
gramming environment to create programs that access the web services. You can take advan-
tage of web services using several programming languages. This chapter presents programs
and ASP.NET pages written in Visual Basic .NET and C#. If you are not yet programming
within the .NET environment, the ease with which Visual Studio .NET lets you integrate
web services into your programs should provide you with motivation to migrate to .NET.

In Chapter 2, “Creating Your First Web Services,” you will learn that Visual Studio .NET
also makes it easy for you to create your own web services. In Chapter 3, “Accessing Web
Services from within HTML Pages,” you will learn how to create HTML pages that interact
with web services from within Visual Basic and applications that incorporate Visual Basic,
such as Word and Excel. In later chapters, you will learn how to create and interact with web
services using other programming languages such as Java and Perl.

What’s a Web Service?
To break complex programs into manageable tasks, programmers make extensive use of func-
tions. Each function within a program should perform specific processing (a service). For
example, the following C program, Hello.c, uses the printf function to display a message to
the user:

#include <stdio.h>

void main(void)
{
printf(“Hello, Programming World”);

}

In a similar way, the following Visual Basic .NET code fragment, from the program Dis-
playDateTime.vb, uses the Now and MessageBox.Show functions to retrieve and then display
the current date and time and the Close function to close the current form:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As _
➥ System.EventArgs) Handles MyBase.Load

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 4

5

MessageBox.Show(“Current Date and time is: “ & Now(), _
“Display Date & Time”)

Me.Close()
End Sub

Think of a web service as a function your programs can use to accomplish specific tasks. Just
as a function can receive (and possibly change) parameter values, so too can a web service.
Likewise, just as functions often return a value to the calling program, so too can a web service.

To use a function such as printf or MessageBox.Show, you must know the type of value the
function returns as well as the number and types of parameters you can pass to the function.
The same is true for a web service.

What makes a web service different from a traditional function is that the code for the web
service resides on a remote server. Before a program can use a web service, the PC running
the program must have a network connection (a dial-up connection will suffice).

When your program calls a web service (using a function call), your program, as shown in
Figure 1.1, will send a network message to the server that specifies the desired service. If the
web service requires parameters, the message will include values for each.

After the server completes the web service’s processing, the server, as shown in Figure 1.2,
will send a network message containing the service’s result back to your program.

ServerClient

Result

F I G U R E 1 . 2 :
After the server exe-
cutes the web ser-
vice’s instructions, the
server will send a net-
work message contain-
ing the service’s result
to the calling program.

ServerClient

Web Service
Method

Parameters

Web
Service
Code

F I G U R E 1 . 1 :
To call a web service, a
program sends a net-
work message to the
server upon which the
web service resides.

What’s a Web Service?

4172c01.qxd 2/11/03 12:36 AM Page 5

6

Because a web service requires the exchange of network messages and because the server
that executes the service may be busy performing other tasks, a web service will execute
substantially slower than a standard function. Depending on factors such as network traf-
fic, the amount of time a web service will require may vary from one use of the service to
the next.

Understanding Operations That Are Well Suited for Web Services
Because network overhead makes a web service execute much slower than a standard func-
tion, many operations are not well suited for implementation as a web service. Using a web
service to add two numbers, for example, or to calculate a random number, would introduce
unnecessary overhead to a program. Such operations are better suited for implementation
using standard functions.

Web services, in contrast, are ideal for operations that use data residing at a remote source
(most often within a database on a specific server). For example, web services are well suited
for the following operations:

● Responding to queries for stock quotes

● Returning information regarding the availability of specific inventory items

● Providing real-time information, such as weather and road conditions

● Offering airline flight arrival and departure information

● Implementing e-commerce operations, such as ticket sales for movies and
special events

● Authenticating users or credit-card information

You may be saying to yourself that users already perform such operations on many sites
across the Web. Web services provide programmers with a way to integrate these operations
into their programs. By using web services to implement common user operations (such as
downloading stock quotes, ordering a book, and checking the weather) within your com-
pany’s website, you can keep users from leaving your website to perform these operations
elsewhere. By taking advantage of web services, you can integrate powerful processing devel-
oped by other programmers into your applications and web pages.

