
e
B O O K

WILEY
WILEY

JOSSEY-BASS

PFEIFFER

J.K.LASSER

CAPSTONE

WILEY-LISS

WILEY-VCH

WILEY-INTERSCIENCE

B u s i n e s s C u l i n a r y A r c h i t e c t u r e
C o m p u t e r G e n e r a l I n t e r e s t
C h i l d r e n L i f e S c i e n c e s B i o g r a p h y
A c c o u n t i n g F i n a n c e M a t h e m a t i c s
H i s t o r y S e l f - I m p r o v e m e n t H e a l t h
E n g i n e e r i n g G r a p h i c D e s i g n
A p p l i e d S c i e n c e s P s y c h o l o g y
I n t e r i o r D e s i g n B i o l o g y C h e m i s t r y

—
i

netlibrary, Inc.

Programming with
VisiBroker®

7215 Natarajan fm 10/27/00 9:29 PM Page i

7215 Natarajan fm 10/27/00 9:29 PM Page ii

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Vijaykumar Natarajan
Stefan Reich

Bhaskar Vasudevan

Programming with
VisiBroker®

A Developer’s Guide
to VisiBroker for Java™

Second Edition

7215 Natarajan fm 10/27/00 9:29 PM Page iii

Publisher: Robert Ipsen
Editor: Robert M. Elliott
Assistant Editor: Emilie Herman
Managing Editor: John Atkins
Associate New Media Editor: Brian Snapp
Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appro-
priate companies for more complete information regarding trademarks and registration.

AppCenter, Borland, C++ Builder, Delphi, Inprise, Inprise Application Server, JBuilder, and
VisiBroker are trademarks or registered trademarks of Inprise Corporation in the United
States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. or other countries, and are used under license.

OMG marks and logos are trademarks or registered trademarks, service marks and/or certi-
fication marks of Object Management Group, Inc., registered in the United States.

This book is printed on acid-free paper. ∞�

Copyright © 2000 by Vijaykumar Natarajan, Stefan Reich, Bhaskar Vasudevan. All rights
reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605
Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data

Natarajan, Vijaykumar, 1972–
Programming with VisiBroker / Vijaykumar Natarajan, Stefan Reich, Bhaskar

Vasudevan.—2nd ed.
p. cm.

“Wiley Computer Publishing.”
Includes index.
ISBN: 0-471-37682-5 (paper : alk. paper)
1. Java (Computer program language) 2. VisiBroker. I. Reich, Stefan, 1970–

II. Vasudevan, Bhaskar, 1970– III. Title.

QA76.73.J38 N36 2000
005.2'762—dc21 00-063320

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

7215 Natarajan fm 10/27/00 9:29 PM Page iv

To the VisiBroker team, past,
present and future . . .

7215 Natarajan fm 10/27/00 9:29 PM Page v

7215 Natarajan fm 10/27/00 9:29 PM Page vi

Acknowledgments xv
Introduction xvii
About the Authors xxix

Part 1: An Introduction to Distributed Systems in CORBA 1

Chapter 1 Introduction to CORBA 3

Distributed Object Computing 3
CORBA: Object-Oriented Middleware 4
Distributed Object Computing: The Object Management

Architecture (OMA) 7
Sending and Receiving Requests 12
CORBA System Design 14

Summary 14

Chapter 2 The OMG Interface Definition Language 15

The Preprocessor 15

Modules 16

Interfaces 16

Oneway Operations 18

Inheritance 18

Exceptions 19

Basic IDL Types 19

Constructed Types 19

Contents

vii

7215 Natarajan fm 10/27/00 9:29 PM Page vii

Structures 20
Enumerated Types 20
Discriminated Unions 21

Arrays 21

Template Types 21
Sequences 21
Strings 22

Constants 22

Typedef Declaration 22

Forward Declarations 23

Pseudotypes 23

Valuetypes 23
Concrete Valuetypes 25
Abstract Valuetypes 25
Boxed Valuetypes 26
Custom Marshaling 26

Abstract Interfaces 27

Native Types 28

Summary 28

Chapter 3 IDL-to-Java Mapping 29

Overview of the Mapping 29

Identifiers, Naming, and Scope 30

Generated Classes 31
Holder Classes 31
Helper Classes 32

Mapping for Module 36
Nested Modules 36

Mapping for Interface 37
Mapping for Abstract Interfaces 39
Mapping for Attributes and Operations 41

Mapping for Valuetypes 43
Stateful (Concrete) Valuetypes 44
Custom-Marshaled Valuetypes 46
Abstract Valuetypes 47
Boxed Valuetypes 48

Mapping for Basic Types 50
Boolean 50
Character Types 50
String Types 51
Octet 51
Integer Types 51
Floating-Point Types 52

viii Contents

7215 Natarajan fm 10/27/00 9:29 PM Page viii

Mapping for Constructed Types 53
Mapping for Enum 53
Mapping for Struct 54
Mapping for Union 56

Mapping for Ordered Collections 58
Mapping for Sequence 58
Mapping for Array 59
Mapping for Exceptions 59

Mapping for Constants, Typedef, Any, and Nested IDL Types 62
Constants within an Interface 64
Constants Not within an Interface 64
Mapping for Typedef 64
Mapping for the Any Type 64
Mapping for Nested IDL Types 64

VisiBroker idl2java Compiler 66

Summary 67

Chapter 4 ORB Portability and Interoperability 71

Binary Compatibility 71

Design Goals of the Java Language Mapping 72

Overview of the org.omg.CORBA Package 75

Stub and Skeleton Overview 76
Visibroker Stubs and Skeletons 79

The Marshaling Code 80
Server-Side Marshaling 84

Summary 85

Chapter 5 Analysis and Design of Distributed Object Systems 87

Woe Be to the Engineers 87

Architecting Distributed Systems 88
The Need for Domain Analysis 89
Use Case Analysis 90
Developing an Object Model 94
Distributed Object Design 95

Summary 99

References 101

Part 2: Working with VisiBroker 103

Chapter 6 Object Analysis and Design in CORBA: An Example 105

A Brokerage House Application 105
The Problem Statement 105

Contents ix

7215 Natarajan fm 10/27/00 9:29 PM Page ix

Brokerage House Analysis and Design 106
The Brokerage House Analysis Object Model 107
Object Model Distribution Decisions 108

Summary 115

Chapter 7 Getting Started with VisiBroker for Java 121

The Steps of Development 121
Identify the Objects That Will Be Used in Your

Distributed Object System 123
Write the IDL Specification 125
Compile the IDL 128
Code the Gamecontroller Server 128
Coding the Player 134
Creating the Client Mainline 137

