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Preface

This edition provides a rather substantial addition to the material covered in
the first edition. The principal difference is the inclusion of three new
chapters, Chapters 10, 11, and 12, in addition to an appendix of solutions to
exercises.

Chapter 10 covers orthogonal polynomials, such as Legendre, Chebyshev,
Jacobi, Laguerre, and Hermite polynomials, and discusses their applications
in statistics. Chapter 11 provides a thorough coverage of Fourier series. The
presentation is done in such a way that a reader with no prior knowledge of
Fourier series can have a clear understanding of the theory underlying the
subject. Several applications of Fouries series in statistics are presented.
Chapter 12 deals with approximation of Riemann integrals. It gives an
exposition of methods for approximating integrals, including those that are
multidimensional. Applications of some of these methods in statistics
are discussed. This subject area has recently gained prominence in several
fields of science and engineering, and, in particular, Bayesian statistics. The
material should be helpful to readers who may be interested in pursuing
further studies in this area.

A significant addition is the inclusion of a major appendix that gives
detailed solutions to the vast majority of the exercises in Chapters 1�12. This
supplement was prepared in response to numerous suggestions by users of
the first edition. The solutions should also be helpful in getting a better
understanding of the various topics covered in the book.

In addition to the aforementioned material, several new exercises were
added to some of the chapters in the first edition. Chapter 1 was expanded by
the inclusion of some basic topological concepts. Chapter 9 was modified to
accommodate Chapter 10. The changes in the remaining chapters, 2 through
8, are very minor. The general bibliography was updated.

The choice of the new chapters was motivated by the evolution of the field
of statistics and the growing needs of statisticians for mathematical tools
beyond the realm of advanced calculus. This is certainly true in topics
concerning approximation of integrals and distribution functions, stochastic

xv



PREFACExvi

processes, time series analysis, and the modeling of periodic response func-
tions, to name just a few.

The book is self-contained. It can be used as a text for a two-semester
course in advanced calculus and introductory mathematical analysis. Chap-
ters 1�7 may be covered in one semester, and Chapters 8�12 in the other
semester. With its coverage of a wide variety of topics, the book can also
serve as a reference for statisticians, and others, who need an adequate
knowledge of mathematics, but do not have the time to wade through the
myriad mathematics books. It is hoped that the inclusion of a separate
section on applications in statistics in every chapter will provide a good
motivation for learning the material in the book. This represents a continua-
tion of the practice followed in the first edition.

As with the first edition, the book is intended as much for mathematicians
as for statisticians. It can easily be turned into a pure mathematics book by
simply omitting the section on applications in statistics in a given chapter.
Mathematicians, however, may find the sections on applications in statistics
to be quite useful, particularly to mathematics students seeking an interdisci-
plinary major. Such a major is becoming increasingly popular in many circles.
In addition, several topics are included here that are not usually found in a
typical advanced calculus book, such as approximation of functions and
integrals, Fourier series, and orthogonal polynomials. The fields of mathe-
matics and statistics are becoming increasingly intertwined, making any
separation of the two unpropitious. The book represents a manifestation of
the interdependence of the two fields.

The mathematics background needed for this edition is the same as for
the first edition. For readers interested in statistical applications, a back-
ground in introductory mathematical statistics will be helpful, but not abso-
lutely essential. The annotated bibliography in each chapter can be consulted
for additional readings.

I am grateful to all those who provided comments and helpful suggestions
concerning the first edition, and to my wife Ronnie for her help and support.

ANDRE I. KHURI´

Gaines®ille, Florida



Preface to the First Edition

The most remarkable mathematical achievement of the seventeenth century
Ž .was the invention of calculus by Isaac Newton 1642�1727 and Gottfried

Ž .Wilhelm Leibniz 1646�1716 . It has since played a significant role in all
fields of science, serving as its principal quantitative language. There is hardly
any scientific discipline that does not require a good knowledge of calculus.
The field of statistics is no exception.

Advanced calculus has had a fundamental and seminal role in the devel-
opment of the basic theory underlying statistical methodology. With the rapid
growth of statistics as a discipline, particularly in the last three decades,
knowledge of advanced calculus has become imperative for understanding
the recent advances in this field. Students as well as research workers in
statistics are expected to have a certain level of mathematical sophistication
in order to cope with the intricacies necessitated by the emerging of new
statistical methodologies.

This book has two purposes. The first is to provide beginning graduate
students in statistics with the basic concepts of advanced calculus. A high
percentage of these students have undergraduate training in disciplines other
than mathematics with only two or three introductory calculus courses. They
are, in general, not adequately prepared to pursue an advanced graduate
degree in statistics. This book is designed to fill the gaps in their mathemati-
cal training and equip them with the advanced calculus tools needed in their
graduate work. It can also provide the basic prerequisites for more advanced
courses in mathematics.

One salient feature of this book is the inclusion of a complete section in
each chapter describing applications in statistics of the material given in the
chapter. Furthermore, a large segment of Chapter 8 is devoted to the
important problem of optimization in statistics. The purpose of these applica-
tions is to help motivate the learning of advanced calculus by showing its
relevance in the field of statistics. There are many advanced calculus books
designed for engineers or business majors, but there are none for statistics

xvii



PREFACE TO THE FIRST EDITIONxviii

majors. This is the first advanced calculus book to emphasize applications in
statistics.

The scope of this book is not limited to serving the needs of statistics
graduate students. Practicing statisticians can use it to sharpen their mathe-
matical skills, or they may want to keep it as a handy reference for their
research work. These individuals may be interested in the last three chapters,
particularly Chapters 8 and 9, which include a large number of citations of
statistical papers.

The second purpose of the book concerns mathematics majors. The book’s
thorough and rigorous coverage of advanced calculus makes it quite suitable
as a text for juniors or seniors. Chapters 1 through 7 can be used for this
purpose. The instructor may choose to omit the last section in each chapter,
which pertains to statistical applications. Students may benefit, however,
from the exposure to these additional applications. This is particularly true
given that the trend today is to allow the undergraduate student to have a
major in mathematics with a minor in some other discipline. In this respect,
the book can be particularly useful to those mathematics students who may
be interested in a minor in statistics.

Other features of this book include a detailed coverage of optimization
Ž .techniques and their applications in statistics Chapter 8 , and an introduc-

Ž .tion to approximation theory Chapter 9 . In addition, an annotated bibliog-
raphy is given at the end of each chapter. This bibliography can help direct
the interested reader to other sources in mathematics and statistics that are
relevant to the material in a given chapter. A general bibliography is
provided at the end of the book. There are also many examples and exercises
in mathematics and statistics in every chapter. The exercises are classified by

Ž .discipline mathematics and statistics for the benefit of the student and the
instructor.

The reader is assumed to have a mathematical background that is usually
obtained in the freshman�sophomore calculus sequence. A prerequisite for
understanding the statistical applications in the book is an introductory
statistics course. Obviously, those not interested in such applications need
not worry about this prerequisite. Readers who do not have any background
in statistics, but are nevertheless interested in the application sections, can
make use of the annotated bibliography in each chapter for additional
reading.

The book contains nine chapters. Chapters 1�7 cover the main topics in
advanced calculus, while chapters 8 and 9 include more specialized subject
areas. More specifically, Chapter 1 introduces the basic elements of set
theory. Chapter 2 presents some fundamental concepts concerning vector
spaces and matrix algebra. The purpose of this chapter is to facilitate the
understanding of the material in the remaining chapters, particularly, in
Chapters 7 and 8. Chapter 3 discusses the concepts of limits and continuity of
functions. The notion of differentiation is studied in Chapter 4. Chapter 5
covers the theory of infinite sequences and series. Integration of functions is
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the theme of Chapter 6. Multidimensional calculus is introduced in Chapter
7. This chapter provides an extension of the concepts of limits, continuity,

Ždifferentiation, and integration to functions of several variables multivaria-
.ble functions . Chapter 8 consists of two parts. The first part presents an

overview of the various methods of optimization of multivariable functions
whose optima cannot be obtained explicitly by standard advanced calculus
techniques. The second part discusses a variety of topics of interest to
statisticians. The common theme among these topics is optimization. Finally,
Chapter 9 deals with the problem of approximation of continuous functions
with polynomial and spline functions. This chapter is of interest to both
mathematicians and statisticians and contains a wide variety of applications
in statistics.

I am grateful to the University of Florida for granting me a sabbatical
leave that made it possible for me to embark on the project of writing this
book. I would also like to thank Professor Rocco Ballerini at the University
of Florida for providing me with some of the exercises used in Chapters, 3, 4,
5, and 6.

ANDRE I. KHURI´

Gaines®ille, Florida





C H A P T E R 1

An Introduction to Set Theory

The origin of the modern theory of sets can be traced back to the Russian-born
Ž .German mathematician Georg Cantor 1845�1918 . This chapter introduces

the basic elements of this theory.

1.1. THE CONCEPT OF A SET

A set is any collection of well-defined and distinguishable objects. These
objects are called the elements, or members, of the set and are denoted by
lowercase letters. Thus a set can be perceived as a collection of elements
united into a single entity. Georg Cantor stressed this in the following words:
‘‘A set is a multitude conceived of by us as a one.’’

If x is an element of a set A, then this fact is denoted by writing xgA.
If, however, x is not an element of A, then we write x�A. Curly brackets
are usually used to describe the contents of a set. For example, if a set A
consists of the elements x , x , . . . , x , then it can be represented as As1 2 n
� 4x , x , . . . , x . In the event membership in a set is determined by the1 2 n
satisfaction of a certain property or a relationship, then the description of the
same can be given within the curly brackets. For example, if A consists of all

2 � � 2 4real numbers x such that x �1, then it can be expressed as As x x �1 ,
�where the bar is used simply to mean ‘‘such that.’’ The definition of sets in

this manner is based on the axiom of abstraction, which states that given any
property, there exists a set whose elements are just those entities having that
property.

Definition 1.1.1. The set that contains no elements is called the empty set
and is denoted by �. �

Definition 1.1.2. A set A is a subset of another set B, written symboli-
cally as A;B, if every element of A is an element of B. If B contains at
least one element that is not in A, then A is said to be a proper subset of B.

�

1



AN INTRODUCTION TO SET THEORY2

Definition 1.1.3. A set A and a set B are equal if A;B and B;A.
Thus, every element of A is an element of B and vice versa. �

Definition 1.1.4. The set that contains all sets under consideration in a
certain study is called the universal set and is denoted by �. �

1.2. SET OPERATIONS

There are two basic operations for sets that produce new sets from existing
ones. They are the operations of union and intersection.

Definition 1.2.1. The union of two sets A and B, denoted by AjB, is
the set of elements that belong to either A or B, that is,

�� 4AjBs x xgA or xgB . �

This definition can be extended to more than two sets. For example, if
A , A , . . . , A are n given sets, then their union, denoted by � n A , is a set1 2 n is1 i
such that x is an element of it if and only if x belongs to at least one of the

Ž .A is1, 2, . . . , n .i

Definition 1.2.2. The intersection of two sets A and B, denoted by
AlB, is the set of elements that belong to both A and B. Thus

�� 4AlBs x xgA and xgB . �

This definition can also be extended to more than two sets. As before, if
A , A , . . . , A are n given sets, then their intersection, denoted by � n A ,1 2 n is1 i

Ž .is the set consisting of all elements that belong to all the A is1, 2, . . . , n .i

Definition 1.2.3. Two sets A and B are disjoint if their intersection is the
empty set, that is, AlBs�. �

Definition 1.2.4. The complement of a set A, denoted by A, is the set
consisting of all elements in the universal set that do not belong to A. In
other words, xgA if and only if x�A.

The complement of A with respect to a set B is the set ByA which
consists of the elements of B that do not belong to A. This complement is
called the relative complement of A with respect to B. �

From Definitions 1.1.1�1.1.4 and 1.2.1�1.2.4, the following results can be
concluded:

RESULT 1.2.1. The empty set � is a subset of every set. To show this,
suppose that A is any set. If it is false that �;A, then there must be an
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element in � which is not in A. But this is not possible, since � is empty. It
is therefore true that �;A.

RESULT 1.2.2. The empty set � is unique. To prove this, suppose that �1
and � are two empty sets. Then, by the previous result, � ;� and2 1 2
� G� . Hence, � s� .2 1 1 2

RESULT 1.2.3. The complement of � is �. Vice versa, the complement
of � is �.

RESULT 1.2.4. The complement of A is A.

RESULT 1.2.5. For any set A, AjAs� and AlAs�.

RESULT 1.2.6. AyBsAyAlB.

Ž . Ž .RESULT 1.2.7. Aj BjC s AjB jC.

Ž . Ž .RESULT 1.2.8. Al BlC s AlB lC.

Ž . Ž . Ž .RESULT 1.2.9. Aj BlC s AjB l AjC .

Ž . Ž . Ž .RESULT 1.2.10. Al BjC s AlB j AlC .

n nRESULT 1.2.11. AjB sAlB. More generally, � A s� A .Ž . is1 i is1 i

n nRESULT 1.2.12. AlB sAjB. More generally, � A s� A .Ž . is1 i is1 i

Definition 1.2.5. Let A and B be two sets. Their Cartesian product,
Ž .denoted by A�B, is the set of all ordered pairs a, b such that agA and

bgB, that is,

�A�Bs a, b agA and bgB .� 4Ž .