To help you better understand how web services extend the functionality of the Web into
your applications, the remainder of this chapter will let you test drive readily available web
services.

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 6

7

Web Service Updates from This Book’s Companion Website
The examples this chapter presents make use of web services existing on the Web at the
time of this writing. Over time, the services this chapter presents may change or become
unavailable. This book’s companion website, which you can find by following the links at
www.sybex.com, will provide updates to the chapter code as the services change.

From the companion website, you can download the source code for all of the programs and
services this book presents. You will find links to other key web development sites too.

Retrieving Weather Information
Each day millions of web users look up weather information. Across the Web, some of the
fastest growing websites provide specifics about weather. The HTML file ShowWeather.html,
which you can find at this book’s companion website, creates a form that prompts the user to
enter a zip code, city and state, or an Internet protocol (IP) address. After the user enters the
data and clicks the Submit button, the user’s browser sends the user input to an ASP.NET
page that uses a Web service residing on the ServiceObjects website. The FastWeather web
service will provide the ASP.NET page with weather data for a specific location. After the
ASP.NET page receives the data from the service, it will display the result, as shown in
Figure 1.3.

F I G U R E 1 . 3 :
Using a web service to
obtain weather data

Retrieving Weather Information

4172c01.qxd 2/11/03 12:36 AM Page 7

8

NOTE The ServiceObjects website provides several powerful web services you can immediately inte-
grate into your applications. Take time now to visit the site at www.ServiceObjects.com.

Looking Behind the Scenes at the FastWeather Web Service
To use the FastWeather web service, programs can call one of three methods (functions),
passing to the methods the corresponding parameters:

string GetWeatherByIP(string IP, string LicenseKey)
string GetWeatherByCityState(string City, string State, string LicenseKey)
string GetWeatherByZip(string Zip, string LicenseKey)

Each of the functions, if successful (meaning the program provided a valid IP address, zip
code, or city and state combination), will return a structure of type Weather that contains the
following fields:

Weather
string LastUpdated
string TemperatureF
string WindChill
string HeatIndex
string Humidity
string Dewpoint
string Wind
string Pressure
string Conditions
string Visibility
string Sunrise
string Sunset
string City
string State
string Moonrise
string Moonset
string Error

Note also that each of the FastWeather web service methods requires that you pass a
parameter that specifies your license key. If you visit the ServiceObjects website, you can
download a trial key that lets you use the service for a specific period of time. If you need
unlimited use of the service, you must purchase a license for service from ServiceObjects.
The GetWeather.aspx ASP.NET page uses the license key 0, which provides limited use of
the service.

The source code in Listing 1.1 implements the ASP.NET page GetWeather.aspx.

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 8

9

➲ Listing 1.1 GetWeather.aspx

Public Class WebForm1
Inherits System.Web.UI.Page

#Region “ Web Form Designer Generated Code “
‘ Code not shown.

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles MyBase.Load
Dim Zip, City, State, IP As String
Dim WebError As Boolean = False
Dim QueryPerformed As Boolean = True

Zip = Request.Form(“ZipCode”)
City = Request.Form(“City”)
State = Request.Form(“State”)
IP = Request.Form(“IP”)

Dim WeatherRequest As New net.serviceobjects.ws.FastWeather()
Dim Weather As net.serviceobjects.ws.Weather

Try
If (Zip <> “”) Then
Response.Write(“Weather conditions for “ & Zip)
Weather = WeatherRequest.GetWeatherByZip(Zip, 0)

ElseIf (City <> “”) And (State <> “”) Then
Response.Write(“Weather conditions for “ & City & _

➥ “ “ & State)
Weather = WeatherRequest.GetWeatherByCityState(City, _

➥ State, 0)
ElseIf (IP <> “”) Then
Response.Write(“Weather conditions for “ & IP)
Weather = WeatherRequest.GetWeatherByIP(IP, 0)

Else
Response.Write(“Must specify valid location”)
QueryPerformed = False

End If

Catch Ex As Exception
Response.Write(“Web service error: “ & Ex.Message)
WebError = True

End Try

If (Not WebError And QueryPerformed) Then
If (Weather.Error = “”) Then
Response.Write(“
”)
Response.Write(“Temperature (F): “ & _
Weather.TemperatureF & “
”)