Running the Tic-Tac-Toe Game 138

Summary 138

Chapter 8 Type Any and TypeCodes 139

Introduction to Anys 139
Multiple Types of Parameters Are Required 139
Integrating with Software from Multiple Vendors 140
Creating an Any 141
Inserting Values into an Any 141
Extracting Values from an Any 142
Any Introspection 143
TCKind 144
TypeCode 147

An Any Example 150
The Object Implementation Class 150
The Server Mainline 151

Summary 155

Chapter 9 Administering Visibroker Server Using the
Visibroker Console 157

Starting Up and Initial Configuration 157
Configuring the Console 158

Browsers 160
The Location Service Browser 160
The Name Service Browser 160
The Interface Repository Browser 161
The Implementation Repository Browser 162
The Gatekeeper 162
The Server Manager Browser 163

Summary 166

x Contents

7215 Natarajan fm 10/27/00 9:29 PM Page x

Chapter 10 Implementing Servers Using VisiBroker for Java 169

Java as a Server Implementation Language 170

VBJ Server Theory 101 171
The ORB and POA 171
Persistent versus Transient Object References 172
The ORB Smart Agent: OSAgent 174
How to Implement a Server 177

Hands-On Server Topics 190
Implementing the Server 192
Implementing Server Callbacks 193
Exception Handling 201
Using Holder Classes 202
Testing and Debugging Servers 204

Summary 204

Chapter 11 Deploying Servers Using Visibroker for Java 207

Object Activation Daemon 208
Activation Policies 208
Mechanism of Activation 212
Portable Activation of Visibroker Servers 214
Administration of the OAD 216

ORB Smart Agent 223
OSAgent Basics: Zero Administration 223
Beyond Broadcast: Crossing the Subnet 225

Summary 226

Chapter 12 Implementing Clients Using VisiBroker for Java 229

Object References 229
IOR URL 230
Corbaloc URL 231
Corbaname URL 231
File URL 232
FTP and HTTP URL 232
Obtaining Service and Object References 232
Object References from Stringified IORs 236
Using the bind () mechanism 237
Using Object References 239
Handling Exceptions 239

Controlling Client-Side Quality of Service 241

Summary 244

Chapter 13 VisiBroker Gatekeeper 247

Unsigned Applet Security Restrictions in the Area
of Network Connectivity 247

Contents xi

7215 Natarajan fm 10/27/00 9:29 PM Page xi

Firewall Restrictions 248
Types of Firewalls 248

The Gatekeeper 251
Outbound with IIOP 251
Outbound with HTTP Tunneling 253
Inbound Firewall Traversal 255
Configuring the Gatekeeper 263

Summary 272

Part 3: Advanced Topics in VisiBroker 277

Chapter 14 Understanding the POA 279

CORBA Objects and Servants 280

The POA Architecture 281
POA Policies 282

Locating Servants 292
Active Object Map 293
Servant Managers 293

The POA Manager 299

POA Lifecycle Management 301
Creating a POA 301
Destroying POAs 303

Object Lifecycle 304
Creating References 304
Activating Objects 306
Deactivating Objects 309
PortableServer::Current 309
Other POA Methods 310

Using the POA 310
USE_ACTIVE_OBJECT_MAP_ONLY, RETAIN 310
USE_SERVANT_MANAGER, RETAIN, SERVANTTIMEOUT 310
USE_SERVANT_MANAGER, NON_RETAIN 311
USE_DEFAULT_SERVANT, MULTIPLE_ID 311

POA-Related Interceptors 311
POALifeCycleInterceptor 312
IORCreationInterceptor 312

Summary 312

Chapter 15 Implementing Valuetypes 313

Structs, Interfaces, and Valuetypes 313

Concrete (Stateful) Valuetypes 316

Implementing a Stateful Value 317

Valuetype Factories and Initializers 319

xii Contents

7215 Natarajan fm 10/27/00 9:29 PM Page xii

Abstract Valuetypes 322

Boxed Valuetypes 323

Supported Interfaces 324

Custom-Marshaling 325

Truncatable Values 326

Summary 327

Chapter 16 Advanced Server Topics 329

ServerEngines 329
Defining ServerEngines 330

ClientEngines 332

Server Threading 333
Thread-per-Session 334
Thread Pool 334
Designing Object Implementations for Threading 335

Distributed Garbage Collection and Resource Management 339
Reference Counting Limitations 339

Summary 340

Chapter 17 Dynamic VisiBroker 343

Dynamic Any 343
An Example of How to Use a Dynamic Any 344
Dynamic Any Interfaces 345

Dynamic Invocation Interface 362
Overview of the DII Client Program 362
Any and TypeCodes 363
DII Requests 364
Binding to the Object 368
Repository Identifier versus IDL Names 369
Where Do We Go from Here? 369
The Complete Example Program 369

Dynamic Skeleton Interface 373

Summary 377

Chapter 18 Object Wrappers and Interceptors 379

Object Wrappers 379
Untyped Object Wrappers 380
Typed Object Wrappers 387
Choosing between Typed and Untyped Object Wrappers 390

Interceptors 391
Client-Side Interceptors 392
Server-Side Interceptors 400

Contents xiii

7215 Natarajan fm 10/27/00 9:29 PM Page xiii

Interceptor Installation 410
Interceptor Managers and Registration 410
ServiceLoaders 412
Closures 414

Interceptors versus Object Wrappers 415

Summary 416

Chapter 19 The VisiBroker Name Service 417

Name Service Basics 418

The CosNaming Interface Explained 420
NameComponent 421
Name 422
Stringified Name 422
NamingContext 422
NamingContextExt 423
Using the Name Service Interface 424
Name Resolution 424
Establishing Bindings 425
Unbinding and NamingContext Lifecycle 425

The StockQuote Example 426
Locating the Initial Context 427

The VisiBroker Name Service Implementation 428
Clustering 428
Pluggable Backing Stores 429
Fail-Over 429
Deployment Considerations 437

Summary 438

Chapter 20 Common Object Services: VisiBroker Event Service 439

CosEvent Basics 440

Using the VisiBroker Event Service 446
Starting the VisiBroker EventChannel 446
A Simpler QuotesSubscription Interface 448
Publishing Events 448
Consuming Events 450

Summary 454

Appendix A: VisiBroker for Java Quick Reference:
Interfaces and Properties 455

Appendix B: VisiBroker for Java Quick Reference:
Commands and Utilities 513

Glossary 523

What’s On the Companion Web Site? 527

Index 529

xiv Contents

7215 Natarajan fm 10/27/00 9:29 PM Page xiv

WILEY o

Pub010

Embarking on a project like this one can be quite exciting and daunting at the same time
and despite the challenges along the way, I can say that this has been an awesome expe-
rience. I would like to thank Jonathan Weedon for giving me this great opportunity.