The word ‘‘ordered’’ means that if a and c are elements in A and b and d
Ž . Ž .are elements in B, then a, b s c, d if and only if asc and bsd. �

The preceding definition can be extended to more than two sets. For
example, if A , A , . . . , A are n given sets, then their Cartesian product is1 2 n
denoted by �n A and defined byiis1

n

A s a , a , . . . , a a gA , is1, 2, . . . , n .� 4Ž .� i 1 2 n i i
is1
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Ž .Here, a , a , . . . , a , called an ordered n-tuple, represents a generaliza-1 2 n
tion of the ordered pair. In particular, if the A are equal to A fori
is1, 2, . . . , n, then one writes An for �n A.is1

The following results can be easily verified:

RESULT 1.2.13. A�Bs� if and only if As� or Bs�.

Ž . Ž . Ž .RESULT 1.2.14. AjB �Cs A�C j B�C .

Ž . Ž . Ž .RESULT 1.2.15. AlB �Cs A�C l B�C .

Ž . Ž . Ž . Ž .RESULT 1.2.16. A�B l C�D s AlC � BlD .

1.3. RELATIONS AND FUNCTIONS

Let A�B be the Cartesian product of two sets, A and B.

Definition 1.3.1. A relations � from A to B is a subset of A�B, that is,
Ž .� consists of ordered pairs a, b such that agA and bgB. In particular, if

AsB, then � is said to be a relation in A.
� 4 � 4 �Ž . �For example, if As 7, 8, 9 and Bs 7, 8, 9, 10 , then �s a, b a�b,

4agA, bgB is a relation from A to B that consists of the six ordered pairs
Ž . Ž . Ž . Ž . Ž . Ž .7, 8 , 7, 9 , 7, 10 , 8, 9 , 8, 10 , and 9, 10 .

Ž .Whenever � is a relation and x, y g�, then x and y are said to be
�-related. This is denoted by writing x � y. �

Definition 1.3.2. A relation � in a set A is an equivalence relation if the
following properties are satisfied:

1. � is reflexive, that is, a� a for any a in A.
2. � is symmetric, that is, if a� b, then b� a for any a, b in A.
3. � is transitive, that is, if a� b and b� c, then a� c for any a, b, c in A.

If � is an equivalence relation in a set A, then for a given a in A, the set0

�C a s agA a � a ,� 4Ž .0 0

which consists of all elements of A that are �-related to a , is called an0
equivalence class of a . �0

Ž .RESULT 1.3.1. agC a for any a in A. Thus each element of A is an
element of an equivalence class.
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Ž . Ž .RESULT 1.3.2. If C a and C a are two equivalence classes, then1 2
Ž . Ž . Ž . Ž .either C a sC a , or C a and C a are disjoint subsets.1 2 1 2

It follows from Results 1.3.1 and 1.3.2 that if A is a nonempty set, the
collection of distinct �-equivalence classes of A forms a partition of A.

As an example of an equivalence relation, consider that a � b if and only if
a and b are integers such that ayb is divisible by a nonzero integer n. This
is the relation of congruence modulo n in the set of integers and is written

Ž . Ž .symbolically as a�b mod n . Clearly, a�a mod n , since ayas0 is
Ž . Ž .divisible by n. Also, if a�b mod n , then b�a mod n , since if ayb is

Ž .divisible by n, then so is bya. Furthermore, if a�b mod n and b�c
Ž . Ž .mod n , then a�c mod n . This is true because if ayb and byc are both

Ž . Ž .divisible by n, then so is ayb q byc sayc. Now, if a is a given0
integer, then a �-equivalence class of a consists of all integers that can be0

Ž .written as asa qkn, where k is an integer. This in this example C a is0 0
� � 4the set a qkn kgJ , where J denotes the set of all integers.0

Definition 1.3.3. Let � be a relation from A to B. Suppose that � has
the property that for all x in A, if x� y and x� z, where y and z are elements
in B, then ysz. Such a relation is called a function. �

Thus a function is a relation � such that any two elements in B that are
�-related to the same x in A must be identical. In other words, to each
element x in A, there corresponds only one element y in B. We call y the

Ž .value of the function at x and denote it by writing ys f x . The set A is
Ž .called the domain of the function f , and the set of all values of f x for x in

A is called the range of f , or the image of A under f , and is denoted by
Ž .f A . In this case, we say that f is a function, or a mapping, from A into B.

Ž .We express this fact by writing f : A™B. Note that f A is a subset of B. In
Ž .particular, if Bs f A , then f is said to be a function from A onto B. In this

case, every element b in B has a corresponding element a in A such that
Ž .bs f a .

Definition 1.3.4. A function f defined on a set A is said to be a
Ž . Ž .one-to-one function if whenever f x s f x for x , x in A, one has1 2 1 2

x sx . Equivalently, f is a one-to-one function if whenever x �x , one has1 2 1 2
Ž . Ž .f x � f x . �1 2

Ž .Thus a function f : A™B is one-to-one if to each y in f A , there
Ž .corresponds only one element x in A such that ys f x . In particular, if f is

a one-to-one and onto function, then it is said to provide a one-to-one
correspondence between A and B. In this case, the sets A and B are said to
be equivalent. This fact is denoted by writing A�B.

Note that whenever A�B, there is a function g : B™A such that if
Ž . Ž .ys f x , then xsg y . The function g is called the inverse function of f and
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is denoted by fy1. It is easy to see that A�B defines an equivalence
relation. Properties 1 and 2 in Definition 1.3.2 are obviously true here. As for
property 3, if A, B, and C are sets such that A�B and B�C, then A�C.
To show this, let f : A™B and h: B™C be one-to-one and onto functions.

Ž . w Ž .xThen, the composite function h� f , where h� f x sh f x , defines a one-
to-one correspondence between A and C.

EXAMPLE 1.3.1. The relation a� b, where a and b are real numbers such
2 Ž .that asb , is not a function. This is true because both pairs a, b and

Ž .a,yb belong to �.

EXAMPLE 1.3.2. The relation a� b, where a and b are real numbers such
that bs2 a2q1, is a function, since for each a, there is only one b that is
�-related to a.

� � 4 � � 4EXAMPLE 1.3.3. Let A s x y1 F x F 1 , B s x 0 F x F 2 . Define
Ž . 2f : A™B such that f x sx . Here, f is a function, but is not one-to-one

Ž . Ž .because f 1 s f y1 s1. Also, f does not map A onto B, since ys2 has no
corresponding x in A such that x 2s2.

EXAMPLE 1.3.4. Consider the relation x� y, where ysarcsin x, y1F
xF1. Here, y is an angle measured in radians whose sine is x. Since there
are infinitely many angles with the same sine, � is not a function. However, if

� � 4we restrict the range of y to the set Bs y y�r2FyF�r2 , then �
becomes a function, which is also one-to-one and onto. This function is the
inverse of the sine function xssin y. We refer to the values of y that belong
to the set B as the principal values of arcsin x, which we denote by writing
ysArcsin x. Note that other functions could have also been defined from
the arcsine relation. For example, if �r2FyF3�r2, then xssin ysysin z,
where zsyy� . Since y�r2FzF�r2, then zsyArcsin x. Thus ys

� � 4�yArcsin x maps the set As x y1FxF1 in a one-to-one manner onto
� � 4the set Cs y �r2FyF3�r2 .

1.4. FINITE, COUNTABLE, AND UNCOUNTABLE SETS

� 4Let J s 1, 2, . . . , n be a set consisting of the first n positive integers, and letn
Jq denote the set of all positive integers.

Definition 1.4.1. A set A is said to be:

1. Finite if A�J for some positive integer n.n

2. Countable if A�Jq. In this case, the set Jq, or any other set equiva-
lent to it, can be used as an index set for A, that is, the elements of A

Ž . qare assigned distinct indices subscripts that belong to J . Hence,
� 4A can be represented as As a , a , . . . , a , . . . .1 2 n
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3. Uncountable if A is neither finite nor countable. In this case, the
elements of A cannot be indexed by J for any n, or by Jq. �n

� 2 4EXAMPLE 1.4.1. Let As 1, 4, 9, . . . , n , . . . . This set is countable, since
q Ž . 2the function f : J ™A defined by f n sn is one-to-one and onto. Hence,

A�Jq.

EXAMPLE 1.4.2. Let AsJ be the set of all integers. Then A is count-
able. To show this, consider the function f : Jq™A defined by

nq1 r2, n odd,Ž .
f n sŽ . ½ 2yn r2, n even.Ž .

It can be verified that f is one-to-one and onto. Hence, A�Jq.

� � 4EXAMPLE 1.4.3. Let As x 0FxF1 . This set is uncountable. To show
this, suppose that there exists a one-to-one correspondence between Jq and

� 4A. We can then write As a , a , . . . , a , . . . . Let the digit in the nth decimal1 2 n
Ž .place of a be denoted by b ns1, 2, . . . . Define a number c as cs0 �c cn n 1 2

��� c ��� such that for each n, c s1 if b �1 and c s2 if b s1. Now, cn n n n n
belongs to A, since 0FcF1. However, by construction, c is different from

Ž .every a in at least one decimal digit is1, 2, . . . and hence c�A, which is ai
contradiction. Therefore, A is not countable. Since A is not finite either,
then it must be uncountable.

This result implies that any subset of R, the set of real numbers, that
contains A, or is equivalent to it, must be uncountable. In particular, R is
uncountable.

Theorem 1.4.1. Every infinite subset of a countable set is countable.

Proof. Let A be a countable set, and B be an infinite subset of A. Then
� 4As a , a , . . . , a , . . . , where the a ’s are distinct elements. Let n be the1 2 n i 1

smallest positive integer such that a gB. Let n �n be the next smallestn 2 11

integer such that a gB. In general, if n �n � ��� �n have beenn 1 2 ky12

chosen, let n be the smallest integer greater than n such that a gB.k ky1 nkq Ž .Define the function f : J ™B such that f k sa , ks1, 2, . . . . This func-nk

tion is one-to-one and onto. Hence, B is countable. �

Theorem 1.4.2. The union of two countable sets is countable.

Proof. Let A and B be countable sets. Then they can be represented as
� 4 � 4As a , a , . . . , a , . . . , Bs b , b , . . . , b , . . . . Define CsAjB. Consider1 2 n 1 2 n

the following two cases:

i. A and B are disjoint.
ii. A and B are not disjoint.
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� 4In case i, let us write C as Cs a , b , a , b , . . . , a , b , . . . . Consider the1 1 2 2 n n
function f : Jq™C such that

a , n odd,Žnq1.r2
f n sŽ . ½ b , n even.nr2

It can be verified that f is one-to-one and onto. Hence, C is countable.
Let us now consider case ii. If AlB��, then some elements of C,

namely those in AlB, will appear twice. Hence, there exists a set E;Jq

such that E�C. Thus C is either finite or countable. Since C>A and A is
infinite, C must be countable. �

Corollary 1.4.1. If A , A , . . . , A , . . . , are countable sets, then �� A1 2 n is1 i
is countable.

Proof. The proof is left as an exercise. �

Theorem 1.4.3. Let A and B be two countable sets. Then their Cartesian
product A�B is countable.

Ž 4Proof. Let us write A as As a , a , . . . , a , . . . . For a given agA,1 2 n
Ž .define a, B as the set

�a, B s a, b bgB .� 4Ž . Ž .

Ž . Ž .Then a, B �B and hence a, B is countable.
However,

�

A�Bs a , B .Ž .� i
is1

Thus by Corollary 1.4.1, A�B is countable. �

Corollary 1.4.2. If A , A , . . . , A are countable sets, then their Carte-1 2 n
sian product �n A is countable.iis1

Proof. The proof is left as an exercise. �

Corollary 1.4.3. The set Q of all rational numbers is countable.

Proof. By definition, a rational number is a number of the form mrn,
˜where m and n are integers with n�0. Thus Q�Q, where

˜ �Qs m , n m , n are integers and n�0 .� 4Ž .
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˜Since Q is an infinite subset of J�J, where J is the set of all integers, which
is countable as was seen in Example 1.4.2, then by Theorems 1.4.1 and 1.4.3,
Q̃ is countable and so is Q. �

REMARK 1.4.1. Any real number that cannot be expressed as a rational
'number is called an irrational number. For example, 2 is an irrational

number. To show this, suppose that there exist integers, m and n, such that
'2 smrn. We may consider that mrn is written in its lowest terms, that is,
m and n have no common factors other than unity. In particular, m and n,
cannot both be even. Now, m2s2n2. This implies that m2 is even. Hence, m
is even and can therefore be written as ms2m�. It follows that n2sm2r2s
2m�2. Consequently, n2, and hence n, is even. This contradicts the fact that

'm and n are not both even. Thus 2 must be an irrational number.

1.5. BOUNDED SETS

Let us consider the set R of real numbers.

Definition 1.5.1. A set A;R is said to be:

1. Bounded from above if there exists a number q such that xFq for all
x in A. This number is called an upper bound of A.

2. Bounded from below if there exists a number p such that xGp for all
x in A. The number p is called a lower bound of A.