Retrieving Weather Information

4172c01.qxd 2/11/03 12:36 AM Page 9

10

Response.Write(“Conditions: “ & Weather.Conditions)
Else
Response.Write(“
”)
Response.Write(“Web service returned an error: “ & _

➥ Weather.Error)
End If

End If

End Sub

End Class

As you can see, the code first uses the Request object to determine the values the user
assigned to the zip code, city, state, or IP fields. To use a web service, a program must create
an object specific to the service. The following statement creates a variable named Weather-
Request that corresponds to the FastWeather service:

Dim WeatherRequest As New net.serviceobjects.ws.FastWeather()

Throughout this chapter, you will create similar objects for the different web services. The
object name, in this case net.serviceobjects.ws.FastWeather, identifies the web service.
As you will see when you create a C# program that uses the FastWeather web service, Visual
Studio .NET makes it easy for you to determine the object name.

As discussed, the FastWeather web service returns a value of type Weather that contains the
individual weather fields. The following statement defines a variable to store the Weather
structure:

Dim Weather As net.serviceobjects.ws.Weather

To use a web service, you simply call one of the methods the service provides. In this case,
the code uses an If-Else statement to determine which method to call based on whether the
user specified a zip code, city and state, or IP address. The following statement, for example,
calls the service’s GetWeatherByZipCode method:

Weather = WeatherRequest.GetWeatherByZip(Zip, 0)

Note that the code calls the web service methods within a Try-Catch block. Most web ser-
vices will generate an exception when an error occurs. When your programs call a web ser-
vice, they should always do so within a Try-Catch block so your code can detect and respond
to an exception generated by the service.

The application uses an ASP.NET page, as opposed to an active server page, because of the
ease with which Visual Studio .NET lets developers integrate a web service.

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 10

11

Retrieving Weather Information within a C# Program
Web services exist to help programmers integrate web-based operations into their programs.
The Visual Basic .NET program, TexasWeather.vb, displays a form that contains buttons
corresponding to Texas cities. After the user clicks a button, the program displays the corre-
sponding weather data, as shown in Figure 1.4.

In this case, the program uses only the FastWeather service’s GetWeatherByCityState
method. To create the TexasWeather.vb program, perform these steps:

1. Within Visual Studio .NET, select the File menu New Project option. Visual Studio
.NET will display the New Project dialog box.

2. Within the New Project dialog box Project Types list, click Visual C# Projects. Then,
within the Templates field, click Windows Application. Finally, within the Location field,
specify the folder within which you want to store the program and the program name
TexasWeather. Select OK. Visual Studio .NET will display a form onto which you can
drag and drop the program’s controls (label, buttons, and text box).

3. Using the Toolbox, drag and drop the label, buttons, and text box previously shown in
Figure 1.4 onto the form.

4. To use a web service, you must assign a Web Reference to the program that corresponds
to the object. To do so, select the Project menu Add Web Reference option. Visual Studio
.NET will display the Add Web Reference dialog box, as shown in Figure 1.5.

NOTE Over time, the URLs this book uses (such as the one in Step 5) for the WSDL (web service
definition language) files that describe a web service may change. See the section “Using
a Web Service 101” to determine the URL you should enter for a service’s WSDL file
within the Add Web Reference dialog box.

F I G U R E 1 . 4 :
Using the FastWeather
web service within a
Visual Basic .NET
program

Retrieving Weather Information

4172c01.qxd 2/11/03 12:36 AM Page 11

12

5. Within the Address field, you must type the URL of a special file (called the WSDL file)
that describes the web service. In this case, type http://ws.serviceobjects.net/fw/
FastWeather.asmx?WSDL and press Enter. The dialog box will load the file’s contents.
Click the Add Reference button.