I would like to thank Bob Elliott at Wiley for persevering and driving this project to
completion. My gratitude and extra special thanks to Emilie Herman for her guidance
and patience during this project and for keeping us on track. Exasperating as I may have
been at times, I really appreciate her maintaining a cheerful attitude through it all and
lifting my spirits in turn.

My thanks to John Atkins and the other members of production crew at Wiley for
their pushing the quality of this book up a few notches. Thanks also to the authors of the
first edition for the great base that we could start our work with.

I would also like to thank the VisiBroker teams and all the great engineers I’ve worked
with for all that I learned from them and for making VisiBroker a great product.

Special thanks to Ioana Pirvulescu for writing the chapter on Interceptors, Gopal
Ananthraman for writing the chapter on dynamic VisiBroker, and Tomasz Mariusz
Mojsa for writing the chapter on the gatekeeper.

I would like to also thank my dear wife, Chitra, for being so patient and supportive
while I spent those evenings writing, even though we were newly wed. I thank my dear
friend Kirthi for always pushing me to do more and for reviewing the book for me. And
finally, I would like to thank my colleagues (past and present), friends, and my family
for their support and guidance.

— V I J AY K U M A R N ATA R A J A N

Working with our two VisiBroker teams has been a great experience, both personal
and professional. I would like to thank my family for their encouragement, my friends
for all the great times, and my wife Tatjana for taking a bold step.

— S T E FA N R E I C H

Acknowledgments

xv

7215 Natarajan fm 10/27/00 9:29 PM Page xv

xvi Acknowledgments

Thanks to Vijay Natarajan and Stefan Reich, without whom this book would not have
been possible. I am deeply indebted to them for their hard work and for completing the
book while I was away from the US. My sincere thanks to my ex-colleagues at Inprise
Corporation for their support and encouragement. Thanks to Emilie Herman and Bob
Elliott at Wiley for their patience with us during the course of writing this book.

— B H A S K A R VA S U D E VA N

7215 Natarajan fm 10/27/00 9:29 PM Page xvi

Over the last decade, the much-hyped benefits of software reuse have never been real-
ized by most software organizations. Various excuses have been offered, from a lack of
management commitment to the not-invented-here syndrome. But the real bane of soft-
ware reuse has always been the great difficulty of interoperability between software
written in different languages or on heterogeneous hardware platforms. That is begin-
ning to change, thanks to the maturation and convergence of two independent tech-
nologies: CORBA (Common Object Request Broker Architecture) from the Object
Management Group (OMG), and Java. Java’s inherent platform independence conve-
niently facilitates software reuse in heterogeneous environments. CORBA’s language-
neutral approach to object interface specification allows objects to interoperate
without respect to implementation language. Java and CORBA, taken together, provide
a solid architectural bedrock for developing highly reusable and portable distributed
software systems.

Component-level reuse has emerged from the soup of competing computing para-
digms, languages, and development environments to become the dominant theme in
software development today. Objects participating in a distributed system can access
data, business logic, and functional behavior directly through distributed components
with little or no concern for how those components are implemented or where they
reside on a network. With Java objects distributed through CORBA, you have a highly
productive environment for component-based software development. Write it, deploy
it, and use it over and over again.

This book provides an in-depth look at one specific incarnation of CORBA and
Java—namely, VisiBroker® for Java from Inprise Corporation. Although we are inten-
tionally focusing on the implementation details of one tool in this book, there is con-
siderable benefit to be gained within these pages by anyone developing CORBA-based
applications.

Introduction

xvii

7215 Natarajan fm 10/27/00 9:29 PM Page xvii

The Ailments of Information Systems

With the acceleration of change in software technologies, information systems (IS)
departments are forced into a corner: Stand pat with the current technology and risk
being left behind by the industry and competitors, or frequently adopt new technology
in an attempt to maintain a strategic advantage over competitors but risk exposing the
company to technological churning. Churning is the detrimental side effect of changing
languages, tools, and technology so often that development teams cannot be produc-
tive. With each change, developers face a new learning curve. Applications, class
libraries, and business rules oftentimes cannot be reused, and therefore must be rewrit-
ten for the new technology. Enabling applications written in diverse languages on mul-
tiple platforms to interoperate is paramount to maximizing the investment in existing
applications and in improving the short-term productivity of development teams.

The problems that information systems face are well explained in the following
excerpt from the introduction to the Object Management Group’s Discussion of the

Object Management Architecture:

The major hurdles in entering this new world are provided by software: the time to
develop it, the ability to maintain and enhance it, the limits on how complex a
given program can be in order to be profitably produced and sold, and the time it
takes to learn and use it. This leads to the major issue facing corporate information
systems today: the quality, cost, and lack of interoperability of software. While
hardware costs are plummeting, software expenses are rising.

As information systems attain strategic importance and represent the key com-
petitive edge to the industry leaders, the cost of inaccuracies or delayed imple-
mentations is attenuating entire MIS departments. As systems departments
require information among a diversity of inhouse, brought-in, supplier, customer,
and commercial applications, those applications become increasingly difficult and
complex.

What Is CORBA?

Common Object Request Broker Architecture (CORBA) is an industry-wide standard
for creating distributed object systems. It is a standard that is accessible from many dif-
ferent languages and allows interoperability on various platforms. CORBA is the Object
Management Group’s solution to the ailments just described. CORBA, in many ways, is
the next step in client/server computing utilizing a multi-tiered, distributed-systems
architecture.

What Is Distributed Computing?
In many business sectors today, client/server systems have become the solutions archi-
tecture of choice. Client/server systems are an example of a two-tiered model of dis-
tributed computing. Client/server systems deliver significant advantages in system
design over traditional mainframe development, including the following:

xviii Introduction

7215 Natarajan fm 10/27/00 9:29 PM Page xviii

� Sophisticated graphical user interfaces made possible through utilization of
increased processing power on the client computer

� A way to distribute business and application logic to a user’s computer

� Increased performance potential, as processing is distributed between server
and client machines

Typical two-tier client/server systems are implemented such that the server is used
for storing and retrieving data via some database management system (DBMS) and the
client does everything else. This design is functional in many business scenarios, but it
unfortunately has some limitations (detailed in Chapter 1). Many of the limitations of
two-tiered client/server systems are solved by using multi-tiered, distributed computing
systems—and specifically CORBA.

What is distributed computing? In the context of this book, distributed computing is
the concept of using multiple-networked computers in cooperation to complete a busi-
ness process. A well-designed distributed computing system will attempt to place the
more complex and processor-intensive operations on the faster systems within that net-
work. The World Wide Web is a successful example of a distributed computing system
intended largely for human operators. The next step is to create a distributed comput-
ing system that can interoperate and communicate intelligently without always needing
a human to guide its actions.