3. Bounded if A has an upper bound q and a lower bound p. In this case,
there exists a nonnegative number r such that yrFxF r for all x in

Ž � � � � .A. This number is equal to max p , q . �

Definition 1.5.2. Let A;R be a set bounded from above. If there exists
a number l that is an upper bound of A and is less than or equal to any
other upper bound of A, then l is called the least upper bound of A and is

Ž . Ž .denoted by lub A . Another name for lub A is the supremum of A and is
Ž .denoted by sup A . �

Definition 1.5.3. Let A;R be a set bounded from below. If there exists
a number g that is a lower bound of A and is greater than or equal to any
other lower bound of A, then g is called the greatest lower bound and is

Ž . Ž .denoted by glb A . The infimum of A, denoted by inf A , is another name
Ž .for glb A . �

The least upper bound of A, if it exists, is unique, but it may or may not
Ž .belong to A. The same is true for glb A . The proof of the following theorem
Ž .is omitted and can be found in Rudin 1964, Theorem 1.36 .
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Theorem 1.5.1. Let A;R be a nonempty set.

Ž .1. If A is bounded from above, then lub A exists.
Ž .2. If A is bounded from below, then glb A exists.

� � 4 Ž .EXAMPLE 1.5.1. Let As x x�0 . Then lub A s0, which does not
belong to A.

� � 4 Ž . Ž .EXAMPLE 1.5.2. Let As 1rn ns1, 2, . . . . Then lub A s1 and glb A
Ž . Ž .s0. In this case, lub A belongs to A, but glb A does not.

1.6. SOME BASIC TOPOLOGICAL CONCEPTS

The field of topology is an abstract study that evolved as an independent
discipline in response to certain problems in classical analysis and geometry.
It provides a unifying theory that can be used in many diverse branches of
mathematics. In this section, we present a brief account of some basic
definitions and results in the so-called point-set topology.

� 4Definition 1.6.1. Let A be a set, and let FFs B be a family of subsets�

of A. Then FF is a topology in A if it satisfies the following properties:

1. The union of any number of members of FF is also a member of FF.
2. The intersection of a finite number of members of FF is also a member

of FF.
3. Both A and the empty set � are members of FF. �

Ž .Definition 1.6.2. Let FF be a topology in a set A. Then the pair A, FF is
called a topological space. �

Ž .Definition 1.6.3. Let A, FF be a topological space. Then the members of
FF are called the open sets of the topology FF. �

Ž .Definition 1.6.4. Let A, FF be a topological space. A neighborhood of a
Ž .point pgA is any open set that is, a member of FF that contains p. In

particular, if AsR, the set of real numbers, then a neighborhood of pgR
Ž . � � � � 4is an open set of the form N p s q qyp � r for some r�0. �r

Ž . � 4Definition 1.6.5. Let A, FF be a topological space. A family Gs B ;FF�

Ž .is called a basis for FF if each open set that is, member of FF is the union of
members of G. �

On the basis of this definition, it is easy to prove the following theorem.
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Ž .Theorem 1.6.1. Let A, FF be a topological space, and let G be a basis
Ž .for FF. Then a set B;A is open that is, a member of FF if and only if for

each pgB, there is a UgG such that pgU;B.

� Ž . � 4For example, if AsR, then Gs N p pgR, r�0 is a basis for ther
topology in R. It follows that a set B;R is open if for every point p in B,

Ž . Ž .there exists a neighborhood N p such that N p ;B.r r

Ž .Definition 1.6.6. Let A, FF be a topological space. A set B;A is closed
if B, the complement of B with respect to A, is an open set. �

Ž .It is easy to show that closed sets of a topological space A, FF satisfy the
following properties:

1. The intersection of any number of closed sets is closed.
2. The union of a finite number of closed sets is closed.
3. Both A and the empty set � are closed.

Ž .Definition 1.6.7. Let A, FF be a topological space. A point pgA is said
to be a limit point of a set B;A if every neighborhood of p contains at least

Ž .one element of B distinct from p. Thus, if U p is any neighborhood of p,
Ž .then U p lB is a nonempty set that contains at least one element besides

p. In particular, if AsR, the set of real numbers, then p is a limit point of a
Ž . w � 4x � 4set B;R if for any r�0, N p l By p ��, where p denotes a setr

consisting of just p. �

Theorem 1.6.2. Let p be a limit point of a set B;R. Then every
neighborhood of p contains infinitely many points of B.

Proof. The proof is left to the reader. �

The next theorem is a fundamental theorem in set theory. It is originally
Ž .due to Bernhard Bolzano 1781�1848 , though its importance was first

Ž .recognized by Karl Weierstrass 1815�1897 . The proof is omitted and can be
Ž .found, for example, in Zaring 1967, Theorem 4.62 .

Ž .Theorem 1.6.3 Bolzano�Weierstrass . Every bounded infinite subset of
R, the set of real numbers, has at least one limit point.

Note that a limit point of a set B may not belong to B. For example, the
� � 4set Bs 1rn ns1, 2, . . . has a limit point equal to zero, which does not

belong to B. It can be seen here that any neighborhood of 0 contains
infinitely many points of B. In particular, if r is a given positive number, then

Ž .all elements of B of the form 1rn, where n�1rr, belong to N 0 . Fromr
Theorem 1.6.2 it can also be concluded that a finite set cannot have limit
points.
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Limit points can be used to describe closed sets, as can be seen from the
following theorem.

Theorem 1.6.4. A set B is closed if and only if every limit point of B
belongs to B.

Proof. Suppose that B is closed. Let p be a limit point of B. If p�B,
Ž .then pgB, which is open. Hence, there exists a neighborhood U p of p

Ž .contained inside B by Theorem 1.6.1. This means that U p lBs�, a
Ž .contradiction, since p is a limit point of B see Definition 1.6.7 . Therefore,

p must belong to B. Vice versa, if every limit point of B is in B, then B must
be closed. To show this, let p be any point in B. Then, p is not a limit point

Ž . Ž .of B. Therefore, there exists a neighborhood U p such that U p ;B. This
means that B is open and hence B is closed. �

It should be noted that a set does not have to be either open or closed; if
it is closed, it does not have to be open, and vice versa. Also, a set may be
both open and closed.

� � 4EXAMPLE 1.6.1. Bs x 0�x�1 is an open subset of R, but is not
closed, since both 0 and 1 are limit points of B, but do not belong to it.

� � 4EXAMPLE 1.6.2. Bs x 0FxF1 is closed, but is not open, since any
neighborhood of 0 or 1 is not contained in B.

� � 4EXAMPLE 1.6.3. Bs x 0�xF1 is not open, because any neighborhood
of 1 is not contained in B. It is also not closed, because 0 is a limit point that
does not belong to B.

EXAMPLE 1.6.4. The set R is both open and closed.

EXAMPLE 1.6.5. A finite set is closed because it has no limit points, but is
obviously not open.

Ž .Definition 1.6.8. A subset B of a topological space A, FF is disconnected
if there exist open subsets C and D of A such that BlC and BlD are
disjoint nonempty sets whose union is B. A set is connected if it is not
disconnected. �

'� � 4The set of all rationals Q is disconnected, since x x� 2 lQ and
'� � 4x x� 2 lQ are disjoint nonempty sets whose union is Q. On the other

Ž .hand, all intervals in R open, closed, or half-open are connected.

� 4Definition 1.6.9. A collection of sets B is said to be a co®ering of a set�

� 4A if the union � B contains A. If each B is an open set, then B is� � � �

called an open co®ering.
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Definition 1.6.10. A set A in a topological space is compact if each open
� 4covering B of A has a finite subcovering, that is, there is a finite�

� 4 nsubcollection B , B , . . . , B of B such that A;� B . �� � � � is1 �1 2 n i

The concept of compactness is motivated by the classical Heine�Borel
theorem, which characterizes compact sets in R, the set of real numbers, as
closed and bounded sets.

Ž .Theorem 1.6.5 Heine�Borel . A set B;R is compact if and only if it is
closed and bounded.

Ž .Proof. See, for example, Zaring 1967, Theorem 4.78 . �

Thus, according to the Heine�Borel theorem, every closed and bounded
w xinterval a, b is compact.

1.7. EXAMPLES IN PROBABILITY AND STATISTICS

EXAMPLE 1.7.1. In probability theory, events are considered as subsets in
a sample space �, which consists of all the possible outcomes of an experi-

Ž .ment. A Borel field of events also called a 	-field in � is a collection BB of
events with the following properties:

i. �gBB.
ii. If EgBB, then EgBB, where E is the complement of E.

iii. If E , E , . . . , E , . . . is a countable collection of events in BB, then1 2 n
�� E belongs to BB.is1 i

Ž .The probability of an event E is a number denoted by P E that has the
following properties:

Ž .i. 0FP E F1.
Ž .ii. P � s1.

iii. If E , E , . . . , E , . . . is a countable collection of disjoint events in BB,1 2 n
then

� �

P E s P E .Ž .� Ýi iž /
is1 is1

Ž .By definition, the triple �, BB, P is called a probability space.

EXAMPLE 1.7.2 . A random variable X defined on a probability space
Ž .�, BB, P is a function X : �™A, where A is a nonempty set of real

� � Ž . 4numbers. For any real number x, the set Es 
g� X 
 Fx is an



AN INTRODUCTION TO SET THEORY14

element of BB. The probability of the event E is called the cumulative
Ž .distribution function of X and is denoted by F x . In statistics, it is custom-

Ž .ary to write just X instead of X 
 . We thus have

F x sP XFx .Ž . Ž .
This concept can be extended to several random variables: Let X , X , . . . , X1 2 n

� � Ž . 4be n random variables. Define the event A s 
g� X 
 Fx , isi i i
Ž n .1, 2, . . . , n. Then, P � A , which can be expressed asis1 i

F x , x , . . . , x sP X Fx , X Fx , . . . , X Fx ,Ž . Ž .1 2 n 1 1 2 2 n n

is called the joint cumulative distribution function of X , X , . . . , X . In this1 2 n
Ž .case, the n-tuple X , X , . . . , X is said to have a multivariate distribution.1 2 n

A random variable X is said to be discrete, or to have a discrete
distribution, if its range is finite or countable. For example, the binomial
random variable is discrete. It represents the number of successes in a
sequence of n independent trials, in each of which there are two possible
outcomes: success or failure. The probability of success, denoted by p , is then
same in all the trials. Such a sequence of trials is called a Bernoulli sequence.
Thus the possible values of this random variable are 0, 1, . . . , n.

Another example of a discrete random variable is the Poisson, whose
possible values are 0, 1, 2, . . . . It is considered to be the limit of a binomial
random variable as n™� in such a way that np ™��0. Other examples ofn
discrete random variables include the discrete uniform, geometric, hypergeo-

Žmetric, and negative binomial see, for example, Fisz, 1963; Johnson and
.Kotz, 1969; Lindgren 1976; Lloyd, 1980 .

A random variable X is said to be continuous, or to have a continuous
distribution, if its range is an uncountable set, for example, an interval. In

Ž .this case, the cumulative distribution function F x of X is a continuous
Ž .function of x on the set R of all real numbers. If, in addition, F x is

differentiable, then its derivative is called the density function of X. One of
the best-known continuous distributions is the normal. A number of continu-
ous distributions are derived in connection with it, for example, the chi-
squared, F, Rayleigh, and t distributions. Other well-known continuous
distributions include the beta, continuous uniform, exponential, and gamma

Ž .distributions see, for example, Fisz, 1963; Johnson and Kotz, 1970a, b .

Ž .EXAMPLE 1.7.3. Let f x, � denote the density function of a continuous
random variable X, where � represents a set of unknown parameters that
identify the distribution of X. The range of X, which consists of all possible
values of X, is referred to as a population and denoted by P . Any subset ofX
n elements from P forms a sample of size n. This sample is actually anX
element in the Cartesian product P n. Any real-valued function defined onX

n Ž .P is called a statistic. We denote such a function by g X , X , . . . , X ,X 1 2 n
where each X has the same distribution as X. Note that this function is ai
random variable whose values do not depend on � . For example, the sample

n 2 n 2Ž . Ž .mean XsÝ X rn and the sample variance S sÝ X yX r ny1is1 i is1 i
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are statistics. We adopt the convention that whenever a particular sample of
Ž .size n is chosen or observed from P , the elements in that sample areX

written using lowercase letters, for example, x , x , . . . , x . The correspond-1 2 n
Ž .ing value of a statistic is written as g x , x , . . . , x .1 2 n

EXAMPLE 1.7.4. Two random variables, X and Y, are said to be equal in
distribution if they have the same cumulative distribution function. This fact

dis denoted by writing XsY. The same definition applies to random variables
dwith multivariate distributions. We note that s is an equivalence relation,

since it satisfies properties 1, 2, and 3 in Definition 1.3.2. The first two
d dproperties are obviously true. As for property 3, if XsY and YsZ, then

dXsZ, which implies that all three random variables have the same cumula-
tive distribution function. This equivalence relation is useful in nonparamet-

Ž .ric statistics see Randles and Wolfe, 1979 . For example, it can be shown
that if X has a distribution that is symmetric about some number , then

dXysyX. Also, if X , X , . . . , X are independent and identically dis-1 2 n
Ž .tributed random variables, and if m , m , . . . , m is any permutation of the1 2 n

dŽ . Ž . Ž .n-tuple 1, 2, . . . , n , then X , X , . . . , X s X , X , . . . , X . In this case,1 2 n m m m1 2 n

we say that the collection of random variables X , X , . . . , X is exchange-1 2 n
able.