6. Select the View menu Code option. Visual Studio .NET will display the program’s source
code. Within the source code (near the bottom of the GetWeather class definition), add
the following program statements:

private void GetWeather(String City, String State)
{

Boolean WebError = false;

net.serviceobjects.ws.FastWeather WeatherRequest;
net.serviceobjects.ws.Weather Weather = null;
WeatherRequest = new net.serviceobjects.ws.FastWeather();

try
{
Weather = WeatherRequest.GetWeatherByCityState(City, _

➥ State, “0”);
}
catch (Exception Ex)

F I G U R E 1 . 5 :
The Add Web Refer-
ence dialog box

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 12

13

{
textBox1.Text = “Web service error: “ + Ex.Message;
WebError = true;

}

if (! WebError)
{
if (Weather.Error == null)
{
textBox1.Text = “Location: “ + Weather.City + “\r\n”;
textBox1.Text = “Temperature (F): “ + _

➥ Weather.TemperatureF + “\r\n”;
textBox1.Text += “Conditions: “ + _

➥ Weather.Conditions + “\r\n”;
textBox1.Text += “Dewpoint: “ + Weather.Dewpoint + “\r\n”;
textBox1.Text += “Heat Index: “ + _

➥ Weather.HeatIndex + “\r\n”;
textBox1.Text += “Humidity: “ + Weather.Humidity + “\r\n”;
textBox1.Text += “Moon rise: “ + Weather.Moonrise + _

➥ “\r\n”;
textBox1.Text += “Moon set: “ + Weather.Moonset + “\r\n”;
textBox1.Text += “Pressure: “ + Weather.Pressure + “\r\n”;
textBox1.Text += “Sun rise: “ + Weather.Sunrise + “\r\n”;
textBox1.Text += “Sun set: “ + Weather.Sunset + “\r\n”;
textBox1.Text += “Visibility: “ + Weather.Visibility + _

➥ “\r\n”;
textBox1.Text += “Wind: “ + Weather.Wind + “\r\n”;
textBox1.Text += “Wind chill: “ + Weather.Windchill;

}
else
textBox1.Text = “Web service returned an error: “ + _

➥ Weather.Error;
}

}

private void Form1_Load(object sender, System.EventArgs e)
{

}

private void button1_Click(object sender, System.EventArgs e)
{

GetWeather(“Dallas”, “TX”);
}

private void button2_Click(object sender, System.EventArgs e)
{

Retrieving Weather Information

4172c01.qxd 2/11/03 12:36 AM Page 13

14

GetWeather(“Houston”, “TX”);
}

private void button3_Click(object sender, System.EventArgs e)
{

GetWeather(“San Antonio”, “TX”);
}

private void button4_Click(object sender, System.EventArgs e)
{

GetWeather(“Waco”, “TX”);
}
}
}

The program provides an event handler that responds to each user button click. Within
each handler, the code calls the GetWeather function, passing to the function the name of a
specific city and the TX state abbreviation. Within the GetWeather function, the following
statements create an object named WeatherRequest that the program will use to access the
FastWeather web service:

net.serviceobjects.ws.FastWeather WeatherRequest;
WeatherRequest = new net.serviceobjects.ws.FastWeather();

Again, the FastWeather web service returns a value of type Weather. The following state-
ment creates a variable that will hold the specific weather fields:

net.serviceobjects.ws.Weather Weather = null;

The program calls the web service method GetWeatherByCityState within a try-catch block
to detect any exceptions the web service may generate:

try
{
Weather = WeatherRequest.GetWeatherByCityState(City, _

➥ State, “0”);
}
catch (Exception Ex)
{
textBox1.Text = “Web service error: “ + Ex.Message;

WebError = true;
}

Finally, if the web service is successful, the code displays the various weather elements within
a text box.

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 14

15

Using a Web Service 101
Using a web service within a .NET program is a straightforward process. To begin, you must
add to the program a Web Reference that corresponds to the web service. To do so, you must
know the location of the WSDL file that describes the web service.

If you examine websites that make web services available to programmers, you will find
that the sites always contain a link to the web service’s WSDL file. If you click the link,
your browser will display XML-based data that describe the service, similar to that shown in
Figure 1.6. XML, as you know, is the Extensible Markup Language that developers use to
describe data. Throughout this book, you will make extensive use of WSDL, the web service
definition language. For now, think of WSDL as providing a description of the methods
(functions) a web service provides, as well as a description of the parameters each method
requires.

For now, you can ignore the XML statements that describe the service. Instead, note the
Web address that appears within the browser’s address field. You can either write down the
address or cut and paste the address into the Visual Studio .NET Add Web Reference dia-
log box.