What Are Distributed Objects?
There are some other existing types of distributed systems that you may be familiar
with:

� Remote procedure calls (RPCs)

� Socket-level programming

� Message queuing

Each of these is useful in its own way, but none of these is completely object-ori-
ented (OO).

The term object-oriented has been the source of a good deal of confusion in the com-
puter industry. Almost every software development environment on the market today
claims to be object-oriented, but what does that really mean? Object orientation, at the
most basic level, means using objects as the base construction block in a system. An
object is typically considered to encapsulate data (variable attributes) and behavior
(through methods or operations).

Object-oriented technology does hold much promise. The following is taken from the
white paper “Distributed Objects for Business” by Jim Clarke, Jim Stikeleather, and
Peter Finger of Technical Resource Connection Inc., and explains why OO is a unique
and compelling approach:

Object-oriented technology is based on simulation and modeling. Although this
may be interesting in and of itself, the use of models represents a breakthrough in
the way business information systems are developed. Instead of deploying the tra-
ditional application development life cycle, models of a business or business area

Introduction xix

7215 Natarajan fm 10/27/00 9:29 PM Page xix

are constructed. These models are shared by individual computer applications.
Essentially a “computer application” becomes a unique use of the model, not a sep-
arate development activity resulting in stand-alone software constructed for “this
application only.”

The quality of the model is a key determinant of “reuse” and adaptability. The
model itself must be designed for change. Business processes change and their
change is based on using the business model to simulate proposed processes.
Modelers can play “what if,” run simulations of various process alternatives, and
learn from the simulations.

The focus of IS shifts from applications development to the enhancement and
maintenance of common business models. Business models and software models
become one and the same. Applications become derivatives, alternate views and
refinements of the business models.

The modeling approach to business innovation is not possible without a soft-
ware approach suited to the task. For these business reasons, object-oriented tech-
nology has become of vital interest to both commerce and industry. Business and
technology must be fused if corporations are to maintain the competitive advan-
tage. Object-oriented technology can be the foundation for that fusion. With object-
oriented technology, change and the management of complexity are first-class
concepts. Object technology holds great promise as a means of designing and con-
structing the adaptive information systems needed for 21st century business.

Objects and object-oriented development represent a significant shift in systems
design. One of the benefits of object-oriented design is that objects tend to model arti-
facts that exist in the real world. An object may be a user, another computer system, or
part of a process, but it is something that has a meaning tied to the real world.

Another important eventuality that comes out of OO is this: As reuse increases, soft-
ware costs will decrease and reliability will increase. With a strong collection of busi-
ness objects in place, creating a new application will no longer mean building from the
ground up; it will be more akin to linking objects together in a new and useful way. This
is where components enter the discussion. A component is really a prepackaged collec-
tion of objects that a developer can treat as a single object. Components offer greater
potential for reuse because they abstract many of the complexities of the lower-level
constituent objects.

But what is a distributed object system? A distributed object is an object that can be
accessed as if it were a local object, although its actual location may be local or remote.
This powerful concept allows a system to leverage the power of any and all CPUs in its
network. Today, in local object systems (client/server is an example of this), your appli-
cation must contain all of the code for every operation that your application might
someday perform. From data access to printing, it all must be coded in your system.

Here is a description of a system that should help to convey the powerful difference
between a distributed object system and a traditional local object system (client/
server).

Imagine your PC is currently connected to a network and is running a personal
finance application. Imagine that you are late for a meeting, so you are trying to do many
operations quickly. You are trying to complete the following: (1) get a current valuation
of your investment portfolio; (2) compute your capital gains tax for the past year; and
(3) print off your tax forms from last year.

xx Introduction

7215 Natarajan fm 10/27/00 9:29 PM Page xx

In the client/server world, your application would have to know how to do all three of
these functions. To get current stock prices, your app must connect directly to a pricing
feed. To compute the capital gains tax for the year, your app must be programmed with
the current tax law’s formula. To print, your application must know how to talk to a
print driver and send each piece of information to a printer.

In the distributed object world, your client does not have to know how to do any of
this. It need only know how to call a distributed object that can perform this function
for you. To get current stock prices, you can connect to an object server that we can
query for current prices. This is more flexible because now if we need to switch pricing
feeds to a new, more accurate and timely feed, we need only change our object server.
We do not need to change a single thing in our distributed system client, as it calls and
invokes the same operation.

Similarly, in trying to compute your capital gains tax for the past year, our distributed-
system client need only invoke this operation in a tax object server. Our client needs to
know nothing about how this value is computed. Again, this is more powerful since we can
easily change this formula as the tax laws change, without having to modify our clients.

Printing is handled in much the same way. All our distributed-system client need do is
send the documents to a print server to have them printed. All of the logic associated
with negotiating with the printer resides in the distributed object and not in the client.

Of course, this does not release you from all the drudgery of having to write those dis-
tributed objects. But what this design does allow you to do is to create a solid separa-
tion between your client and the business logic used by your client. The business logic,
when implemented in distributed objects, is now readily reusable by any application
that may need similar functionality.

The print server mentioned previously is an obvious example of how distributed-
object functionality could be used in many applications.

There is at least one other subtle difference that should be pointed out: Client/server
applications tend to be very synchronous in nature. Therefore, you most likely would
have had to invoke each of these operations in a sequence, waiting for each one to fin-
ish before moving along to the next. Distributed object systems are more easily archi-
tected to be asynchronous, which means you could have invoked all three of these
operations immediately in any sequence, without waiting for any operation to complete.

One of the greatest promises in OO systems is reuse. Reuse does exist, but has eluded
many IS shops. By and large, the IS shops that have seen reuse have seen it only within
a single development environment. It is an unfortunate fact that the zealous pursuit of
reuse has forced many IS shops to choose a single development environment and stick
with it, even when it may have outlived its usefulness. CORBA offers a solution to
this problem by offering language-independent object mappings. CORBA allows object-
level communication with many of the most popular languages today. This language-
independent approach facilitates reuse between tools. This feature is obviously a great
benefit when properly utilized.

A Word about Standards . . .
One of the difficulties with any new technology is that standards take a while to
develop after the technology has been released. Standards, when properly applied,
achieve many of the goals of most software organizations, such as lower implementa-

Introduction xxi

7215 Natarajan fm 10/27/00 9:29 PM Page xxi

tion costs, increased reuse, and so forth. CORBA represents an industry-wide standard
for distributed object computing. As the CORBA standard (and others) is increasingly
embraced by the software industry, greater reuse and connectivity between in-house
and purchased systems will become possible.

