Wavelets in Electromagnetics and Device Modeling

GEORGE W. PAN

Arizona State University Tempe, Arizona

Wavelets in Electromagnetics and Device Modeling

Wavelets in Electromagnetics and Device Modeling

GEORGE W. PAN

Arizona State University Tempe, Arizona

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Pan, George W., 1944–
Wavelets in electromagnetics & device modeling / George W. Pan.
p. cm. — (Wiley series in microwave and optical engineering)
Includes index.
ISBN 0-471-41901-X (cloth : alk. paper)
1. Integrated circuits—Mathematical models. 2. Wavelets (Mathematics)
3. Electromagnetism—Mathematical models. 4. Electromagnetic theory. I. Title: Wavelets in electromagnetics and device modeling. II. Title. III. Series

TK7874.P3475 2002 621.3815—dc21

2002027207

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Dedicated to my father Pan Zhen and mother Lei Tian-Lu

Contents

Preface		xv
1	Notations and Mathematical Preliminaries	1
	1.1 Notations and Abbreviations	1
	1.2 Mathematical Preliminaries	2
	1.2.1 Functions and Integration	2
	1.2.2 The Fourier Transform	4
	1.2.3 Regularity	4
	1.2.4 Linear Spaces	7
	1.2.5 Functional Spaces	8
	1.2.6 Sobolev Spaces	10
	1.2.7 Bases in Hilbert Space H	11
	1.2.8 Linear Operators	12
	Bibliography	14
2	Intuitive Introduction to Wavelets	15
	2.1 Technical History and Background	15
	2.1.1 Historical Development	15
	2.1.2 When Do Wavelets Work?	16
	2.1.3 A Wave Is a Wave but What Is a Wavelet?	17
	2.2 What Can Wavelets Do in Electromagnetics and	
	Device Modeling?	18
	2.2.1 Potential Benefits of Using Wavelets	18
	2.2.2 Limitations and Future Direction of Wavelets	19
	2.3 The Haar Wavelets and Multiresolution Analysis	20

	2.4 How Do Wavelets Work?	23
	Bibliography	28
3	Basic Orthogonal Wavelet Theory	30
	3.1 Multiresolution Analysis	30
	 3.2 Construction of Scalets φ(τ) 3.2.1 Franklin Scalet 3.2.2 Battle–Lemarie Scalets 3.2.3 Preliminary Properties of Scalets 	32 32 39 40
	3.3 Wavelet $\psi(\tau)$	42
	3.4 Franklin Wavelet	48
	3.5 Properties of Scalets $\hat{\varphi}(\omega)$	51
	3.6 Daubechies Wavelets	56
	3.7 Coifman Wavelets (Coiflets)	64
	3.8 Constructing Wavelets by Recursion and Iteration3.8.1 Construction of Scalets3.8.2 Construction of Wavelets	69 69 74
	3.9 Meyer Wavelets3.9.1 Basic Properties of Meyer Wavelets3.9.2 Meyer Wavelet Family3.9.3 Other Examples of Meyer Wavelets	75 75 83 92
	3.10 Mallat's Decomposition and Reconstruction3.10.1 Reconstruction3.10.2 Decomposition	92 92 93
	 3.11 Problems 3.11.1 Exercise 1 3.11.2 Exercise 2 3.11.3 Exercise 3 3.11.4 Exercise 4 	95 95 95 97 97
	Bibliography	98
4	Wavelets in Boundary Integral Equations	100
	4.1 Wavelets in Electromagnetics	100
	4.2 Linear Operators	102