F I G U R E 1 . 6 :
Viewing a web ser-
vice’s WSDL file

Using a Web Service 101

4172c01.qxd 2/11/03 12:36 AM Page 15

16

After you add a Web Reference to your program code for the web service, you must then cre-
ate a corresponding object within your source code. The following statement creates an object
that a Visual Basic .NET program can use to interact with the FastWeather web service:

Dim WeatherRequest As New net.serviceobjects.ws.FastWeather()

After you add a service’s Web Reference to your program, Visual Studio .NET will display
the reference within the Class View window. As you view the web services within the Class
View window, you will find that most web service object names will begin with letter combi-
nations such as net. If you simply type the first two letters of the name, Visual Studio .NET
usually will display the service’s remaining characters, making it very easy for you to enter the
correct object names.

Regardless of the web service you want to use from within a .NET program and regardless
of whether you are writing the program using Visual Basic .NET and C# or if you are creat-
ing an ASP.NET page, the steps you will perform are the same. If your code requires multi-
ple web services, you must perform these steps for each object.

Retrieving Stock Quotes
Across the Web, many websites offer users the ability to retrieve stock information for a specific
company. To comply with securities regulations, the stock information is delayed by 15 minutes.

The StockQuote web service, available from the XMethods website at www.xmethods.com,
retrieves delayed stock prices for the company that corresponds to a stock symbol, such as
MSFT for Microsoft.

NOTE The XMethods website at www.xmethods.com provides many web services you can inte-
grate into your applications. Take time to visit the XMethods website—you will likely find
several web services you can put to immediate use.

The ASP.NET page StockPrice.aspx, which you can run from this book’s companion web-
site, displays the form shown in Figure 1.7 that contains buttons corresponding to several
software companies. When the user clicks a button, the page will display the company’s
(delayed) stock price.

Looking Behind the Scenes at the StockQuote Web Service
The StockQuote web service supports one method, getQuote, which returns a value of type
Float that corresponds to a company’s stock price. Your programs pass the stock symbol,
such as MSFT for Microsoft, to the method as a parameter:

float getQuote(string symbol)

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 16

17

If the symbol your program passes to getQuote is invalid, getQuote will return the value -1.
The source code in Listing 1.2 implements the ASP.NET page StockPrice.aspx.

➲ Listing 1.2 StockPrice.aspx

Public Class WebForm1
Inherits System.Web.UI.Page
Protected WithEvents Label1 As System.Web.UI.WebControls.Label
Protected WithEvents Button1 As System.Web.UI.WebControls.Button
Protected WithEvents Button2 As System.Web.UI.WebControls.Button
Protected WithEvents Button3 As System.Web.UI.WebControls.Button
Protected WithEvents Button4 As System.Web.UI.WebControls.Button
Protected WithEvents Button5 As System.Web.UI.WebControls.Button
Protected WithEvents Label2 As System.Web.UI.WebControls.Label
Protected WithEvents Button6 As System.Web.UI.WebControls.Button

#Region “ Web Form Designer Generated Code “
‘Code not show

#End Region

Private Sub Button1_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button1.Click

ShowStockPrice(“MSFT”)
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button2.Click

ShowStockPrice(“ORCL”)
End Sub

F I G U R E 1 . 7 :
Using the StockQuote
web service to retrieve
stock prices

Retrieving Stock Quotes

4172c01.qxd 2/11/03 12:36 AM Page 17

18

Private Sub Button3_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button3.Click

ShowStockPrice(“YHOO”)
End Sub

Private Sub Button4_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button4.Click

ShowStockPrice(“BMC”)
End Sub

Private Sub Button5_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button5.Click

ShowStockPrice(“INTC”)
End Sub

Private Sub Button6_Click(ByVal sender As System.Object, _
➥ ByVal e As System.EventArgs) Handles Button6.Click

ShowStockPrice(“CSCO”)
End Sub

Private Function ShowStockPrice(ByVal Symbol As String) _
➥ As String

Dim StockQuote As New _
➥ net.xmethods.services.netxmethodsservicesstockquoteStockQuoteService()_

Dim Price As String

Price = StockQuote.getQuote(Symbol)