CORBA: A Standard for Distributed
Systems
CORBA is an industry-wide standard for creating distributed object systems. CORBA
has been defined by the Object Management Group (OMG), a nonprofit consortium of
companies whose only goal is to facilitate the definition of standards for interopera-
ble software. This is truly a revolutionary approach to defining standards, as the pri-
mary arbiters of standards in the past have been the companies with the best
marketing campaigns. The OMG writes no software; it only facilitates the definition of
standards. Any vendor who implements these standards will have created software
that, by definition, is interoperable with all software implemented according to the
same standards.

The OMG was created in 1989 by eight charter members: 3Com Corporation, Ameri-
can Airlines, Canon, Data General, Hewlett-Packard, Philips Telecommunications N.V.,
Sun Microsystems, and Unisys Corporation. It now boasts the support of over 700 com-
panies around the globe, the world’s largest consortium of this type. Notably, Microsoft
was initially at odds with CORBA and the OMG, but it seems that they have largely set-
tled their differences and intend to peacefully coexist.

CORBA is a significant part of the OMG’s Object Management Architecture. CORBA
continues to be extended by the addition of CORBA Services and CORBA Facilities.

The Object Request Broker is significantly different from the two-tiered client/server
paradigm. Client/server systems typically only pass data back and forth between server
and client. An ORB system can pass functionality from client to client and server to
server via objects.

As a distributed object standard, what advantages does CORBA provide?

� CORBA supports many programming language mappings. CORBA also allows for
the mixing of these languages within a distributed system (i.e., a system could
consist of C++, Java, and COBOL-implemented object servers, all communicating
fluently).

� CORBA supports distributed computing and object orientation.

� CORBA is an industry standard backed by over 700 companies.

� CORBA provides interoperability between different vendors’ ORBs.

So what does CORBA really do? Imagine an environment where, for example, you
could use your desktop PC to interoperate with software objects located anywhere
within your connected network (which can be pretty large if you include the Internet)
as if they were local to your machine. This is a concept known as location trans-

parency. These objects could be served up from any hardware platform that is running
a CORBA server, which can be implemented in virtually any programming language.
This concept is known as programming language transparency.

xxii Introduction

7215 Natarajan fm 10/27/00 9:29 PM Page xxii

CORBA will allow you to leverage existing legacy code on any platforms that support
the standard, which include several mainframes. This may be the first technology that
will allow your company to move forward without having to rewrite every function in
your standard library.

Why Was This Book Written?

If you survey the bookshelf at your local bookstore, you will see that several CORBA
titles are available. Most are general surveys of CORBA. Others are books written about
CORBA in general, but do not discuss any specific product. This book is one of the first
books written about an ORB from a specific vendor: Inprise.

This book is designed to help any developer rapidly become proficient in the critical
aspects of CORBA development. The knowledge passed along here is intended to help
you design better distributed systems and implement them faster.

Why VisiBroker?
Although CORBA has been around for several years, its popularity has skyrocketed in
the past 12 to 18 months. This is partly attributable to the popularity of the World Wide
Web (an accessible distributed environment) and, to a lesser extent, Java, which has
reduced the complexities in programming distributed object servers.

Since late in 1996, many companies have begun to build in support for CORBA. Many
companies have licensed VisiBroker to integrate into their development and deploy-
ment environments, and, in some cases, their core products. It is extremely likely that
you are using a product today that will shortly, if it doesn’t already, have VisiBroker inte-
grated into it. This book is intended to show you not only how to use VisiBroker as a
stand-alone product, but also how to integrate it with products from other vendors.

What Industry Support Is There for CORBA
and VisiBroker?

The following will give a short description of the type of CORBA integration each com-
pany is undertaking.

Netscape: Netscape has licensed VisiBroker for C++ and Java to use as, among
other things, a powerful server-side scripting tool and embeds the client portion
of the ORB in every browser.

Sun: Sun includes CORBA support in the Java JDK 1.2 as part of their “enterprise
java beans” strategy. Sun also uses VisiBroker in its Solstice network manage-
ment products.

Hewlett-Packard: HP integrates VisiBroker in its Smart Internet Usage product
of ISPs.

Oracle: Oracle, which has also licensed VisiBroker, is using CORBA across the
board at the very core of its database management system.

Introduction xxiii

7215 Natarajan fm 10/27/00 9:29 PM Page xxiii

Cisco: Cisco uses VisiBroker in its enterprise network management solutions.

Telcordia: Telcordia integrates VisiBroker in its Next Generation Network solu-
tions.

Hitachi: Hitachi builds many products including TPBroker® product suite and Cos-
minexus Application Server, which both use VisiBroker.

Sabre: Sabre will use VisiBroker as part of its application development and man-
agement framework.

Ericsson: VisiBroker will form the basis of the future architecture of Ericsson’s
OSS products for managing its GSM and broadband CDMA networks.

Sybase: Sybase has announced support for CORBA as part of its next-generation
middleware product, called Jaguar. Sybase has also built CORBA-compliant sup-
port into its Powerbuilder Development Tools.

Inprise: Inprise itself integrates VisiBroker with its IDE products such as Bor-
land® JBuilder, Borland C++ Builder and Delphi. At the enterprise level,
VisiBroker for Java forms the foundation of the Inprise Application Server.

Why Java and CORBA?
We have elected to use Java as the core programming language throughout this book.
There are several reasons for this choice:

Portability: As you well know, one of the most compelling reasons to use Java is
its multiplatform support via the Java virtual machine. This allows us to write a
book that will be applicable to all Java-supported platforms.

Extends development and deployment options for CORBA: By using the
portability of Java, it becomes possible to develop your distributed object system
on a given platform, say Windows NT, and deploy to a different platform, say
SUN OS, with relative ease. This is not so easily accomplished with other pro-
gramming languages.

Simplifies garbage collection: One of the biggest problems in ORBs (and other
distributed systems generally) implemented in other languages is garbage collec-
tion. In an ORB, situations can arise where a once-used distributed object no
longer has any clients referencing it. At this point the distributed object should
be garbage collected and destroyed. In C++, you must write a separate process to
perform the garbage collection. In Java, because garbage collection is built into
the language, this process is greatly simplified.

Multithreading: Your systems will see a significant performance gain if you prop-
erly multithread your servers (and, in some cases, your clients). Since multi-
threading is nicely integrated into Java, it is more readily available for use.