4.3	Method of Moments (MoM)	103
4.4	Functional Expansion of a Given Function	107
4.5	Operator Expansion: Nonstandard Form4.5.1 Operator Expansion in Haar Wavelets4.5.2 Operator Expansion in General Wavelet Systems4.5.3 Numerical Example	110 111 113 114
4.6	Periodic Wavelets4.6.1 Construction of Periodic Wavelets4.6.2 Properties of Periodic Wavelets4.6.3 Expansion of a Function in Periodic Wavelets	120 120 123 127
4.7	Application of Periodic Wavelets: 2D Scattering	128
4.8	Fast Wavelet Transform (FWT)4.8.1 Discretization of Operation Equations4.8.2 Fast Algorithm4.8.3 Matrix Sparsification Using FWT	133 133 134 135
4.9	 Applications of the FWT 4.9.1 Formulation 4.9.2 Circuit Parameters 4.9.3 Integral Equations and Wavelet Expansion 4.9.4 Numerical Results 	140 140 141 143 144
4.10	Intervallic Coifman Wavelets 4.10.1 Intervallic Scalets 4.10.2 Intervallic Wavelets on [0, 1]	144 145 154
4.11	Lifting Scheme and Lazy Wavelets 4.11.1 Lazy Wavelets 4.11.2 Lifting Scheme Algorithm 4.11.3 Cascade Algorithm	156 156 157 159
4.12	Green's Scalets and Sampling Series4.12.1 Ordinary Differential Equations (ODEs)4.12.2 Partial Differential Equations (PDEs)	159 160 166
4.13	Appendix: Derivation of Intervallic Wavelets on [0, 1]	172
4.14	Problems 4.14.1 Exercise 5 4.14.2 Exercise 6 4.14.3 Exercise 7	185 185 185 185

x CONTENTS

	4.14.4 Exercise 8	186
	4.14.5 Project 1	187
	Bibliography	187
5	Sampling Biorthogonal Time Domain Method (SBTD)	189
	5.1 Basis FDTD Formulation	189
	5.2 Stability Analysis for the FDTD	194
	5.3 FDTD as Maxwell's Equations with Haar Expansion	198
	5.4 FDTD with Battle–Lemarie Wavelets	201
	5.5 Positive Sampling and Biorthogonal Testing Functions	205
	5.6 Sampling Biorthogonal Time Domain Method5.6.1 SBTD versus MRTD5.6.2 Formulation	215 215 215
	5.7 Stability Conditions for Wavelet-Based Methods5.7.1 Dispersion Relation and Stability Analysis5.7.2 Stability Analysis for the SBTD	219 219 222
	5.8 Convergence Analysis and Numerical Dispersion5.8.1 Numerical Dispersion5.8.2 Convergence Analysis	223 223 225
	5.9 Numerical Examples	228
	5.10 Appendix: Operator Form of the MRTD	233
	5.11 Problems 5.11.1 Exercise 9 5.11.2 Exercise 10 5.11.3 Project 2	236 236 237 237
	Bibliography	238
6	Canonical Multiwavelets	240
	6.1 Vector-Matrix Dilation Equation	240
	6.2 Time Domain Approach	242
	6.3 Construction of Multiscalets	245
	6.4 Orthogonal Multiwavelets $\check{\psi}(t)$	255
	6.5 Intervallic Multiwavelets $\psi(t)$	258

6.6 Multiwavelet Expansion	261
6.7 Intervallic Dual Multiwavelets $\tilde{\psi}(t)$	264
6.8 Working Examples	269
6.9 Multiscalet-Based 1D Finite Element Method (FEM)	276
6.10 Multiscalet-Based Edge Element Method	280
6.11 Spurious Modes	285
6.12 Appendix	287
6.13 Problems	296
6.13.1 Exercise 11	296
Bibliography	297
Wavelets in Scattering and Radiation	299
7.1 Scattering from a 2D Groove	299
7.1.1 Method of Moments (MoM) Formulation	300
7.1.2 Coiflet-Based MoM	304
7.1.3 Bi-CGSTAB Algorithm	305
7.1.4 Numerical Results	305
7.2 2D and 3D Scattering Using Intervallic Coiflets	309
7.2.1 Intervallic Scalets on [0, 1]	309
7.2.2 Expansion in Coifman Intervallic Wavelets	312
7.2.3 Numerical Integration and Error Estimate	313
7.2.4 Fast Construction of Impedance Matrix	317
7.2.5 Conducting Cylinders, TM Case	319
7.2.6 Conducting Cylinders with Thin Magnetic Coating	322
7.2.7 Perfect Electrically Conducting (PEC) Spheroids	324
7.3 Scattering and Radiation of Curved Thin Wires	329
7.3.1 Integral Equation for Curved Thin-Wire Scatterers	
and Antennae	330
7.3.2 Numerical Examples	331
7.4 Smooth Local Cosine (SLC) Method	340
7.4.1 Construction of Smooth Local Cosine Basis	341
7.4.2 Formulation of 2D Scattering Problems	344
7.4.3 SLC-Based Galerkin Procedure and Numerical Results	347
7.4.4 Application of the SLC to Thin-Wire Scatterers	255
and Antennas	300