EXAMPLE 1.7.5. Consider the problem of testing the null hypothesis H :0
�F� versus the alternative hypothesis H : ��� , where � is some un-0 a 0
known parameter that belongs to a set A. Let T be a statistic used in making
a decision as to whether H should be rejected or not. This statistic is0
appropriately called a test statistic.

Suppose that H is rejected if T� t, where t is some real number. Since0
Ž .the distribution of T depends on � , then the probability P T� t is a

Ž . w xfunction of � , which we denote by � � . Thus � : A™ 0,1 . Let B be a0
� � 4subset of A defined as B s �gA �F� . By definition, the size of the test0 0

Ž .is the least upper bound of the set � B . This probability is denoted by �0
and is also called the level of significance of the test. We thus have

�s sup � � .Ž .
�F� 0

To learn more about the above examples and others, the interested reader
may consider consulting some of the references listed in the annotated
bibliography.
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Ž . ŽStoll, R. R. 1963 . Set Theory and Logic. W. H. Freeman, San Francisco. Chap. 1 is
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EXERCISES

In Mathematics

1.1. Verify Results 1.2.3�1.2.12.

1.2. Verify Results 1.2.13�1.2.16.

1.3. Let A, B, and C be sets such that AlB;C and AjC;B. Show
that A and C are disjoint.

Ž . Ž .1.4. Let A, B, and C be sets such that Cs AyB j ByA . The set C is
called the symmetric difference of A and B and is denoted by A�B.
Show that
( )a A^BsAjByAlB
( ) Ž . Ž .b A^ B^D s A^B ^D, where D is any set.
( ) Ž . Ž . Ž .c Al B^D s AlB ^ AlD , where D is any set.

1.5. Let AsJq�Jq, where Jq is the set of positive integers. Define a
Ž . Ž .relation � in A as follows: If m , n and m , n are elements in A,1 1 2 2

Ž . Ž .then m , n � m , n if m n sn m . Show that � is an equivalence1 1 2 2 1 2 1 2
relation and describe its equivalence classes.

1.6. Let A be the same set as in Exercise 1.5. Show that the following
Ž . Ž .relation is an equivalence relation: m , n � m , n if m qn sn1 1 2 2 1 2 1
Ž .qm . Draw the equivalence class of 1, 2 .2

�Ž . Ž . Ž . Ž .41.7. Consider the set As y2,y5 , y1,y3 , 1, 2 , 3, 10 . Show that A
defines a function.

1.8. Let A and B be two sets and f be a function defined on A such that
Ž .f A ;B. If A , A , . . . , A are subsets of A, then show that:1 2 n

( ) Ž n . n Ž .a f � A s� f A .is1 i is1 i
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( ) Ž n . n Ž .b f � A ;� f A .is1 i is1 i

Ž .Under what conditions are the two sides in b equal?

1.9. Prove Corollary 1.4.1.

1.10. Prove Corollary 1.4.2.

� 41.11. Show that the set As 3, 9, 19, 33, 51, 73, . . . is countable.

'1.12. Show that 3 is an irrational number.

' '1.13. Let a, b, c, and d be rational numbers such that aq b scq d .
Then, either
( )a asc, bsd, or
( )b b and d are both squares of rational numbers.

1.14. Let A;R be a nonempty set bounded from below. Define yA to be
� � 4 Ž . Ž .the set yx xgA . Show that inf A sysup yA .

Ž .1.15. Let A;R be a closed and bounded set, and let sup A sb. Show that
bgA.

1.16. Prove Theorem 1.6.2.

Ž .1.17. Let A, FF be a topological space. Show that G;FF is a basis for FF in
and only if for each BgFF and each pgB, there is a UgG such that
pgU;B.

1.18. Show that if A and B are closed sets, then AjB is a closed set.

1.19. Let B;A be a closed subset of a compact set A. Show that B is
compact.

1.20. Is a compact subset of a compact set necessarily closed?

In Statistics

1.21. Let X be a random variable. Consider the following events:

� ynA s 
g� X 
 �xq3 , ns1, 2, . . . ,� 4Ž .n

� ynB s 
g� X 
 Fxy3 , ns1, 2, . . . ,� 4Ž .n

�As 
g� X 
 Fx ,� 4Ž .
�Bs 
g� X 
 �x ,� 4Ž .
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where x is a real number. Show that for any x,
( ) �a � A sA;ns1 n

( ) �b � B sB.ns1 n

Ž .1.22. Let X be a nonnegative random variable such that E X s is finite,
Ž .where E X denotes the expected value of X. The following inequal-

ity, known as Marko®’s inequality, is true:


P XGh F ,Ž .
h

where h is any positive number. Consider now a Poisson random
variable with parameter �.
( ) Ž .a Find an upper bound on the probability P XG2 using Markov’s

inequality.
( ) Ž .b Obtain the exact probability value in a , and demonstrate that it is

smaller than the corresponding upper bound in Markov’s inequal-
ity.

1.23. Let X be a random variable whose expected value  and variance 	 2

exist. Show that for any positive constants c and k,
( ) Ž � � . 2 2a P Xy Gc F	 rc ,
( ) Ž � � . 2b P Xy Gk	 F1rk ,
( ) Ž � � . 2c P Xy �k	 G1y1rk .
The preceding three inequalities are equivalent versions of the so-called
Chebyshe®’s inequality.

1.24. Let X be a continuous random variable with the density function

� �1y x , y1�x�1,f x sŽ . ½ 0 elsewhere.

By definition, the density function of X is a nonnegative function such
Ž . x Ž . Ž .that F x sH f t dt, where F x is the cumulative distribution func-y�

tion of X.
( )a Apply Markov’s inequality to finding upper bounds on the following

1 1Ž . Ž � � . Ž . Ž � � .probabilities: i P X G ; ii P X � .2 3
1( ) Ž � � .b Compute the exact value of P X G , and compare it against the2

Ž .Ž .upper bound in a i .

1.25. Let X , X , . . . , X be n continuous random variables. Define the1 2 n
random variables X and X asŽ1. Žn.

� 4X s min X , X , . . . , X ,Ž1. 1 2 n
1FiFn

� 4X s max X , X , . . . , X .Žn. 1 2 n
1FiFn
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Show that for any x,
( ) Ž . Ž .a P X Gx sP X Gx, X Gx, . . . , X Gx ,Ž1. 1 2 n

( ) Ž . Ž .b P X Fx sP X Fx, X Fx, . . . , X Fx .Žn. 1 2 n

In particular, if X , X , . . . , X form a sample of size n from a1 2 n
Ž .population with a cumulative distribution function F x , show that

( ) Ž . w Ž .xnc P X Fx s1y 1yF x ,Ž1.

( ) Ž . w Ž .xnd P X Fx s F x .Žn.

The statistics X and X are called the first-order and nth-orderŽ1. Žn.
statistics, respectively.

1.26. Suppose that we have a sample of size ns5 from a population with an
exponential distribution whose density function is

2 ey2 x , x�0,f x sŽ . ½ 0 elsewhere.

Ž .Find the value of P 2FX F3 .Ž1.
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Basic Concepts in Linear Algebra

In this chapter we present some fundamental concepts concerning vector
spaces and matrix algebra. The purpose of the chapter is to familiarize the
reader with these concepts, since they are essential to the understanding of
some of the remaining chapters. For this reason, most of the theorems in this
chapter will be stated without proofs. There are several excellent books on

Žlinear algebra that can be used for a more detailed study of this subject see
.the bibliography at the end of this chapter .

In statistics, matrix algebra is used quite extensively, especially in linear
Ž .models and multivariate analysis. The books by Basilevsky 1983 , Graybill

Ž . Ž . Ž .1983 , Magnus and Neudecker 1988 , and Searle 1982 include many
applications of matrices in these areas.

In this chapter, as well as in the remainder of the book, elements of the
set of real numbers, R, are sometimes referred to as scalars. The Cartesian
product �n R is denoted by Rn, which is also known as the n-dimensionalis1
Euclidean space. Unless otherwise stated, all matrix elements are considered
to be real numbers.

2.1. VECTOR SPACES AND SUBSPACES

A vector space over R is a set V of elements called vectors together with two
operations, addition and scalar multiplication, that satisfy the following
conditions:

1. uqv is an element of V for all u, v in V.
2. If � is a scalar and ugV, then � ugV.
3. uqvsvqu for all u, v in V.

Ž . Ž .4. uq vqw s uqv qw for all u, v, w in V.
5. There exists an element 0gV such that 0qusu for all u in V. This

element is called the zero vector.

21
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6. For each ugV there exists a vgV such that uqvs0.
Ž .7. � uqv s� uq� v for any scalar � and any u and v in V.

Ž .8. �q� us� uq�u for any scalars � and � and any u in V.
Ž . Ž .9. � �u s �� u for any scalars � and � and any u in V.

10. 1usu for any ugV.

EXAMPLE 2.1.1. A familiar example of a vector space is the n-dimen-
sional Euclidean space Rn. Here, addition and multiplication are defined as

Ž . Ž . nfollows: If u , u , . . . , u and ® , ® , . . . , ® are two elements in R , then1 2 n 1 2 n
Ž .their sum is defined as u q® , u q® , . . . , u q® . If � is a scalar, then1 1 2 2 n n

Ž . Ž .� u , u , . . . , u s �u , � u , . . . , �u .1 2 n 1 2 n

EXAMPLE 2.1.2. Let V be the set of all polynomials in x of degree less
than or equal to k. Then V is a vector space. Any element in V can be
expressed as Ýk a x i, where the a ’s are scalars.is0 i i

EXAMPLE 2.1.3. Let V be the set of all functions defined on the closed
w x Ž . Ž .interval y1, 1 . Then V is a vector space. It can be seen that f x qg x and

Ž . Ž . Ž .� f x belong to V, where f x and g x are elements in V and � is any
scalar.

w xEXAMPLE 2.1.4. The set V of all nonnegative functions defined on y1, 1
Ž .is not a vector space, since if f x gV and � is a negative scalar, then

Ž .� f x �V.

Ž .EXAMPLE 2.1.5. Let V be the set of all points x, y on a straight line
given by the equation 2 xyyq1s0. Then V is not a vector space. This is

Ž . Ž . Ž .because if x , y and x , y belong to V, then x qx , y qy �V, since1 1 2 2 1 2 1 2
Ž . Ž .2 x qx y y qy q1sy1�0. Alternatively, we can state that V is not1 2 1 2

Ž .a vector space because the zero element 0, 0 does not belong to V. This
violates condition 5 for a vector space.

A subset W of a vector space V is said to form a vector subspace if W
itself is a vector space. Equivalently, W is a subspace if whenever u, vgW
and � is a scalar, then uqvgW and � ugW. For example, the set W of all

w xcontinuous functions defined on y1, 1 is a vector subspace of V in Example
2.1.3. Also, the set of all points on the straight line yy2 xs0 is a vector
subspace of R2. However, the points on any straight line in R2 not going

Ž .through the origin 0, 0 do not form a vector subspace, as was seen in
Example 2.1.5.

Definition 2.1.1. Let V be a vector space, and u , u , . . . , u be a collec-1 2 n
tion of n elements in V. These elements are said to be linearly dependent if
there exist n scalars � , � , . . . , � , not all equal to zero, such that Ýn � u1 2 n is1 i i
s0. If, however, Ýn � u s0 is true only when all the � ’s are zero, thenis1 i i i



VECTOR SPACES AND SUBSPACES 23

u , u , . . . , u are linearly independent. It should be noted that if u , u , . . . , u1 2 n 1 2 n
are linearly independent, then none of them can be zero. If, for example,
u s0, then � u q0u q ���q0u s0 for any ��0, which implies that the1 1 2 n
u ’s are linearly dependent, a contradiction. �i

From the preceding definition we can say that a collection of n elements
in a vector space are linearly dependent if at least one element in this
collection can be expressed as a linear combination of the remaining ny1
elements. If no element, however, can be expressed in this fashion, then the

3 Ž . Ž .n elements are linearly independent. For example, in R , 1, 2,y2 , y1, 0, 3 ,
Ž . Ž . Ž .and 1, 4,y 1 are linearly dependent, since 2 1, 2,y 2 q y1, 0, 3 y

Ž . Ž . Ž .1, 4,y1 s0. On the other hand, it can be verified that 1, 1, 0 , 1, 0, 2 , and
Ž .0, 1, 3 are linearly independent.

Definition 2.1.2. Let u , u , . . . , u be n elements in a vector space V.1 2 n
The collection of all linear combinations of the form Ýn � u , where the � ’sis1 i i i
are scalars, is called a linear span of u , u , . . . , u and is denoted by1 2 n
Ž .L u , u , . . . , u . �1 2 n

Ž .It is easy to see from the preceding definition that L u , u , . . . , u is a1 2 n
vector subspace of V. This vector subspace is said to be spanned by
u , u , . . . , u .1 2 n

Definition 2.1.3. Let V be a vector space. If there exist linearly indepen-
Ž .dent elements u , u , . . . , u in V such that VsL u , u , . . . , u , then1 2 n 1 2 n

u , u , . . . , u are said to form a basis for V. The number n of elements in1 2 n
this basis is called the dimension of the vector space and is denoted by dim V.