Readability: Java code is relatively easy to read and understand, as it is not
bogged down with the complexities of C++. This helps to make the code exam-
ples in this text easier to understand. However, all of the examples implemented
in this book can be implemented in C++, and most examples could be imple-
mented in any language for which CORBA mappings exist.

xxiv Introduction

7215 Natarajan fm 10/27/00 9:29 PM Page xxiv

How This Book Is Organized

The book has been divided into three sections:

� Part One. An Introduction to Distributed Systems in CORBA. Section 1
includes all the information necessary for a developer to reach a basic compe-
tency level in CORBA. We’ve included a chapter on analysis and design of dis-
tributed systems (Chapter 5) with the intent of sharing information on analysis
and design techniques that we’ve found to be effective in CORBA. All of the
information in Section 1 is meant to be specific and brief, as we expect most
readers will be already somewhat familiar with this content.

� Part Two. Working with VisiBroker. Section 2 includes the topics that are
necessary for an intermediate to advanced CORBA developer. This section has
extensive coverage of the most important aspects of implementing VisiBroker
servers and clients.

� Part Three. Advanced Topics in VisiBroker. Section 3 includes more detailed
descriptions of more complex features that will be important for specific
advanced uses of VisiBroker. Topics will include CORBA Services, the POA and
how to take advantage of it, the interface repository, and ORB interoperability.

� Appendixes

� Appendix A: VisiBroker for Java Quick Reference: Interfaces and Properties

� Appendix B: VisiBroker for Java Quick Reference: Commands and Utilities

� The Companion Web site. This book comes with a companion Web site
hosted at www.wiley.com/compbooks/natarajan. This site contains:

� Source code for all examples in this book

� Pointers to newsgroups, specs, and other places where you can find out
more about VisiBroker and CORBA

� Links to useful resources

� Errata for the book, if any

What’s New in This Edition?

The second edition of this book covers all of the new features introduced in VisiBroker
for Java 4.0:

� Portable Object Adapter. The Portable Object Adapter replaces the depre-
cated Basic Object Adapter as an Object Adapter. This adapter (as the name
implies) provides users with an API to program servers portably across multiple
ORBs. See Chapter 14 for details.

� CORBA Valuetypes. CORBA valuetypes allow the transfer of state much like
struct but with a more flexible type system, with features such as inheritance,
operations, and attributes. Chapter 15 describes valuetypes in detail.

Introduction xxv

7215 Natarajan fm 10/27/00 9:29 PM Page xxv

� Interoperable Naming Service. The Interoperable Naming Service specifica-
tion introduced many new features, such as the URL-based mechanism to define
initial references to the naming service, and describes the more interesting fea-
tures of the naming service that comes with the VisiBroker product, such as
clustering. Chapter 19 describes the naming service and its features.

� VisiBroker Console. This is a graphical management tool for VisiBroker
servers and services. This tool is introduced in Chapter 9, and details specific to
each service are described in the appropriate chapters.

� Protocol Engine. This is a powerful new framework that allows servers to pub-
lish multiple endpoints for the object reference, with different properties. Details
of the Protocol engine and how to configure it can be found in Chapter 16.

� Interceptors and Object Wrappers. Interceptors are a framework of call-
backs that allow users to monitor the progress of different lifecycles within the
ORB. This includes requests, object binding, object creation, POA creation, and
IOR creation. Object Wrappers are like interceptors for requests but work at the
application level, with the ability to affect the behavior of a request based on
input parameters for the operation. The Interceptors and Object Wrappers are
described in detail in Chapter 18.

� Firewall support. The gatekeeper and its enhanced support for firewall naviga-
tion allows very flexible and easy mechanisms to negotiate firewalls.

All the examples have been updated to work with the new POA model introduced in
VisiBroker 4. The interceptor examples use the Visibroker 4 interceptor framework.

At the time of writing, the security service framework for VisiBroker was not ship-
ping, so we do not discuss it in this edition. You can find updated information on the
security service for VisiBroker on the Inprise Web site at www.inprise.com/security.

Compatibility

All source code examples work with VisiBroker for Java release 4.0 or later versions.
For simplicity, however, we refer to the software throughout the book as VisiBroker for
Java 4. If there is anything you need to know about a specific dot release of this soft-
ware, we explain it in the text. Programming with VisiBroker, Second Edition, has
been tested against JDK 1.2.2. Please see the companion Web site for this book for
updates to the code.

Onward!

So let’s get on with it! The pages that follow will give you a brief overview of CORBA and
then enable you to build advanced distributed object systems in VisiBroker for Java.
This book will become a valuable reference as you integrate VisiBroker for Java into
your standard development environment.

xxvi Introduction

7215 Natarajan fm 10/27/00 9:29 PM Page xxvi

Vijaykumar Natarajan is an architect for the VisiBroker products at Inprise Corpora-
tion, contributing to both the VisiBroker for Java and C++ products. Vijay came to
Inprise through the Visigenic acquisition and worked at Informix prior to that. Vijay is
also an active member of the OMG, helping to evolve the CORBA specifications as a rep-
resentative of Inprise.

Stefan Reich is a senior software engineer at Inprise Corporation, contributing to the
VisiBroker and AppServer product line. Stefan joined Inprise Corporation from the Uni-
versity of Hamburg, Germany, where he was conducting cutting-edge research on load
balancing techniques using CORBA. While working on his diploma at Hamburg, he also
consulted with various German companies to provide Internet and intranet e-commerce
solutions.

Bhaskar Vasudevan currently works as an architect at @ztec software, building cut-
ting edge e-commerce solutions for Bay Area companies. Prior to this, he was the Tech-
nical Lead for the VisiBroker for C++ product. Bhaskar also came to Inprise through the
Visigenic acquisition. Prior to Visigenic, Bhaskar worked for Oracle Corporation.

Authors of the First Edition

Doug Pedrick is the Lead Technical Architect at Strong Capital Management in Mil-
waukee. He is responsible for the architecture and design of portfolio management and
trading systems. Doug's current focus is on enterprise application integration and dis-
tributed object oriented systems using J2EE, EJB, JMS, CORBA, and XML.

Jonathan Weedon is Principal Engineer and Lead Architect of the Enterprise division
of Inprise. During his five years at Inprise/Borland/Visigenic/Post Modern, he has been
the principal developer of VisiBroker for Java (versions 1, 2 and 3), and the EJB Con-

About the Authors

xxvii

7215 Natarajan fm 10/27/00 9:29 PM Page xxvii

tainer. He has played an architecture role on both Inprise Transaction Service (ITS) and
Application Server (IAS). Jonathan and family split their time between Half Moon Bay
and Penn Valley, California.

Jon Goldberg joined Tacit Knowledge Systems in 1999 as a Founding Member of Tech-
nical Staff. He is currently focused on Java and database development for the Knowl-
edgeMail product line. Jon lives in San Francisco.

