HANDBOOK OF INDUSTRIAL MIXING SCIENCE AND PRACTICE

Edited by

Edward L. Paul

Merck & Co., Inc. Rahway, New Jersey

Victor A. Atiemo-Obeng

The Dow Chemical Company Midland, Michigan

Suzanne M. Kresta

University of Alberta Edmonton, Canada

Sponsored by the North American Mixing Forum

A JOHN WILEY & SONS, INC., PUBLICATION

HANDBOOK OF INDUSTRIAL MIXING

HANDBOOK OF INDUSTRIAL MIXING SCIENCE AND PRACTICE

Edited by

Edward L. Paul

Merck & Co., Inc. Rahway, New Jersey

Victor A. Atiemo-Obeng

The Dow Chemical Company Midland, Michigan

Suzanne M. Kresta

University of Alberta Edmonton, Canada

Sponsored by the North American Mixing Forum

A JOHN WILEY & SONS, INC., PUBLICATION

Cover: The jet image is courtesy of Chiharu Fukushima and Jerry Westerweel, of the Laboratory for Aero and Hydrodynamics, Delft University of Technology, The Netherlands.

Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Paul, Edward L.
Handbook of industrial mixing : science and practice / Edward L. Paul,
Victor A. Atiemo-Obeng, Suzanne M. Kresta

p. cm.

"Sponsored by the North American Mixing Forum."
Includes bibliographical references and index.
ISBN 0-471-26919-0 (cloth : alk. paper)
1. Mixing—Handbooks, manuals, etc. I. Atiemo-Obeng, Victor A. II.
Kresta, Suzanne M. III. Title.

TP156,M5K74 2003 660'.284292—dc21

2003007731

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contributors	xxix
Introduction Edward L. Paul, Victor A. Atiemo-Obeng, and Suzanne M. Kresta	xxxiii
Mixing in Perspective	xxxiv
Scope of Mixing Operations	xxxvi
Residence Time Distributions: Chapter 1	xxxvii
Mixing Fundamentals: Chapters 1–5	xxxix
Mixing Equipment: Chapters 6, 7, 8, and 21	xxxix
Miscible Liquid Blending: Chapters 3, 7, 9,	
and 16	xl
Solid–Liquid Suspension: Chapters 10, 17,	_
and 18	xl
Gas-Liquid Contacting: Chapter 11	xli
Liquid–Liquid Mixing: Chapter 12 Mixing and Chemical Reactions/Reactor Design:	xlii
Chapters 13 and 17	xlii
Heat Transfer and Mixing: Chapter 14	xliii
Specialized Topics for Various Industries: Chapters 15–20	xliii
	1'
Conversations Overheard in a Chemical Plant	xliv
The Problem	xliv
Competitive-Consecutive Reaction	xlv xlvi
Gas–Liquid Reaction Solid–Liquid Reaction	xlvi
Liquid–Liquid Reaction	xlvii
Crystallization	xlvii
•	-1!
Using the Handbook	xlix
Diagnostic Charts	1
Mixing Nomenclature and Unit Conversions	lv
Acknowledgments	lix
References	lx

vi CONTENTS

1		ence Tim	e Distributions	1
		Introduct Measure	tion ments and Distribution Functions	1 2
	1-3	Residence	ce Time Models of Flow Systems	5
			Ideal Flow Systems	5
			Hydrodynamic Models	6
		1-3.3	Recycle Models	7
	1-4	Uses of	Residence Time Distributions	9
			Diagnosis of Pathological Behavior	9
		1-4.2	Damping of Feed Fluctuations	9
			Yield Prediction	10
		1-4.4	Use with Computational Fluid Dynamic	
			Calculations	14
	1-5	Extensio	ns of Residence Time Theory	15
		Nomenc		16
		Reference	ces	16
2			Mixing Applications ta and Robert S. Brodkey	19
	2-1	Introduc	tion	19
	2-2	Backgro	und	20
		2-2.1	Definitions	20
		2-2.2	Length and Time Scales in the Context of	24
		2 2 3	Turbulent Mixing Relative Rates of Mixing and Reaction:	24
		2-2.3	The Damkoehler Number	32
	2-3	Classical	Measures of Turbulence	38
			Phenomenological Description of Turbulence	39
			Turbulence Spectrum: Quantifying Length	
			Scales	45
		2-3.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
			Relating Turbulence Characteristics to Operating Variables	53
	2-4	Dynamic the Prob	es and Averages: Reducing the Dimensionality of lem	61
		2-4.1	Time Averaging of the Flow Field: The Eulerian	
			Approach	62
		2-4.2	Useful Approximations	63