�

Note that a basis for a vector space is not unique. However, its dimension
Ž . Ž . Ž .is unique. For example, the three vectors 1, 0, 0 , 0, 1, 0 , and 0, 0, 1 form a

3 3 Ž . Ž . Ž .basis for R . Another basis for R consists of 1, 1, 0 , 1, 0, 1 , and 0, 1, 1 .
If u , u , . . . , u form a basis for V and if u is a given element in V, then1 2 n

there exists a unique set of scalars, � , � , . . . , � , such that usÝn � u . To1 2 n is1 i i
show this, suppose that there exists another set of scalars, � , � , . . . , � ,1 2 n

n n Ž .such that usÝ � u. Then Ý � y� u s0, which implies that � s�is1 i is1 i i i i i
for all i, since the u ’s are linearly independent.i

Let us now check the dimensions of the vector spaces for some of the
examples described earlier. For Example 2.1.1, dim Vsn. In Example 2.1.2,
� 2 k41, x, x , . . . , x is a basis for V; hence dim Vskq1. As for Example 2.1.3,
dim V is infinite, since there is no finite set of functions that can span V.

n ŽDefinition 2.1.4. Let u and v be two vectors in R . The dot product also
.called scalar product or inner product of u and v is a scalar denoted by u �v

and is given by

n

u �vs u ® ,Ý i i
is1
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Žwhere u and ® are the ith components of u and v, respectively isi i
. Ž .1r2 Ž n 2 .1r21, 2, . . . , n . In particular, if usv, then u �u s Ý u is called theis1 i

Ž . 	 	Euclidean norm or length of u and is denoted by u . The dot product of2
	 	 	 	u and v is also equal to u v cos � , where � is the angle between u and v.2 2

�

Definition 2.1.5. Two vectors u and v in Rn are said to be orthogonal if
their dot product is zero. �

Definition 2.1.6. Let U be a vector subspace of Rn. The vectors
e , e , . . . , e form an orthonormal basis for U if they satisfy the following1 2 m
properties:

1. e , e , . . . , e form a basis for U.1 2 m

Ž .2. e �e s0 for all i� j i, js1, 2, . . . , m .i j

	 	3. e s1 for is1, 2, . . . , m.2i

Any collection of vectors satisfying just properties 2 and 3 are said to be
orthonormal. �

Theorem 2.1.1. Let u , u , . . . , u be a basis for a vector subspace U of1 2 m
Rn. Then there exists an orthonormal basis, e , e , . . . , e , for U, given by1 2 m

v1
e s , where v su ,1 1 1	 	v 21

v v �u2 1 2
e s , where v su y v ,2 2 2 12	 	v 	 	v22 21

...
my1v v �um i m

e s , where v su y v .Ým m m i2	 	v 	 	v2m 2is1 i

Ž .Proof. See Graybill 1983, Theorem 2.6.5 . �

The procedure of constructing an orthonormal basis from any given basis
as described in Theorem 2.1.1 is known as the Gram-Schmidt orthonormal-
ization procedure.

Theorem 2.1.2. Let u and v be two vectors in Rn. Then:

� � 	 	 	 	1. u �v F u v .2 2

	 	 	 	 	 	2. uqv F u q v .2 2 2

Ž .Proof. See Marcus and Minc 1988, Theorem 3.4 . �
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The inequality in part 1 of Theorem 2.1.2 is known as the Cauchy�Schwarz
inequality. The one in part 2 is called the triangle inequality.

Definition 2.1.7. Let U be a vector subspace of Rn. The orthogonal
complement of U, denoted by U H, is the vector subspace of Rn which
consists of all vectors v such that u �vs0 for all u in U. �

Definition 2.1.8. Let U , U , . . . , U be vector subspaces of the vector1 2 n
space U. The direct sum of these vector subspaces, denoted by [n U ,iis1
consists of all vectors u that can be uniquely expressed as usÝn u , whereis1 i
u gU , is1, 2, . . . , n. �i i

Theorem 2.1.3. Let U , U , . . . , U be vector subspaces of the vector space1 2 n
U. Then:

1. [n U is a vector subspace of U.iis1

2. If Us[n U , then � n U consists of just the zero element 0 of U.i is1 iis1

3. dim[n U sÝn dim U .i is1 iis1

Proof. The proof is left as an exercise. �

Theorem 2.1.4. Let U be a vector subspace of Rn. Then RnsU[U H .

Ž .Proof. See Marcus and Minc 1988, Theorem 3.3 . �

From Theorem 2.1.4 we conclude that any vgRn can be uniquely written
as vsv qv , where v gU and v gU H . In this case, v and v are called1 2 1 2 1 2
the projections of v on U and U H , respectively.

2.2. LINEAR TRANSFORMATIONS

Let U and V be two vector spaces. A function T : U™V is called a linear
Ž . Ž . Ž .transformation if T � u q� u s� T u q� T u for all u , u in U1 1 2 2 1 1 2 2 1 2

and any scalars � and � . For example, let T : R3™R3 be defined as1 2

T x , x , x s x yx , x qx , x .Ž . Ž .1 2 3 1 2 1 3 3

Then T is a linear transformation, since

T � x , x , x q� y , y , yŽ . Ž .1 2 3 1 2 3

sT � x q� y , � x q� y , � x q� yŽ .1 1 2 2 3 3

s � x q� y y� x y� y , � x q� y q� x q� y , � x q� yŽ .1 1 2 2 1 1 3 3 3 3

s� x yx , x qx , x q� y yy , y qy , yŽ . Ž .1 2 1 3 3 1 2 1 3 3

s�T x , x , x q�T y , y , y .Ž . Ž .1 2 3 1 2 3



BASIC CONCEPTS IN LINEAR ALGEBRA26

Ž .We note that the image of U under T , or the range of T , namely T U , is
Ž .a vector subspace of V. This is true because if v , v are in T U , then there1 2

Ž . Ž .exist u and u in U such that v sT u and v sT u . Hence, v qv s1 2 1 1 2 2 1 2
Ž . Ž . Ž . Ž .T u qT u sT u qu , which belongs to T U . Also, if � is a scalar,1 2 1 2

Ž . Ž . Ž .then �T u sT � u gT U for any ugU.

Definition 2.2.1. Let T : U™V be a linear transformation. The kernel of
Ž .T , denoted by ker T , is the collection of all vectors u in U such that T u s0,

where 0 is the zero vector in V. The kernel of T is also called the null space
of T.

3 3 Ž .As an example of a kernel, let T : R ™R be defined as T x , x , x s1 2 3
Ž .x yx , x yx . Then1 2 1 3

�ker Ts x , x , x x sx , x sx� 4Ž .1 2 3 1 2 1 3

Ž . 3In this case, ker T consists of all points x , x , x in R that lie on a straight1 2 3
line through the origin given by the equations x sx sx . �1 2 3

Theorem 2.2.1. Let T : U™V be a linear transformation. Then we have
the following:

1. ker T is a vector subspace of U.
Ž . w Ž .x2. dim Usdim ker T qdim T U .

Proof. Part 1 is left as an exercise. To prove part 2 we consider the
Ž . w Ž .xfollowing. Let dim U s n, dim ker T s p, and dim T U s q. Let

Ž .u , u , . . . , u be a basis for ker T , and v , v , . . . , v be a basis for T U . Then,1 2 p 1 2 q
Ž . Ž .there exist vectors w , w , . . . , w in U such that T w sv is1, 2, . . . , q . We1 2 q i i

need to show that u , u , . . . , u ; w , w , . . . , w form a basis for U, that is,1 2 p 1 2 q
they are linearly independent and span U.

Suppose that there exist scalars � , � , . . . , � ; � , � , . . . , � such that1 2 p 1 2 q
p q

� u q � w s0. 2.1Ž .Ý Ýi i i i
is1 is1

Then
p q

0sT � u q � w ,Ý Ýi i i iž /
is1 is1

where 0 represents the zero vector in V
p q

s � T u q � T wŽ . Ž .Ý Ýi i i i
is1 is1

q

s � T w , since u gker T , is1, 2, . . . , pŽ .Ý i i i
is1

q

s � v .Ý i i
is1
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Since the v ’s are linearly independent, then � s0 for is1, 2, . . . , q. Fromi i
Ž .2.1 it follows that � s0 for is1, 2, . . . , p, since the u ’s are also linearlyi i
independent. Thus the vectors u , u , . . . , u ; w , w , . . . , w are linearly inde-1 2 p 1 2 q
pendent.

Let us now suppose that u is any vector in U. To show that it belongs to
Ž . Ž .L u , u , . . . , u ; w , w , . . . , w . Let vsT u . Then there exist scalars1 2 p 1 2 q

a , a , . . . , a such that vsÝq a v . It follows that1 2 q is1 i i

q

T u s a T wŽ . Ž .Ý i i
is1

q

sT a w .Ý i iž /
is1

Thus,
q

T uy a w s0,Ý i iž /
is1

and uyÝq a w must then belong to ker T. Hence,is1 i i

q p

uy a w s b u 2.2Ž .Ý Ýi i i i
is1 is1

Ž .for some scalars, b , b , . . . , b . From 2.2 we then have1 2 p

p q

us b u q a w ,Ý Ýi i i i
is1 is1

which shows that u belongs to the linear span of u , u , . . . , u ; w , w , . . . , w .1 2 p 1 2 q
We conclude that these vectors form a basis for U. Hence, nspqq.

�

Corollary 2.2.1. T : U™V is a one-to-one linear transformation if and
Ž .only if dim ker T s0.

Proof. If T is a one-to-one linear transformation, then ker T consists of
Ž .just one vector, namely, the zero vector. Hence, dim ker T s0. Vice versa, if

Ž .dim ker T s0, or equivalently, if ker T consists of just the zero vector, then
T must be a one-to-one transformation. This is true because if u and u are1 2

Ž . Ž . Ž .in U and such that T u sT u , then T u yu s0, which implies that1 2 1 2
u yu gker T and thus u yu s0. �1 2 1 2

2.3. MATRICES AND DETERMINANTS

Matrix algebra was devised by the English mathematician Arthur Cayley
Ž .1821�1895 . The use of matrices originated with Cayley in connection with
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linear transformations of the form

ax qbx sy ,1 2 1

cx qdx sy ,1 2 2

where a, b, c, and d are scalars. This transformation is completely deter-
mined by the square array

a b ,
c d

which is called a matrix of order 2�2. In general, let T : U™V be a linear
transformation, where U and V are vector spaces of dimensions m and n,
respectively. Let u , u , . . . , u be a basis for U and v , v , . . . , v be a basis for1 2 m 1 2 n

Ž .V. For is1, 2, . . . , m, consider T u , which can be uniquely represented asi

n

T u s a v , is1, 2, . . . , m ,Ž . Ýi i j j
js1

where the a ’s are scalars. These scalars completely determine all possiblei j
values of T : If ugU, then usÝm c u for some scalars c , c , . . . , c . Thenis1 i i 1 2 m
Ž . m Ž . m Ž n .T u sÝ c T u sÝ c Ý a v . By definition, the rectangular arrayis1 i i is1 i js1 i j j

a a ��� a11 12 1n

a a ��� a21 22 2 n
. . .As . . .. . .

a a ��� am1 m2 m n

is called a matrix of order m�n, which indicates that A has m rows and n
columns. The a ’s are called the elements of A. In some cases it is morei j

Ž .convenient to represent A using the notation As a . In particular, ifi j
msn, then A is called a square matrix. Furthermore, if the off-diagonal
elements of a square matrix A are zero, then A is called a diagonal matrix and

Ž .is written as AsDiag a , a , . . . , a . In this special case, if the diagonal11 22 nn
elements are equal to 1, then A is called the identity matrix and is denoted by
I to indicate that it is of order n�n. A matrix of order m�1 is called an
column vector. Likewise, a matrix of order 1�n is called a row vector.

2.3.1. Basic Operations on Matrices

Ž . Ž .1. Equality of Matrices. Let As a and Bs b be two matrices of thei j i j
same order. Then AsB if and only if a sb for all is1, 2, . . . , m;i j i j
js1, 2, . . . , n.



MATRICES AND DETERMINANTS 29

Ž . Ž .2. Addition of Matrices. Let As a and Bs b be two matrices ofi j i j
Ž .order m�n. Then AqB is a matrix Cs c of order m�n such thati j

Ž .c sa qb is1, 2, . . . , m; js1, 2, . . . , n .i j i j i j

Ž .3. Scalar Multiplication. Let � be a scalar, and As a be a matrix ofi j
Ž .order m�n. Then �As �a .i j

Ž .4. The Transpose of a Matrix. Let As a be a matrix of order m�n.i j
The transpose of A, denoted by A�, is a matrix of order n�m whose
rows are the columns of A. For example,

2 y12 3 1if As , then A�s .3 0y1 0 7 1 7

A matrix A is symmetric if AsA�. It is skew-symmetric if A�syA.
A skew-symmetric matrix must necessarily have zero elements along its
diagonal.