Erik Bleifield is currently the primary architect and development manager of middle-
ware and integration solutions at a major banking and business processing outsourcing
company.

The Contributors

Gopal Ananthraman is a Research and Development Engineer contributing to the Visi-
Broker products. Gopal would like to thank Ke Jin (architect) for his support and use-
ful feedback and his management team. He would also like to thank Stefan for
reviewing the chapter and providing useful comments.

Tomasz Mariusz Mojsa holds the position of Principal Consultant for Inprise Corpo-
ration, architecting, designing, and implementing strategic enterprise distributed sys-
tems for major US corporations. Tomasz would like to thank Vijay and Stefan, his close
friends at Borland/Visigenic, whose book he was happy to contribute to, and for the
great days (including some Saturdays and Sundays) spent working on distributed sys-
tems together. Without their hard work the book would never have come into existence.

Ioana Pirvulescu is the technical lead for the VisiBroker for C++ product, contributing
to both the Java and C++ VisiBroker ORBs. Ioana would like to thank Vijay and Stefan
for involving her in this project, Bhaskar for being a good friend and a great colleague,
the VisiBroker team for the many hours of hard work together, and of course Mike, for
being by her side and often covering for her on the wedding planning front!

xxviii About the Authors

7215 Natarajan fm 10/27/00 9:29 PM Page xxviii

Programming with
VisiBroker®

7215 Natarajan fm 10/27/00 9:29 PM Page xxix

7215 Natarajan fm 10/27/00 9:29 PM Page xxx

An Introduction to
Distributed Systems

in CORBA

One

P a r t

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 1

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 2

3

This chapter will discuss the essential parts of a CORBA (Common Object Request Bro-
ker Architecture) system and some design goals useful for a successful CORBA environ-
ment. This material is essential to understanding any CORBA system and will be referred
to throughout the book. We have intentionally left out much of the theoretical background
on which CORBA is based, believing that this material has been sufficiently covered else-
where. For more information on CORBA, check out Client/Server Programming with

Java and CORBA by Robert Orfali and Dan Harkey (Wiley, 1998). Our intent here is to
give readers a quick description of the terminology and functional areas involved in any
CORBA development effort so they can immediately begin to grasp the essentials in
CORBA system design.

Distributed Object Computing

In many ways CORBA is the next evolution of the client/server paradigm. Client/server
topologies came about in the 1980s in response to the need to share centralized data
with a large number of end users, all employing the processing power of increasingly
powerful desktop computers. Typical two-tier client/server software architecture parti-
tions functionality in such a manner that the client application performs both business
processing and user interface operations. The server is used as a data manager: a file
server or database repository. The architectural limitations and development pitfalls of
this approach have become apparent. Software maintenance in a two-tier architecture
is tedious at best. Because the user interface makes direct calls to the database, changes
to the database have a widespread impact. Domain-level reuse is nearly impossible

Introduction to CORBA

C H A P T E R

1

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 3

because the rules of the business are so tightly coupled with presentation and data stor-
age logic.

The application of sound software engineering principles has resulted in the separa-
tion of responsibilities into three areas, or tiers: presentation, business logic, and data
storage and retrieval. The logical separation and loose coupling of tiers isolates each
tier from change in the other tiers. The third tier, encapsulating the business and appli-
cation logic, has become known as the middle tier. Services to help support the imple-
mentation of the middle tier have become known as middleware.

Middleware has very different meanings to different users (and seemingly to many
vendors). Unfortunately, it is too often associated solely with database access software,
completely losing sight of what we believe is the most significant purpose of the middle
tier. It is paramount that any software tool touted as middleware increase developer
productivity and reduce (or abstract) system complexity. We believe that good middle-
ware will be defined by several other important features: It must allow for clear separa-
tion of business logic; it must aid in supporting reuse; it must be standards-based; it
must exhibit high reliability and availability; and, to be part of an enterprise’s strategic
architecture, it must be highly scalable.

Also, good middleware must support interoperable objects, implemented in various
languages, living on different types of platforms, located on a network. A client and a
server implemented using object-oriented languages that cannot directly invoke opera-
tions transparently, regardless of where those objects actually live, is not a distributed
object system. Prior to the advent of CORBA, many Information Systems (IS) shops
implemented client/server systems that used object-oriented languages on all nodes,
but had to either define their own communication protocols or resort to sockets and
remote procedure calls to carry out the desired behavior. Of course, remote invocations
were not done directly on objects, and their targets were anything but transparent.

CORBA: Object-Oriented Middleware
The marriage of the object-oriented paradigm to a client/server topology, with the inten-
tion of facilitating the interaction of objects in a client/server relationship, has given rise
to CORBA. An industry consortium, the Object Management Group (OMG), which now
numbers over 700 members, created the CORBA standard as an answer to the need for
distributed object interoperability. CORBA is the heart of the OMG’s architectural frame-
work, the Object Management Architecture (OMA), which will be discussed shortly.

CORBA is superior to other middleware products for many reasons, not the least of
which is that it is a nonproprietary, industry-supported standard. Other benefits of
CORBA include the following:

� It forces the separation of an object’s interface and its implementation.

� It is scalable.

� Support for reuse is inherent.

� There is language and platform transparency.

� It provides vendor independence through interoperability.

� CORBA Services provide à la carte functionality.

� Network communication is abstracted from the developer.

4 Programming with VisiBroker

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 4

CORBA clients and servers are developed against a common interface specification,
written in the OMG’s Interface Definition Language (IDL), which is essentially a contract
between a server and potential clients. The IDL for a server specifies the interfaces, or
objects, attributes, and operations available for that interface. The IDL file is compiled,
and supporting files are created that map the IDL specification to a target implementa-
tion language. For instance, the VisiBroker® for Java IDL to Java compiler generates sev-
eral Java source files for each IDL interface. Some of these source files are used by the
object implementation (the server) and some by the client. The client and server need
not be developed in the same language. One IDL file may be compiled into different
implementation languages—a server written in Java doesn’t know, or care, that a client
was written in C++. The client and server communicate via an Object Request Broker
(ORB), which is the core of the CORBA middleware architecture. The client does not
have to be aware of the object’s location, the network protocol used, the language used
to implement the object, or the operating system hosting the server. The only aspects the
client has knowledge of are those specified in the IDL interface.

So what is happening under the covers? The IDL compiler, ORB, and object adapters
conspire to abstract the complexities of distributed object communication. The key play-
ers in this game follow.