Label2.Text = “Current Price: “ & Price
End Function

End Class

As you can see, the code provides event handlers for each of the buttons. Within the han-
dler, the code calls the ShowStockPrice function, passing to the function a stock symbol that
corresponds to a specific company. Within the ShowStockPrice function, the following state-
ment creates a variable named StockQuote that corresponds to the object the code will use to
interact with the StockQuote object:

Dim StockQuote As New _
➥ net.xmethods.services.netxmethodsservices_
➥ stockquoteStockQuoteService()

To call the getQuote method, the code uses the StockQuote variable as follows:
Price = StockQuote.getQuote(Symbol)

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 18

19

Retrieving Stock Prices within a C# Program
The following C# program, GetQuote.cs, displays a form that prompts the user for a com-
pany stock symbol. After the user enters the symbol and clicks the Get Stock Price button,
the program will display the stock price, as shown in Figure 1.8.

To create the GetQuote.cs program, perform these steps:

1. Within Visual Studio .NET, select the File menu New Project option. Visual Studio
.NET will display the New Project dialog box.

2. Within the New Project dialog box Project Types list, click Visual C# Projects. Then,
within the Templates field, click Windows Application. Finally, within the Location field,
specify the folder within which you want to store the program and the program name
GetQuote. Select OK. Visual Studio .NET will display a form onto which you can drag
and drop the program’s controls (label, buttons, and text box).

3. Using the Toolbox, drag and drop the label, buttons, and text box previously shown in
Figure 1.8 onto the form.

4. To assign a Web Reference that corresponds to the object, select the Project menu Add
Web Reference option. Visual Studio .NET will display the Add Web Reference dialog box.

5. Within the Address field, type the URL of the service’s WSDL file. In this case, type
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl and press
Enter. The dialog box will load the file’s contents. Click the Add Reference button.

6. Select the View menu Code option. Visual Studio .NET will display the program’s source
code. Within the source code (near the bottom of the class definition), add the following
program statements:

private void button1_Click(object sender, System.EventArgs e)
{
float Price;
net.xmethods.services.netxmethodsservicesstockquote
➥ StockQuoteService Quote;

F I G U R E 1 . 8 :
Using the StockQuote
web service within a
C# program

Retrieving Stock Quotes

4172c01.qxd 2/11/03 12:36 AM Page 19

20

Quote = new
➥ net.xmethods.services.netxmethodsservicesstockquoteStockQuoteService();

if (textBox1.Text.Length == 0)
label2.Text = “Must specify stock symbol”;

else
{
try
{
Price = Quote.getQuote(textBox1.Text);
if (Price == -1)
label2.Text = “Invalid symbol”;

else
label2.Text = “Current price: “ + Price.ToString();

}
catch(Exception ex)

{
label2.Text = “Web service exception” + ex.Message;

}
}

}

The previous program used the StockQuote web service to retrieve a stock price for dis-
play. The following C# program, NotifyMe.cs, again prompts the user to enter a stock sym-
bol. After the user enters the stock information, the user can minimize the program. The
program, behind the scenes, will “wake up” every 15 seconds and compare the stock’s cur-
rent price to the original price. If the stock’s price has changed by one dollar (either up or
down), the program will bring the form to the top of any active programs. If the user has
minimized the program, the program will highlight the program’s icon within the Taskbar.
See Figure 1.9.

F I G U R E 1 . 9 :
Using a web service
within a program that
performs background
processing

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 20

21

To create the NotifyMe.cs program, perform these steps:

1. Within Visual Studio .NET, select the File menu New Project option. Visual Studio
.NET will display the New Project dialog box.

2. Within the New Project dialog box Project Types list, click Visual C# Projects. Then,
within the Templates field, click Windows Application. Finally, within the Location field,
specify the folder within which you want to store the program and the program name
NotifyMe. Select OK. Visual Studio .NET will display a form onto which you can drag
and drop the program’s controls (label, buttons, and text box).

3. Using the Toolbox, drag and drop the label, buttons, and text box previously shown in
Figure 1.9 onto the form. Then, drag a Timer control onto the form.