Ž . Ž .5. Product of Matrices. Let As a and Bs b be matrices of ordersi j i j
Ž .m�n and n�p, respectively. The product AB is a matrix Cs c ofi j

n Ž .order m�p such that c sÝ a b is1, 2, . . . , m; js1, 2, . . . , p .i j ks1 i k k j
It is to be noted that this product is defined only when the number of
columns of A is equal to the number of rows of B.

In particular, if a and b are column vectors of order n�1, then their
dot product a �b can be expressed as a matrix product of the form a�b
or b�a.

Ž .6. The Trace of a Matrix. Let As a be a square matrix of order n�n.i j
Ž .The trace of A, denoted by tr A , is the sum of its diagonal elements,

that is,
n

tr A s a .Ž . Ý i i
is1

On the basis of this definition, it is easy to show that if A and B are
Ž . Ž . Ž .matrices of order n�n, then the following hold: i tr AB s tr BA ;

Ž . Ž . Ž . Ž .ii tr AqB s tr A q tr B .

Ž .Definition 2.3.1. Let As a be an m�n matrix. A submatrix B of A isi j
a matrix which can be obtained from A by deleting a certain number of rows
and columns.

In particular, if the ith row and jth column of A that contain the element
Ža are deleted, then the resulting matrix is denoted by M is1, 2, . . . , m;i j i j

.js1, 2, . . . , n .
Let us now suppose that A is a square matrix of order n�n. If rows

i , i , . . . , i and columns i , i , . . . , i are deleted from A, where p�n, then1 2 p 1 2 p
the resulting submatrix is called a principal submatrix of A. In particular, if
the deleted rows and columns are the last p rows and the last p columns,
respectively, then such a submatrix is called a leading principal submatrix.



BASIC CONCEPTS IN LINEAR ALGEBRA30

Definition 2.3.2. A partitioned matrix is a matrix that consists of several
submatrices obtained by drawing horizontal and vertical lines that separate it
into groups of rows and columns.

For example, the matrix

. .

. .1 0 3 4 y5. .

. .6 2 10 5 0As . .

. .3 2 1 0 2. .

is partitioned into six submatrices by drawing one horizontal line and two
vertical lines as shown above.

Ž .Definition 2.3.3. Let As a be an m �n matrix and B be an m �ni j 1 1 2 2
Ž .matrix. The direct or Kronecker product of A and B, denoted by AmB, is a

matrix of order m m �n n defined as a partitioned matrix of the form1 2 1 2

a B a B ��� a B11 12 1n1

a B a B ��� a B21 22 2 n1
AmBs .. . .. . .. . .

a B a B ��� a Bm 1 m 2 m n1 2 1 1

w xThis matrix can be simplified by writing AmBs a B . �i j

Properties of the direct product can be found in several matrix algebra
Ž .books and papers. See, for example, Graybill 1983, Section 8.8 , Henderson

Ž . Ž .and Searle 1981 , Magnus and Neudecker 1988, Chapter 2 , and Searle
Ž .1982, Section 10.7 . Some of these properties are listed below:

Ž .1. AmB �sA�mB�.
Ž . Ž .2. Am BmC s AmB mC.

Ž .Ž .3. AmB CmD sACmBD, if AC and BD are defined.
Ž . Ž . Ž .4. tr AmB s tr A tr B , if A and B are square matrices.

Ž .The paper by Henderson, Pukelsheim, and Searle 1983 gives a detailed
account of the history associated with direct products.

ŽDefinition 2.3.4. Let A , A , . . . , A be matrices of orders m �n is1 2 k i i
. k1, 2, . . . , k . The direct sum of these matrices, denoted by [ A , is aiis1

Ž k . Ž k .partitioned matrix of order Ý m � Ý n that has the block-diagonalis1 i is1 i
form

k

A sDiag A , A , . . . , A .Ž .[ i 1 2 k
is1



MATRICES AND DETERMINANTS 31

The following properties can be easily shown on the basis of the preceding
definition:

k k k Ž .1. [ A q[ B s[ A qB , if A and B are of the same orderi i i i i iis1 is1 is1
for is1, 2, . . . , k.
w k xw k x k2. [ A [ B s[ A B , if A B is defined for is1, 2, . . . , k.i i i i i iis1 is1 is1

w k x k 
3. [ A �s[ A .i iis1 is1

Ž k . k Ž .4. tr [ A sÝ tr A . �i is1 iis1

Ž .Definition 2.3.5. Let As a be a square matrix of order n�n. Thei j
Ž .determinant of A, denoted by det A , is a scalar quantity that can be

computed iteratively as

n
jq1det A s y1 a det M , 2.3Ž . Ž . Ž .Ž .Ý 1 j 1 j

js1

where M is a submatrix of A obtained by deleting row 1 and column j1 j
Ž .js1, 2, . . . , n . For each j, the determinant of M is obtained in terms of1 j

Ž . Ž .determinants of matrices of order ny2 � ny2 using a formula similar to
Ž .2.3 . This process is repeated several times until the matrices on the

Ž .right-hand side of 2.3 become of order 2�2. The determinant of a 2�2
Ž . Ž .matrix such as bs b is given by det B sb b yb b . Thus by ani j 11 22 12 21

Ž . Ž .iterative application of formula 2.3 , the value of det A can be fully
determined. For example, let A be the matrix

1 2 y1
As .5 0 3

1 2 1

Ž . Ž . Ž . Ž .Then det A sdet A y2 det A ydet A , where A , A , A are 2�2 sub-1 2 3 1 2 3
matrices, namely

0 3 5 3 5 0A s , A s , A s .1 2 32 1 1 1 1 2

Ž . Ž .It follows that det A sy6y2 2 y10sy20. �

Ž .Definition 2.3.6. Let As a be a square matrix order of n�n. Thei j
determinant of M , the submatrix obtained by deleting row i and column j,i j

Ž . iqj Ž .is called a minor of A of order ny1. The quantity y1 det M is calledi j
Ž .a cofactor of the corresponding i, j th element of A. More generally, if A is

an m�n matrix and if we strike out all but p rows and the same number of
Ž .columns from A, where pFmin m, n , then the determinant of the resulting

submatrix is called a minor of A of order p.
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The determinant of a principal submatrix of a square matrix A is called a
principal minor. If, however, we have a leading principal submatrix, then its
determinant is called a leading principal minor. �

NOTE 2.3.1. The determinant of a matrix A is defined only when A is a
square matrix.

Ž . Ž .NOTE 2.3.2. The expansion of det A in 2.3 was carried out by multiply-
ing the elements of the first row of A by their corresponding cofactors and

Ž . Ž .then summing over j s1, 2, . . . , n . The same value of det A could have also
been obtained by similar expansions according to the elements of any row of
Ž .A instead of the first row , or any column of A. Thus if M is a submatrix ofi j

Ž .A obtained by deleting row i and column j, then det A can be obtained
by using any of the following expansions:

n
iqjBy row i : det A s y1 a det M , is1, 2, . . . , n.Ž . Ž . Ž .Ý i j i j

js1

n
iqjBy column j: det A s y1 a det M , js1, 2, . . . , n.Ž . Ž . Ž .Ý i j i j

is1

NOTE 2.3.3. Some of the properties of determinants are the following:

Ž . Ž . Ž .i. det AB sdet A det B , if A and B are n�n matrices.
Ž . Ž .ii. If A� is the transpose of A, then det A� sdet A .

Ž . n Ž .iii. If A is an n�n matrix and � is a scalar, then det �A s� det A .
Ž . Ž .iv. If any two rows or columns of A are identical, then det A s0.
Ž . Ž .v. If any two rows or columns of A are interchanged, then det A is

multiplied by y1.
Ž .vi. If det A s0, then A is called a singular matrix. Otherwise, A is a

nonsingular matrix.
vii. If A and B are matrices of orders m�m and n�n, respectively, then

Ž . Ž . w Ž .xnw Ž .xm Ž . Ž .the following hold: a det AmB s det A det B ; b det A[B
w Ž .xw Ž .xs det A det B .

NOTE 2.3.4. The history of determinants dates back to the fourteenth
Ž .century. According to Smith 1958, page 273 , the Chinese had some knowl-

Ž .edge of determinants as early as about 1300 A.D. Smith 1958, page 440 also
Ž .reported that the Japanese mathematician Seki Kowa 1642�1708 had˜

discovered the expansion of a determinant in solving simultaneous equations.
In the West, the theory of determinants is believed to have originated with

Ž .the German mathematician Gottfried Leibniz 1646�1716 in 1693, ten years
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after the work of Seki Kowa. However, the actual development of the theory˜
of determinants did not begin until the publication of a book by Gabriel

Ž . Ž .Cramer 1704�1752 see Price, 1947, page 85 in 1750. Other mathemati-
cians who contributed to this theory include Alexandre Vandermonde
Ž . Ž . Ž .1735�1796 , Pierre-Simon Laplace 1749�1827 , Carl Gauss 1777�1855 ,

Ž . Ž .and Augustin-Louis Cauchy 1789�1857 . Arthur Cayley 1821�1895 is cred-
ited with having been the first to introduce the common present-day notation
of vertical bars enclosing a square matrix. For more interesting facts about
the history of determinants, the reader is advised to read the article by Price
Ž .1947 .

2.3.2. The Rank of a Matrix

Ž . 
 
 
Let As a be a matrix of order m�n. Let u , u , . . . , u denote the rowi j 1 2 m
vectors of A, and let v , v , . . . , v denote its column vectors. Consider the1 2 n

Ž 
 
 
 .linear spans of the row and column vectors, namely, V sL u ,u , . . . , u , V1 1 2 m 2
Ž .sL v , v , . . . , v , respectively.1 2 n

Theorem 2.3.1. The vector spaces V and V have the same dimension.1 2

Ž . Ž .Proof. See Lancaster 1969, Theorem 1.15.1 , or Searle 1982, Section 6.6 .
�

Thus, for any matrix A, the number of linearly independent rows is the
same as the number of linearly independent columns.

Definition 2.3.7. The rank of a matrix A is the number of its linearly
Ž . Ž .independent rows or columns . The rank of A is denoted by r A . �

Theorem 2.3.2. If a matrix A has a nonzero minor of order r, and if all
Ž .minors of order rq1 and higher if they exist are zero, then A has rank r.

Ž .Proof. See Lancaster 1969, Lemma 1, Section 1.15 . �

For example, if A is the matrix

2 3 y1
As ,0 1 2

2 4 1

Ž . Ž .then r A s2. This is because det A s0 and at least one minor of order 2 is
different from zero.
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There are several properties associated with the rank of a matrix. Some of
these properties are the following:

Ž . Ž .1. r A s r A� .
2. The rank of A is unchanged if A is multiplied by a nonsingular matrix.

Thus if A is an m�n matrix and P is an n�n nonsingular matrix, then
Ž . Ž .r A s r AP .
Ž . Ž . Ž .3. r A s r AA� s r A�A .

w x4. If the matrix A is partitioned as As A : A , where A and A are1 2 1 2
Ž . Ž . Ž . Ž .submatrices of the same order, then r A qA F r A F r A q r A .1 2 1 2

More generally, if the matrices A , A , . . . , A are of the same order1 2 k
w xand if A is partitioned as As A : A : ��� : A , then1 2 k

k k

r A F r A F r A .Ž . Ž .Ý Ýi iž /
is1 is1

Ž . Ž . Ž .5. If the product AB is defined, then r A q r B y n F r AB F
� Ž . Ž .4 Žmin r A , r B , where n is the number of columns of A or the number

.of rows of B .
Ž . Ž . Ž .6. r AmB s r A r B .
Ž . Ž . Ž .7. r A[B s r A q r B .

Definition 2.3.8. Let A be a matrix of order m�n and rank r. Then we
have the following:

1. A is said to have a full row rank if rsm�n.
2. A is said to have a full column rank if rsn�m.

Ž .3. A is of full rank if rsmsn. In this case, det A �0, that is, A is a
nonsingular matrix. �

2.3.3. The Inverse of a Matrix

Ž .Let As a be a nonsingular matrix of order n�n. The inverse of A,i j
denoted by Ay1, is an n�n matrix that satisfies the condition AAy1 sAy1A
sI .n

The inverse of A can be computed as follows: Let c be the cofactor of ai j i j
Ž . Ž .see Definition 2.3.6 . Define the matrix C as Cs c . The transpose of C isi j
called the adjugate or adjoint of A and is denoted by adj A. The inverse of A
is then given by

adj A
y1A s .

det AŽ .
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It can be verified that

adj A adj A
A s AsI .ndet A det AŽ . Ž .

For example, if A is the matrix

2 0 1
As ,y3 2 0

2 1 1

Ž .then det A sy3, and

2 1 y2
adj As .3 0 y3

y7 y2 4

Hence,

2 1 2y y3 3 3
y1A s .y1 0 1

7 2 4y3 3 3

Some properties of the inverse operation are given below:

Ž .y1 y1 y11. AB sB A .
Ž .y1 Ž y1 .2. A� s A �.