		2-4.3	Tracking of Fluid Particles: The Lagrangian	
			Approach	69
		2-4.4	Experimental Measurements	71
	2-5	Modelin	g the Turbulent Transport	72
		2-5.1		74
		2-5.2	5 6 1	
			An Engineering Approximation	78
		2-5.3	Limitations of Current Modeling: Coupling	
			between Velocity, Concentration, Temperature, and Reaction Kinetics	81
			and Reaction Kinetics	
	2-6	What Ha	ave We Learned?	81
		Nomenc	lature	82
		Reference	ces	83
3	Lami	nar Mixi	ng: A Dynamical Systems Approach	89
-			ario M. Alvarez, and Fernando J. Muzzio	
	3-1	Introduc		89
	3-2	Backgro	und	90
		3-2.1	Simple Mixing Mechanism: Flow Reorientation	90
		3-2.2		92
		3-2.3	Chaos and Mixing: Some Key Contributions	94
	3-3	How to	Evaluate Mixing Performance	96
		3-3.1	Traditional Approach and Its Problems	96
		3-3.2	Measuring Microstructural Properties of a	
			Mixture	99
		3-3.3	Study of Microstructure: A Brief Review	102
	3-4	Physics	of Chaotic Flows Applied to Laminar Mixing	103
		3-4.1	Simple Model Chaotic System: The Sine Flow	103
		3-4.2	Evolution of Material Lines: The Stretching	
			Field	108
		3-4.3	Short-Term Mixing Structures	108
		3-4.4	Direct Simulation of Material Interfaces	110
		3-4.5 3-4.6	Asymptotic Directionality in Chaotic Flows Rates of Interface Growth	110 112
		3-4.0 3-4.7	Internaterial Area Density Calculation	112
		3-4.7	Calculation of Striation Thickness Distributions	114
		3-4.9	Prediction of Striation Thickness Distributions	117
	3-5	Applicat	ions to Physically Realizable Chaotic Flows	119
		3-5.1	Common 3D Chaotic System: The Kenics Static	
			Mixer	119

		3-5.2	Short-Term Mixing Structures	120
		3-5.3	Asymptotic Directionality in the Kenics Mixer	120
		3-5.4	Computation of the Stretching Field	123
		3-5.5	Rates of Interface Growth	124
		3-5.6	Intermaterial Area Density Calculation	125
		3-5.7	Prediction of Striation Thickness Distributions in	
			Realistic 3D Systems	128
	3-6	Reactive	Chaotic Flows	130
		3-6.1	Reactions in 3D Laminar Systems	134
	3-7			138
	3-8			139
		Nomenc		140
		Referenc	es	141
4	Expe	rimental 1	Methods	145
	Part	A: Measu	ring Tools and Techniques for Mixing and	
			tion Studies	145
	David	A. R. Brow	vn, Pip N. Jones, and John C. Middleton	
	4-1	Introduct		145
		4-1.1	Preliminary Considerations	146
	4-2	Mixing I	Laboratory	147
		4-2.1		147
			Fluids: Rheology and Model Fluids	148
			Scale of Operation	154
			Basic Instrumentation Considerations	155
			Materials of Construction	156
			Lab Scale Mixing in Stirred Tanks	156
			Lab Scale Mixing in Pipelines	160
	4-3		Draw Or Torque Measurement	161
			Strain Gauges	162
			Air Bearing with Load Cell	164
		4-3.3	e	1.64
		4.2.4	Rheometer	164
				164
	4-4	-	hase Blending	164
		4-4.1	Flow Visualization	165
		4-4.2	Selection of Probe Location	167
		4-4.3	Approximate Mixing Time Measurement with	167
			Colorimetric Methods	167
		4-4.4	Quantitative Measurement of the Mixing Time	169