7

	7.5 Microstrip Antenna Arrays	357
	7.5.1 Impedance Matched Source	358
	7.5.2 Far-Zone Fields and Antenna Patterns	360
	Bibliography	363
8	Wavelets in Rough Surface Scattering	366
	8.1 Scattering of EM Waves from Randomly Rough Surfaces	366
	8.2 Generation of Random Surfaces	368
	8.2.1 Autocorrelation Method	370
	8.2.2 Spectral Domain Method	373
	8.3 2D Rough Surface Scattering	376
	8.3.1 Moment Method Formulation of 2D Scattering	376
	8.3.2 Wavelet-Based Galerkin Method for 2D Scattering	380
	8.3.3 Numerical Results of 2D Scattering	381
	8.4 3D Rough Surface Scattering	387
	8.4.1 Tapered Wave of Incidence	388
	8.4.2 Formulation of 3D Rough Surface Scattering	
	Using Wavelets	391
	8.4.3 Numerical Results of 3D Scattering	394
	Bibliography	399
9	Wavelets in Packaging, Interconnects, and EMC	401
	9.1 Quasi-static Spatial Formulation	402
	9.1.1 What Is Quasi-static?	402
	9.1.2 Formulation	403
	9.1.3 Orthogonal Wavelets in $L^2([0, 1])$	406
	9.1.4 Boundary Element Method and Wavelet Expansion	408
	9.1.5 Numerical Examples	412
	9.2 Spatial Domain Layered Green's Functions	415
	9.2.1 Formulation	417
	9.2.2 Prony's Method	423
	9.2.3 Implementation of the Coifman Wavelets	424
	9.2.4 Numerical Examples	426
	9.3 Skin-Effect Resistance and Total Inductance	429
	9.3.1 Formulation	431
	9.3.2 Moment Method Solution of Coupled Integral Equations	433

	9.3.3 Circuit Parameter Extraction	435
	9.3.4 Wavelet Implementation	437
	9.3.5 Measurement and Simulation Results	438
	9.4 Spectral Domain Green's Function-Based Full-Wave Analysis	440
	9.4.1 Basic Formulation	440
	9.4.2 Wavelet Expansion and Matrix Equation	444
	9.4.3 Evaluation of Sommerfeld-Type Integrals	447
	9.4.4 Numerical Results and Sparsity of Impedance Matrix	451
	9.4.5 Further Improvements	455
	9.5 Full-Wave Edge Element Method for 3D Lossy Structures	455
	9.5.1 Formulation of Asymmetric Functionals with Truncation Conditions	456
	9.5.2 Edge Element Procedure	460
	9.5.3 Excess Capacitance and Inductance	464
	9.5.4 Numerical Examples	466
	Bibliography	469
10	Wavelets in Nonlinear Semiconductor Devices	474
	10.1 Physical Models and Computational Efforts	474
	10.2 An Interpolating Subdivision Scheme	476
	10.3 The Sparse Point Representation (SPR)	478
	10.4 Interpolation Wavelets in the FDM	479
	10.4.1 1D Example of the SPR Application	480
	10.4.2 2D Example of the SPR Application	481
	10.5 The Drift-Diffusion Model	484
	10.5.1 Scaling	486
	10.5.2 Discretization	487
	10.5.3 Transient Solution	489
	10.5.4 Grid Adaptation and Interpolating Wavelets	490
	10.5.5 Numerical Results	492
	10.6 Multiwavelet Based Drift-Diffusion Model	498
	10.6.1 Precision and Stability versus Reynolds	499
	10.6.2 MWFEM-Based 1D Simulation	502
	10.7 The Boltzmann Transport Equation (BTE) Model	504
	10.7.1 Why BTE?	505
	10.7.2 Spherical Harmonic Expansion of the BTE	505