Ž y1 . Ž .3. det A s1rdet A .
Ž y1 .y14. A sA.
Ž .y1 y1 y15. AmB sA mB .
Ž .y1 y1 y16. A[B sA [B .

7. If A is partitioned as

A A11 12
As ,

A A21 22

Ž .where A is of order n �n i, js1, 2 , theni j i j

det A �det A yA Ay1A if A is nonsingular,Ž . Ž .11 22 21 11 12 11
det A sŽ . y1½ det A �det A yA A A if A is nonsingular.Ž . Ž .22 11 12 22 21 22
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The inverse of A is partitioned as

B B11 12y1A s ,
B B21 22

where

y1y1B s A yA A A ,Ž .11 11 12 22 21

B syB A Ay1 ,12 11 12 22

B syAy1A B ,21 22 21 11

B sAy1 qAy1A B A Ay1 .22 22 22 21 11 12 22

2.3.4. Generalized Inverse of a Matrix

This inverse represents a more general concept than the one discussed in the
previous section. Let A be a matrix of order m�n. Then, a generalized
inverse of A, denoted by Ay, is a matrix of order n�m that satisfies the
condition

AAyAsA. 2.4Ž .

Note that Ay is defined even if A is not a square matrix. If A is a square
Ž .matrix, it does not have to be nonsingular. Furthermore, condition 2.4 can

Žbe satisfied by infinitely many matrices see, for example, Searle, 1982,
. Ž . y1 y1Chapter 8 . If A is nonsingular, then 2.4 is satisfied by only A . Thus A

is a special case of Ay.

Theorem 2.3.3.

1. If A is a symmetric matrix, then Ay can be chosen to be symmetric.
Ž .y2. A A�A A�AsA for any matrix A.
Ž .y3. A A�A A� is invariant to the choice of a generalized inverse of A�A.

Ž .Proof. See Searle 1982, pages 221�222 . �

2.3.5. Eigenvalues and Eigenvectors of a Matrix

Let A be a square matrix of order n�n. By definition, a scalar � is said to be
Ž .an eigenvalue or characteristic root of A if Ay�I is a singular matrix, thatn

is,

det Ay�I s0. 2.5Ž . Ž .n
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Thus an eigenvalue of A satisfies a polynomial equation of degree n called
Ž .the characteristic equation of A. If � is a multiple solution or root of

Ž . Ž .equation 2.5 , that is, 2.5 has several roots, say m, that are equal to �, then
� is said to be an eigenvalue of multiplicity m.

Ž .Since r Ay�I �n by the fact that Ay�I is singular, the columns ofn n
Ay�I must be linearly related. Hence, there exists a nonzero vector v suchn
that

Ay�I vs0, 2.6Ž . Ž .n

or equivalently,

Avs�v. 2.7Ž .

Ž . Ž .A vector satisfying 2.7 is called an eigenvector or a characteristic vector
Ž .corresponding to the eigenvalue �. From 2.7 we note that the linear

transformation of v by the matrix A is a scalar multiple of v.
The following theorems describe certain properties associated with eigen-

values and eigenvectors. The proofs of these theorems can be found in
Ž .standard matrix algebra books see the annotated bibliography .

Theorem 2.3.4. A square matrix A is singular if and only if at least one of
its eigenvalues is equal to zero. In particular, if A is symmetric, then its rank
is equal to the number of its nonzero eigenvalues.

Theorem 2.3.5. The eigenvalues of a symmetric matrix are real.

Theorem 2.3.6. Let A be a square matrix, and let � , � , . . . , � denote its1 2 k
distinct eigenvalues. If v , v , . . . , v are eigenvectors of A corresponding1 2 k
to � , � , . . . , � , respectively, then v , v , . . . , v are linearly independent. In1 2 k 1 2 k
particular, if A is symmetric, then v , v , . . . , v are orthogonal to one another,1 2 k


 Ž .that is, v v s0 for i� j i, js1, 2, . . . , k .i j

Theorem 2.3.7. Let A and B be two matrices of orders m�m and n�n,
respectively. Let � , � , . . . , � be the eigenvalues of A, and ® , ® , . . . , ® be1 2 m 1 2 n
the eigenvalues of B. Then we have the following:

Ž1. The eigenvalues of AmB are of the form � � is1, 2, . . . , m; jsi j
.1, 2, . . . , n .

2. The eigenvalues of A[B are � , � , . . . , � ; � , � , . . . , � .1 2 m 1 2 n

Theorem 2.3.8. Let � , � , . . . , � be the eigenvalues of a matrix A of1 2 n
order n�n. Then the following hold:

Ž . n1. tr A sÝ � .is1 i

Ž . n2. det A sŁ � .is1 i
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Theorem 2.3.9. Let A and B be two matrices of orders m�n and n�m
Ž .nGm , respectively. The nonzero eigenvalues of BA are the same as those
of AB.

2.3.6. Some Special Matrices

1. The vector 1 is a column vector of ones of order n�1.n

2. The matrix J is a matrix of ones of order n�n.n

3. Idempotent Matrix. A square matrix A for which A2sA is called an
Ž .idempotent matrix. For example, the matrix AsI y 1rn J is idem-n n

potent of order n�n. The eigenvalues of an idempotent matrix are
equal to zeros and ones. It follows from Theorem 2.3.8 that the rank of
an idempotent matrix, which is the same as the number of eigenvalues
that are equal to 1, is also equal to its trace. Idempotent matrices are

Ž .used in many applications in statistics see Section 2.4 .
4. Orthogonal Matrix. A square matrix A is orthogonal if A�AsI. From

Ž . y1this definition it follows that i A is orthogonal if and only if A�sA ;
Ž . � Ž . �ii det A s1. A special orthogonal matrix is the Householder matrix,
which is a symmetric matrix of the form

HsIy2uu�ru�u,

where u is a nonzero vector. Orthogonal matrices occur in many
applications of matrix algebra and play an important role in statistics,
as will be seen in Section 2.4.

2.3.7. The Diagonalization of a Matrix

Ž .Theorem 2.3.10 The Spectral Decomposition Theorem . Let A be a
symmetric matrix of order n�n. There exists an orthogonal matrix P such

Ž .that AsP� P�, where �sDiag � , � , . . . , � is a diagonal matrix whose1 2 n
diagonal elements are the eigenvalues of A. The columns of P are the
corresponding orthonormal eigenvectors of A.

Ž .Proof. See Basilevsky 1983, Theorem 5.8, page 200 . �

w xIf P is partitioned as Ps p : p : ��� :p , where p is an eigenvector of A1 2 n i
Ž .with eigenvalue � is1, 2, . . . , n , then A can be written asi

n

As � p p .Ý i i i

is1
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For example, if

1 0 y2
As ,0 0 0

y2 0 4

then A has two distinct eigenvalues, � s0 of multiplicity 2 and � s5. For1 2'Ž .� s0 we have two orthonormal eigenvectors, p s 2, 0, 1 �r 5 and p s1 1 2
Ž . Ž .0, 1, 0 �. Note that p and p span the kernel null space of the linear1 2
transformation represented by A. For � s5 we have the normal eigenvector2'Ž .p s 1, 0,y2 �r 5 , which is orthogonal to both p and p . Hence, P and �3 1 2
in Theorem 2.3.10 for the matrix A are

2 1
0' '5 5

Ps ,0 1 0
1 y2

0' '5 5

�sDiag 0, 0, 5 .Ž .

The next theorem gives a more general form of the spectral decomposition
theorem.

Ž .Theorem 2.3.11 The Singular-Value Decomposition Theorem . Let A be
Ž .a matrix of order m�n mFn and rank r. There exist orthogonal matrices
w x Ž .P and Q such that AsP D : 0 Q�, where DsDiag � , � , . . . , � is a diago-1 2 m

nal matrix with nonnegative diagonal elements called the singular values of
Ž .A, and 0 is a zero matrix of order m� nym . The diagonal elements of D

are the square roots of the eigenvalues of AA�.

Ž .Proof. See, for example, Searle 1982, pages 316�317 . �

2.3.8. Quadratic Forms

Ž . Ž .Let As a be a symmetric matrix of order n�n, and let xs x , x , . . . , x �i j 1 2 n
be a column vector of order n�1. The function

q x sx�AxŽ .
n n

s a x xÝ Ý i j i j
is1 js1

is called a quadratic form in x.
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A quadratic form x�Ax is said to be the following:

1. Positive definite if x�Ax�0 for all x�0 and is zero only if xs0.
2. Positive semidefinite if x�AxG0 for all x and x�Axs0 for at least one

nonzero value of x.
3. Nonnegative definite if A is either positive definite or positive semi-

definite.

Ž .Theorem 2.3.12. Let As a be a symmetric matrix of order n�n.i j
Then A is positive definite if and only if either of the following two conditions
is satisfied:

1. The eigenvalues of A are all positive.
2. The leading principal minors of A are all positive, that is,

a a11 12a �0, det �0, . . . , det A �0.Ž .11 ž /a a21 22

Proof. The proof of part 1 follows directly from the spectral decomposi-
Ž .tion theorem. For the proof of part 2, see Lancaster 1969, Theorem 2.14.4 .

�

Ž .Theorem 2.3.13. Let As a be a symmetric matrix of order n�n.i j
Then A is positive semidefinite if and only if its eigenvalues are nonnegative
with at least one of them equal to zero.

Ž .Proof. See Basilevsky 1983, Theorem 5.10, page 203 . �

2.3.9. The Simultaneous Diagonalization of Matrices

By simultaneous diagonalization we mean finding a matrix, say Q, that can
reduce several square matrices to a diagonal form. In many situations there
may be a need to diagonalize several matrices simultaneously. This occurs
frequently in statistics, particularly in analysis of variance.

ŽThe proofs of the following theorems can be found in Graybill 1983,
.Chapter 12 .

Theorem 2.3.14. Let A and B be symmetric matrices of order n�n.

1. If A is positive definite, then there exists a nonsingular matrix Q such
that Q�AQsI and Q�BQsD, where D is a diagonal matrix whosen

Ž .diagonal elements are the roots of the polynomial equation det By�A
s0.
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2. If A and B are positive semidefinite, then there exists a nonsingular
matrix Q such that

Q�AQsD ,1

Q�BQsD ,2

Žwhere D and D are diagonal matrices for a detailed proof of this1 2
.result, see Newcomb, 1960 .

Theorem 2.3.15. Let A , A , . . . , A be symmetric matrices of order n�n.1 2 k
Then there exists an orthogonal matrix P such that

A sP� P�, is1, 2, . . . , k ,i i

where � is a diagonal matrix, if and only if A A sA A for all i� ji i j j i
Ž .i, js1, 2, . . . , k .

2.3.10. Bounds on Eigenvalues

Let A be a symmetric matrix of order n�n. We denote the ith eigenvalue of
Ž .A by e A , is1, 2, . . . , n. The smallest and largest eigenvalues of A arei

Ž . Ž .denoted by e A and e A , respectively.min max

Ž . Ž .Theorem 2.3.16. e A Fx�Axrx�xFe A .min max

Proof. This follows directly from the spectral decomposition theorem. �

The ratio x�Axrx�x is called Rayleigh’s quotient for A. The lower and
upper bounds in Theorem 2.3.16 can be achieved by choosing x to be an

Ž . Ž .eigenvector associated with e A and e A , respectively. Thus Theoremmin max
2.3.16 implies that

x�Ax
inf se A , 2.8Ž . Ž .minx�xx�0

x�Ax
sup se A . 2.9Ž . Ž .maxx�xx�0

Theorem 2.3.17. If A is a symmetric matrix and B is a positive definite
matrix, both of order n�n, then

x�Ax
y1 y1e B A F Fe B AŽ . Ž .min maxx�Bx

Proof. The proof is left to the reader. �
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Note that the above lower and upper bounds are equal to the infimum and
supremum, respectively, of the ratio x�Axrx�Bx for x�0.

Theorem 2.3.18. If A is a positive semidefinite matrix and B is a positive
Ž .definite matrix, both of order n�n, then for any i is1, 2, . . . , n ,

e A e B Fe AB Fe A e B . 2.10Ž . Ž . Ž . Ž . Ž . Ž .i min i i max

Ž .Furthermore, if A is positive definite, then for any i is1, 2, . . . , n ,

e2 AB e2 ABŽ . Ž .i iFe A e B FŽ . Ž .i ie A e B e A e BŽ . Ž . Ž . Ž .max max min min

Ž .Proof. See Anderson and Gupta 1963, Corollary 2.2.1 . �

Ž .A special case of the double inequality in 2.10 is

e A e B Fe AB Fe A e B ,Ž . Ž . Ž . Ž . Ž .min min i max max

Ž .for all i is1, 2, . . . , n .