4. Select the Project menu Add Web Reference option. Visual Studio .NET will display the
Add Web Reference dialog box.

5. Within the Address field, type the URL http://services.xmethods.net/soap/
urn:xmethods-delayed-quotes.wsdl and press Enter. The dialog box will load the file’s
contents. Click the Add Reference button.

6. Select the View menu Code option. Visual Studio .NET will display the program’s source
code. Within the source code (near the bottom of the class definition), add the following
program statements:

float OriginalPrice;
float DollarChange;

net.xmethods.services.netxmethodsservicesstockquote
➥ StockQuoteService Quote;

private void button1_Click(object sender, System.EventArgs e)
{
float Price;
Quote = new

➥ net.xmethods.services.netxmethodsservicesstockquoteStockQuoteService();

if (textBox1.Text.Length == 0)
label4.Text = “Must specify stock symbol”;

else
{
textBox1.ReadOnly = true;
button1.Enabled = false;

try
{
Price = Quote.getQuote(textBox1.Text);
OriginalPrice = Price;

Retrieving Stock Quotes

4172c01.qxd 2/11/03 12:36 AM Page 21

22

if (Price == -1)
label4.Text = “Invalid symbol”;

else
{
label4.Text = “Original price: “ + OriginalPrice.ToString();
timer1.Interval = 15000;
timer1.Enabled = true;
DollarChange = 0;

}
}
catch(Exception ex)
{
label4.Text = “Web service exception” + ex.Message;

}
}

}

private void timer1_Tick(object sender, System.EventArgs e)
{
float Price;

try
{
Price = Quote.getQuote(textBox1.Text);

if (Price == -1)
{
label5.Text = “Invalid symbol”;
this.Activate();

}
else
{
label5.Text = “Current price: “ + Price.ToString();

if (((Price - OriginalPrice) > DollarChange) ||
((OriginalPrice - Price) > DollarChange))

{
this.Activate();
this.BringToFront();

}
}

}

catch(Exception ex)
{
label5.Text = “Web service exception” + ex.Message;

}
}

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 22

23

The program uses a timer set to 15-second intervals. Each time the timer occurs, the code
uses the web service to retrieve the stock’s current price. If the stock price has increased or
decreased by a dollar or more since the user first requested the price, the code will bring the
form to the top of any open applications:

if (((Price - OriginalPrice) > DollarChange) ||
((OriginalPrice - Price) > DollarChange))

{
this.Activate();
this.BringToFront();

}

Retrieving Book Information
On the Web, Amazon (amazon.com) and Barnes & Noble (barnesandnoble.com) are two of the
largest online booksellers. Both sites let users shop for books electronically. To integrate the
capabilities of these two online sites into your own programs and web pages, you can take
advantage of web services.

To start, Amazon offers a software development kit (SDK) programmers can use to search
for books, videos, and music, and by keyword, author, artist, and more. Further, program-
mers can integrate support for the Amazon shopping cart into their own applications and
websites.

You can download the Amazon web services SDK from the Amazon website at www.
amazon.com/webservices. After you download the software development kit, you must apply
for a developer’s token (a key) that you must include as a parameter within your function calls
to the services.

Second, the BNQuote web service returns the price of a book at Barnes & Noble for a
given ISBN.

The ASP.NET page AmazonDemo.aspx on this book’s companion website uses the Amazon
web services to list the titles and prices of various Sybex books at Amazon. When you display
the page and click on the Get Amazon.com Pricing button, the page will use the Amazon web
service to perform a keyword search on “Sybex.” The page will place the search results for the
first 50 books within the text box, as shown in Figure 1.10.

Likewise, the ASP.NET page BarnesAndNoble.aspx at this book’s companion website
displays buttons for several different book titles. If you click one of the buttons, the page
will display the book’s current price at the online Barnes & Noble store, as shown in Fig-
ure 1.11.

Retrieving Book Information

4172c01.qxd 2/11/03 12:36 AM Page 23

24

F I G U R E 1 . 1 1 :
Using the BNQuote
Web service to display
book prices at Barnes
& Noble online

F I G U R E 1 . 1 0 :
Using the Amazon web
services SDK within
an ASP.NET page

Chapter 1 • Taking Web Services for a Test Drive

4172c01.qxd 2/11/03 12:36 AM Page 24