	4-4.5	RTD for CSTR	174
	4-4.6	Local Mixedness: CoV, Reaction, and LIF	174
4-5	Solid-Li	iquid Mixing	177
	4-5.1	Solids Distribution	177
	4-5.2	Solids Suspension: Measurement of N_{js}	182
4-6	Liquid-I	Liquid Dispersion	187
	4-6.1		187
		Measuring Interfacial Tension	188
		N _{id} for Liquid–Liquid Systems	189
	4-6.4	Distribution of the Dispersed Phase	189
		Phase Inversion	190
		Droplet Sizing	190
4-7	Gas-Liq	uid Mixing	194
	4-7.1		194
		Cavity Type	194
		Power Measurement	196
		Gas Volume Fraction (Hold-up)	196
		Volumetric Mass Transfer Coefficient, k_La	196
		Bubble Size and Specific Interfacial Area	199
		Coalescence	199
		Gas-Phase RTD	200
		Liquid-Phase RTD	200
		Liquid-Phase Blending Time	200
	4-7.11		200
4-8	Other Te	chniques	201
	4-8.1	Tomography	201
		mental Flow Measurement	202
Georg	e Papadopo	oulos and Engin B. Arik	
4-9	Scope of	Fundamental Flow Measurement Techniques	202
	4-9.1	Point versus Full Field Velocity Measurement	
		Techniques: Advantages and Limitations	203
	4-9.2	Nonintrusive Measurement Techniques	206
4-10		oppler Anemometry	207
	4-10.1	Characteristics of LDA	208
	4-10.2	Principles of LDA	208
	4-10.3	LDA Implementation	212
	4-10.4	Making Measurements	220
	4-10.5	LDA Applications in Mixing	224

	4-11	Phase Do	oppler Anemometry	226
		4-11.1	Principles and Equations for PDA	226
		4-11.2	Sensitivity and Range of PDA	230
		4-11.3	Implementation of PDA	233
	4-12	Particle I	Image Velocimetry	237
		4-12.1	Principles of PIV	237
			Image Processing	239
			Implementation of PIV	243
		4-12.4	PIV Data Processing	246
			Stereoscopic (3D) PIV	247
		4-12.6	PIV Applications in Mixing	249
		Nomencl	lature	250
		Referenc	res	250
5	Comi	outational	Fluid Mixing	257
·	-		n Marshall and André Bakker	201
	5-1	Introduct	tion	257
	5-2	Computa	tional Fluid Dynamics	259
		5-2.1	Conservation Equations	259
		5-2.2	Auxiliary Models: Reaction, Multiphase, and	
			Viscosity	268
	5-3	Numeric	al Methods	273
		5-3.1	Discretization of the Domain: Grid Generation	273
		5-3.2	Discretization of the Equations	277
			Solution Methods	281
		5-3.4	Parallel Processing	284
	5-4	Stirred T	ank Modeling Using Experimental Data	285
		5-4.1	Impeller Modeling with Velocity Data	285
		5-4.2	Using Experimental Data	289
		5-4.3	Treatment of Baffles in 2D Simulations	289
		5-4.4	Combining the Velocity Data Model with Other	
			Physical Models	290
	5-5		ank Modeling Using the Actual Impeller	
		Geometr	У	292
		5-5.1	Rotating Frame Model	292
		5-5.2	Multiple Reference Frames Model	292
		5-5.3	Sliding Mesh Model	295
		5-5.4	Snapshot Model	300
		5-5.5	Combining the Geometric Impeller Models with	
			Other Physical Models	300