Theorem 2.3.19. Let A and B be symmetric matrices of order n�n.
Then, the following hold:

Ž . Ž .1. e A Fe AqB , is1, 2, . . . , n, if B is nonnegative definite.i i

Ž . Ž .2. e A �e AqB , is1, 2, . . . , n, if B is positive definite.i i

Ž .Proof. See Bellman 1970, Theorem 3, page 117 . �

Ž . Ž .Theorem 2.3.20 Schur’s Theorem . Let As a be a symmetric matrixi j
	 	of order n�n, and let A denote its Euclidean norm, defined as2

1r2n n
2	 	A s a .Ý Ý2 i jž /

is1 js1

Then
n

22 	 	e A s A .Ž .Ý 2i
is1

Ž .Proof. See Lancaster 1969, Theorem 7.3.1 . �

	 	 � �Since A Fn max a , then from Theorem 2.3.20 we conclude that2 i, j i j

� � � �e A Fn max a .Ž .max i j
i , j
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Theorem 2.3.21. Let A be a symmetric matrix of order n�n, and let m
and s be defined as

1r22tr A tr AŽ . Ž .
2ms , ss ym .ž /n n

Then

s1r2mys ny1 Fe A Fmy ,Ž . Ž .min 1r2ny1Ž .
s 1r2mq Fe A Fmqs ny1 ,Ž . Ž .max1r2ny1Ž .

1r2e A ye A Fs 2n .Ž . Ž . Ž .max min

Ž .Proof. See Wolkowicz and Styan 1980, Theorems 2.1 and 2.5 . �

2.4. APPLICATIONS OF MATRICES IN STATISTICS

The use of matrix algebra is quite prevalent in statistics. In fact, in the areas
of experimental design, linear models, and multivariate analysis, matrix
algebra is considered the most frequently used branch of mathematics.
Applications of matrices in these areas are well documented in several books,

Ž . Ž .for example, Basilevsky 1983 , Graybill 1983 , Magnus and Neudecker
Ž . Ž .1988 , and Searle 1982 . We shall therefore not attempt to duplicate the
material given in these books.

Let us consider the following applications:

2.4.1. The Analysis of the Balanced Mixed Model

In analysis of variance, a linear model associated with a given experimental
situation is said to be balanced if the numbers of observations in the
subclasses of the data are the same. For example, the two-way crossed-classi-
fication model with interaction,

y sq� q� q �� q� , 2.11Ž . Ž .i ji jk i j i jk

is1, 2, . . . , a; js1, 2, . . . , b; ks1, 2, . . . , n, is balanced, since there are n
observations for each combination of i and j. Here, � and � represent thei j

Ž .main effects of the factors under consideration, �� denotes the interac-i j
Ž .tion effect, and � is a random error term. Model 2.11 can be written ini jk

vector form as

ysH � qH � qH � qH � qH � , 2.12Ž .0 0 1 1 2 2 3 3 4 4
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Ž .where y is the vector of observations, � s, � s � , � , . . . , � �, � s0 1 1 2 a 2
Ž . wŽ . Ž . Ž . x� , � , . . . , � �, � s �� , �� , . . . , �� �, and � s1 2 b 3 11 12 a b 4
Ž . Ž .� , � , . . . , � �. The matrices H is0, 1, 2, 3, 4 can be expressed as111 112 abn i
direct products of the form

H s1 m1 m1 ,0 a b n

H sI m1 m1 ,1 a b n

H s1 mI m1 ,2 a b n

H sI mI m1 ,3 a b n

H sI mI mI .4 a b n

In general, any balanced linear model can be written in vector form as

�

ys H � , 2.13Ž .Ý l l
ls0

Ž .where H ls0, 1, . . . , � is a direct product of identity matrices and vectorsl
Ž . Ž .of ones see Khuri, 1982 . If � , � , . . . , � ���y1 are fixed unknown0 1 �

Ž .parameter vectors fixed effects , and � , � , . . . , � are random vectors�q1 �q2 �

Ž . Ž .random effects , then model 2.11 is called a balanced mixed model.
Furthermore, if we assume that the random effects are independent and have

Ž 2 .the normal distributions N 0, 	 I , where c is the number of columns ofl c ll
Ž .H , ls�q1, �q2, . . . , � , then, because model 2.11 is balanced, its statisti-l

cal analysis becomes very simple. Here, the 	 2 ’s are called the model’sl
variance components. A balanced mixed model can be written as

ysXgqZh 2.14Ž .

where XgsÝ� H � is the fixed portion of the model, and ZhsÝ� H �ls0 l l ls�q1 l l
is its random portion. The variance�covariance matrix of y is given by

�
2�s A 	 ,Ý l l

ls�q1


 Ž .where A sH H ls�q1, �q2, . . . , � . Note that A A sA A for alll l l l p p l
Žl�p. Hence, the matrices A can be diagonalized simultaneously see Theo-l

.rem 2.3.15 .
If y�Ay is a quadratic form in y, then y�Ay is distributed as a noncentral


 2Ž .chi-squared variate � � if and only if A � is idempotent of rank m, wherem
Ž� is the noncentrality parameter and is given by �sg�X�AXg see Searle,

.1971, Section 2.5 .
The total sum of squares, y�y, can be uniquely partitioned as

�

y�ys y�P y,Ý l
ls0
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Žwhere the P ’s are idempotent matrices such that P P s0 for all l�s seel l s
. Ž .Khuri, 1982 . The quadratic form y�P y ls0, 1, . . . , � is positive semidefi-l

Ž .nite and represents the sum of squares for the lth effect in model 2.13 .

Ž .Theorem 2.4.1. Consider the balanced mixed model 2.14 , where the
random effects are assumed to be independently and normally distributed

2 Žwith zero means and variance�covariance matrices 	 I ls�q1, �ql cl
.2, . . . , � . Then we have the following:

1. y�P y, y�P y, . . . , y�P y are statistically independent.0 1 �

2. y�P yr� is distributed as a noncentral chi-squared variate with degreesl l
of freedom equal to the rank of P and noncentrality parameter givenl
by � sg�X�P Xgr� for ls0, 1, . . . , � , where � is a particular linearl l l l
combination of the variance components 	 2 , 	 2 , . . . , 	 2. However,�q1 �q2 �

for ls�q1, �q2, . . . , � , that is, for the random effects, y�P yr� isl l
distributed as a central chi-squared variate with m degrees of freedom,l

Ž .where m s r P .l l

Ž .Proof. See Theorem 4.1 in Khuri 1982 . �

Theorem 2.4.1 provides the basis for a complete analysis of any balanced
mixed model, as it can be used to obtain exact tests for testing the signifi-
cance of the fixed effects and the variance components.

Ž .A linear function a�g, of g in model 2.14 , is estimable if there exists a
Ž .linear function, c�y, of the observations such that E c�y sa�g. In Searle

Ž .1971, Section 5.4 it is shown that a�g is estimable if and only if a� belongs to
Ž .the linear span of the rows of X. In Khuri 1984 we have the following

theorem:

Ž .Theorem 2.4.2. Consider the balanced mixed model in 2.14 . Then we
have the following:

Ž . Ž .1. r P X s r P , ls0, 1, . . . , � .l l

Ž . � Ž .2. r X sÝ r P X .ls0 l

3. P Xg, P Xg, . . . , P Xg are linearly independent and span the space of all0 1 �

estimable linear functions of g.

Theorem 2.4.2 is useful in identifying a basis of estimable linear functions
Ž .of the fixed effects in model 2.14 .

2.4.2. The Singular-Value Decomposition

The singular-value decomposition of a matrix is far more useful, both in
statistics and in matrix algebra, then is commonly realized. For example, it
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plays a significant role in regression analysis. Let us consider the linear
model

ysX�q� , 2.15Ž .

Ž .where y is a vector of n observations, X is an n�p nGp matrix consisting
of known constants, � is an unknown parameter vector, and � is a random
error vector. Using Theorem 2.3.11, the matrix X� can be expressed as

w xX�sP D : 0 Q�, 2.16Ž .

where P and Q are orthogonal matrices of orders p�p and n�n, respec-
tively, and D is a diagonal matrix of order p�p consisting of nonnegative

Ž .diagonal elements. These are the singular values of X or of X� and are the
Ž .positive square roots of the eigenvalues of X�X. From 2.16 we get

DXsQ P�. 2.17Ž .
0�

If the columns of X are linearly related, then they are said to be
Ž .multicollinear. In this case, X has rank r �p , and the columns of X belong

to a vector subspace of dimension r. At least one of the eigenvalues of X�X,
and hence at least one of the singular values of X, will be equal to zero. In
practice, such exact multicollinearities rarely occur in statistical applications.
Rather, the columns of X may be ‘‘nearly’’ linearly related. In this case, the
rank of X is p, but some of the singular values of X will be ‘‘near zero.’’ We
shall use the term multicollinearity in a broader sense to describe the latter
situation. It is also common to use the term ‘‘ill conditioning’’ to refer to the
same situation.

The presence of multicollinearities in X can have adverse effects on the
ˆ Ž .least-squares estimate, �, of � in 2.15 . This can be easily seen from the fact

ˆ y1 ˆ y1 2 2Ž . Ž . Ž .that �s X�X X�y and Var � s X�X 	 , where 	 is the error vari-
ˆance. Large variances associated with the elements of � can therefore be

ˆexpected when the columns of X are multicollinear. This causes � to become
an unreliable estimate of �. For a detailed study of multicollinearity and its

Ž .effects, see Belsley, Kuh, and Welsch 1980, Chapter 3 , Montgomery and
Ž . Ž .Peck 1982, Chapter 8 , and Myers 1990, Chapter 3 .

The singular-value decomposition of X can provide useful information for
detecting multicollinearity, as we shall now see. Let us suppose that the
columns of X are multicollinear. Because of this, some of the singular values

Ž . Ž .of X, say p �p of them, will be ‘‘near zero.’’ Let us partition D in 2.17 as2

D 01
Ds ,

0 D2
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Ž .where D and D are of orders p �p and p �p p spyp , respec-1 2 1 1 2 2 1 2
tively. The diagonal elements of D consist of those singular values of X2

Ž .labeled as ‘‘near zero.’’ Let us now write 2.17 as

D 01

XPsQ . 2.18Ž .0 D2

0 0

w x w xLet us next partition P and Q as Ps P : P , Qs Q : Q , where P and1 2 1 2 1
P have p and p columns, respectively, and Q and Q have p and nyp2 1 2 1 2 1 1

Ž .columns, respectively. From 2.18 we conclude that

XP sQ D , 2.19Ž .1 1 1

XP f0, 2.20Ž .2

where f represents approximate equality. The matrix XP is ‘‘near zero’’2
because of the smallness of the diagonal elements of D .2

Ž .We note from 2.20 that each column of P provides a ‘‘near’’-linear2
Ž .relationship among the columns of X. If 2.20 were an exact equality, then

the columns of P would provide an orthonormal basis for the null space2
of X.

We have mentioned that the presence of multicollinearity is indicated by
the ‘‘smallness’’ of the singular values of X. The problem now is to determine
what ‘‘small’’ is. For this purpose it is common in statistics to use the

Ž .condition number of X, denoted by � X . By definition

�max
� X s ,Ž .

�min

where � and � are, respectively, the largest and smallest singularmax min
values of X. Since the singular values of X are the positive square roots of the

Ž .eigenvalues of X�X, then � X can also be written as

e X�XŽ .max
� X s .Ž . ( e X�XŽ .min

Ž .If � X is less than 10, then there is no serious problem with multi-
Ž .collinearity. Values of � X between 10 and 30 indicate moderate to strong

multicollinearity, and if ��30, severe multicollinearity is implied.
More detailed discussions concerning the use of the singular-value decom-

Ž .position in regression can be found in Mandel 1982 . See also Lowerre
Ž . Ž .1982 . Good 1969 described several applications of this decomposition in
statistics and in matrix algebra.
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2.4.3. Extrema of Quadratic Forms

ŽIn many statistical problems there is a need to find the extremum maximum
.or minimum of a quadratic form or a ratio of quadratic forms. Let us, for

example, consider the following problem:
Let X , X , . . . , X be a collection of random vectors, all having the same1 2 n

number of elements. Suppose that these vectors are independently and
Ž . Ž .identically distributed i.i.d. as N �, � , where both � and � are unknown.

Consider testing the hypothesis H : �s� versus its alternative H : ��� ,0 0 a 0
where � is some hypothesized value of �. We need to develop a test0
statistic for testing H .0

The multivariate hypothesis H is true if and only if the univariate0
hypotheses

H � : ���s���Ž .0 0

Ž .are true for all ��0. A test statistic for testing H � is the following:0

'�� Xy� nŽ .0
t � s ,Ž . '��S�

nwhere XsÝ X rn and S is the sample variance�covariance matrix, whichis1 i
is an unbiased estimator of �, and is given by

n1
Ss X yX X yX �.Ž . Ž .Ý i iny1 is1

2Ž . Ž .Large values of t � indicate falsehood of H � . Since H is rejected if0 0
Ž .and only if H � is rejected for at least one � , then the condition to reject0

w 2Ž .xH at the �-level is sup t � �c , where c is the upper 100�% point0 � � 0 � �

w 2Ž .xof the distribution of sup t � . But� � 0

2� �n �� Xy�Ž .02sup t � s supŽ .
��S���0 ��0

�� Xy� Xy� ��Ž . Ž .0 0sn sup
��S���0

y1sn e S Xy� Xy� � ,Ž . Ž .max 0 0

by Theorem 2.3.17.

Now,

y1 y1e S Xy� Xy� � se Xy� �S Xy� ,Ž . Ž . Ž . Ž .max 0 0 max 0 0

y1s Xy� �S Xy� .Ž . Ž .0 0

by Theorem 2.3.9.