5-6	Evaluati	ng Mixing from Flow Field Results	302			
	5-6.1	Graphics of the Solution Domain	303			
	5-6.2	1	304			
	5-6.3	Other Useful Solution Variables	310			
	5-6.4	Mixing Parameters	313			
5-7	Applicat	ions	315			
	5-7.1	Blending in a Stirred Tank Reactor	315			
	5-7.2	•	316			
	5-7.3	Solids Suspension Vessel	318			
	5-7.4	Fermenter	319			
	5-7.5	Industrial Paper Pulp Chests	321			
	5-7.6		322			
	5-7.7	Intermeshing Impellers	323			
	5-7.8	Kenics Static Mixer	325			
	5-7.9	HEV Static Mixer	326			
	5-7.10	LDPE Autoclave Reactor	328			
	5-7.11	Impeller Design Optimization	330			
	5-7.12		332			
	5-7.13	Stirred Tank Modeling Using LES	333			
5-8	Closing	Remarks	336			
	5-8.1	Additional Resources	336			
	5-8.2	Hardware Needs	336			
	5-8.3	Learning Curve	337			
	5-8.4	Common Pitfalls and Benefits	337			
Acknowledgments			338			
	Nomenc	lature	339			
	References					
Mool	onicolly (Stirred Vessels	345			
		ajani and Gary B. Tatterson	545			
6-1	Introduc	tion	345			
6-2		sign Parameters	346			
	-	Geometry	347			
		Impeller Selection	354			
	6-2.2	-	358			
6-3		paracteristics	364			
		Flow Patterns	366			
	6-3.2		368			
		Impeller Clearance and Spacing	371			
	6-3.4	Multistage Agitated Tanks	372			

6

		6-3.5 6-3.6	Feed Pipe Backmixing Bottom Drainage Port	375 376
	6-4	Scale-up	-	376
	6-5		ance Characteristics and Ranges of Application	378
		6-5.1	1 0	379 380
		6-5.2 6-5.3	Solids Suspension Immiscible Liquid–Liquid Mixing	380
			Gas-Liquid Dispersion	382
	6-6	Laminar	Mixing in Mechanically Stirred Vessels	383
		6-6.1	Close-Clearance Impellers	385
		Nomencl		388
		Referenc	es	389
7		ng in Pipe		391
	Arthui	· W. Etchell	ls III and Chris F. Meyer	
	7-1	Introduct		391
	7-2	Fluid Dy	namic Modes: Flow Regimes	393
		7-2.1	Reynolds Experiments in Pipeline Flow	393
		7-2.2	Reynolds Number and Friction Factor	394
	7-3	Overview	w of Pipeline Device Options by Flow Regime	396
		7-3.1		398
		7-3.2	-	399
		7-3.3	Laminar Flow	401
	7-4	Applicati	ions	404
		7-4.1	Process Results	404
		7-4.2	Pipeline Mixing Applications	405
		7-4.3		405
		7-4.4	Sample of Industrial Applications	407
	7-5	-	and Radial Mixing in Pipeline Flow	409
		7-5.1	Definition of Desired Process Result	410
		7-5.2	Importance of Physical Properties	417
	7-6	7-6 Tee Mixers		
	7-7	Static Or	Motionless Mixing Equipment	422
		7-7.1		426
		7-7.2	8 1 8 8	
			and Application	429
		7-7.3	Selecting the Correct Static Mixer Design	429

		CONTENTS	xiii
7-8	Static M	ixer Design Fundamentals	429
	7-8.1 7-8.2	8	429
	7-8.3	Turbulent Flow Which In-line Mixer to Use	432 437
		Examples	437
7-9	Multipha	se Flow in Motionless Mixers and Pipes	441
	7-9.1	Physical Properties and Drop Size	441
		1	450
		Pressure Drop in Multiphase Flow	451
		Dispersion versus Blending	452
	7-9.5	Examples	452
7-10			459
7-11		ess Mixers: Other Considerations	460
		Mixer Orientation	460
		Tailpipe/Downstream Effects Effect of Inlet Position	460 462
	7-11.3		462
7-12	In-line N	Iechanical Mixers	463
	7-12.1	Rotor-Stator	464
	7-12.2	Extruders	464
7-13	Other Press	ocess Results	465
		Heat Transfer	465
	7-13.2	Mass Transfer	470
7-14		y and Future Developments	473
		edgments	473
	Nomencl		473
	Referenc	es	475
Rotor	-Stator I	Mixing Devices	479
		Obeng and Richard V. Calabrese	
8-1	Introduct	ion	479
	8-1.1	Characteristics of Rotor-Stator Mixers	479
	8-1.2	Applications of Rotor-Stator Mixers	480
	8-1.3	Summary of Current Knowledge	480
8-2	Geometr	y and Design Configurations	482
	8-2.1	Colloid Mills and Toothed Devices	482

8