Object Request Broker

The ORB is the heart of any CORBA implementation. It is responsible for enabling
objects to transparently make requests and receive responses in a distributed environ-
ment—whether that environment is a heterogeneous or a homogeneous system of com-
puters and networks. Because the ORB assumes responsibility for so much object
management, and because the mechanisms of routing invocations to their target objects
have been abstracted so completely, the client applications are relatively simple. To the
client, it appears as though every object is always active, even though that’s not the
case. CORBA does not even provide a separate command for a client to start up an
object implementation—the client just sends a request, and the ORB does everything
else. With the exception of some ORB initialization requirements, a typical client views
the distributed system solely through the IDL interface specifications, and the client is
completely divorced from the implementation details.

Object Adapter

An Object Adapter (OA), in the CORBA sense, is a logical set of server-side facilities that
serves both to extend the functionality of the ORB and to provide a mechanism for the
ORB and the object implementation to communicate with each other. Rather than
bundling this functionality into the ORB Core, adapters can be used to offer specialized
services that have been optimized for a particular environment, platform, or object
implementation. The OA is layered on top of the ORB Core to provide an interface
between the ORB and the object implementation. A typical OA provides services such
as the following:

� Registration of servers (implementations)

� Activation and deactivation of object implementations

Introduction to CORBA 5

7215_Natarajan_01_jm.qxd 10/27/00 9:35 PM Page 5

� Instantiation of objects at run time and the generation and management of
object references

� Mapping of object references to their implementations

� Dispatching of client requests to server objects via a static skeleton or DSI
(Dynamic Skeleton Interface)

While many types of object adapters are possible for unique situations, the CORBA
specification only requires implementations to provide a Portable Object Adapter
(POA). The adoption of the Portability Specification called for the deprecation of an
earlier specification for an object adapter called the Basic Object Adapter (BOA), which
was woefully underspecified in favor of the POA.

Interface Definition Language (IDL)

The OMG Interface Definition Language (IDL) defines types of objects by specifying
their interfaces. An interface consists of a set of named operations and the parameters
that apply to those operations. IDL is the means by which a particular object imple-
mentation informs its potential clients of the operations available and the way to invoke
them. From the IDL definitions, it is possible to map CORBA objects into particular pro-
gramming languages or object systems.

An object implementation provides the semantics of the object, usually by defining
data to represent the state of the object instance and code (methods) to implement the
object’s behavior. Each IDL interface is ultimately implemented in code, and that code
is collectively called an object implementation. In Java, this typically corresponds to
one (though it need not be limited to one) Java class. To fully implement the object, the
class will often use other objects and classes and define variables and methods not part
of the IDL interface.

Clients and Servers

Quite simply, a client is any entity that issues requests for the services of an object. An
entity plays the role of a client relative to a particular object. An object that assumes the
role of client in one invocation may in turn respond to requests for services from other
objects. A client of an object must have an invocable reference—also known as an object
reference—to that object.

Typically, the term server is used to describe an executable program or a specific
process executing that program. The server contains one or more object implementa-
tions—that is, a Java class that implements the operations corresponding to an IDL
interface.

Internet Inter-ORB Protocol (IIOP)

The goal of ORB interoperability is to allow communication between independent imple-
mentations of the CORBA standard. ORB interoperability allows a client of one vendor’s
ORB to invoke operations on an object in a different ORB. Invocations between client and
server objects are independent of whether they are on the same or different ORBs. To

6 Programming with VisiBroker

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 6

make this happen, all ORBs must communicate via a standard protocol. The OMG proto-
col for ORB interoperability, the General Inter-ORB Protocol (GIOP), defines the on-the-
wire data representation and message formats for all inter-ORB communication. The OMG
also defined a specialization of GIOP, called the Internet Inter-ORB Protocol (IIOP), that
uses TCP/IP as the transport layer. Specialized protocols for other transports are expected
to be defined in time. All compliant ORBs are required to at least provide support for IIOP.

Distributed Object Computing:
The Object Management
Architecture (OMA)
The OMA is a larger framework within which all OMG-adopted technology resides. It
provides two basic models on which CORBA and other standard interfaces are based:
the Core Object Model and the Reference Model.

The Core Object Model defines the concepts that allow distributed application devel-
opment to be facilitated by an ORB. It describes the theoretical basis of CORBA. The
Core Object Model is an abstract definition that does not attempt to detail the syntax of
object interfaces or any other part of an ORB. It also defines a framework for refining
the model into a more concrete form. The model provides the basis for CORBA, but is
more relevant to ORB designers and implementers than to distributed object applica-
tion developers. It is thoroughly described in the OMG’s Object Management Architec-
ture Guide and will not be dealt with at any level in this book.

The Reference Model places the ORB at the center of groupings of objects with stan-
dardized interfaces that provide support for application object developers. The following
groups are identified: Object Services, which provide infrastructure; Domain Interfaces,
which provide special support to applications from various industry domains; Common
Facilities, which provide application-level services across domains; and Application Inter-
faces, which is the set of objects developed for a specific application.

The Reference Model is important to CORBA developers, because it presents a devel-
opment model through which developers can create and use frameworks, components,
and objects. This book will focus mostly on a subsection of the Reference Model (Figure
1.1), Application Objects, although we will spend some time talking about Object Ser-
vices in Chapters 19 and 20.

Object Services

The Object Services offer fundamental services for use by the developers of implemen-
tation objects. Among other things, the object-level functionality specified by these
interfaces provides services to store, manage, and locate objects, to enforce relation-
ships between objects and groups of objects, and to provide frameworks for licensing
and security. The Object Services implemented by VisiBroker for Java, Naming, and
Events, are detailed fully in Chapters 19 and 20. The published services include:

Naming. The Naming Service provides the ability to bind a name to an object rela-
tive to a naming context. A naming context is an object that contains a set of
name bindings, in which each name is unique. To resolve a name is to determine
the object associated with the name in a given context. Through the use of a very

Introduction to CORBA 7

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 7

general model and in dealing with names in their structural form, Naming Service
implementations can be application-specific or based on a variety of naming sys-
tems currently available on system platforms.

Events. The Event Service provides basic capabilities that can be configured
together flexibly and powerfully. The service supports asynchronous events
(decoupled event suppliers and consumers), event fan-in, notification fan-out,
and, through appropriate event channel implementations, reliable event delivery.

The Event Service design is scalable and is suitable for distributed environ-
ments. There is no requirement for a centralized server or dependency on any
global service. Both push and pull event delivery models are supported; that is,
consumers can either request events or be notified of events.

Persistent Object Service. The Persistent Object Service (POS) provides a set of
common interfaces to the mechanisms used for retaining and managing the per-
sistent state of objects. The object ultimately has the responsibility of managing
its state, but it can use POS or delegate the actual work to it. A major feature of
the Persistent Object Service (and the OMG architecture) is its openness. In this
case, that means that there can be a variety of different clients and implementa-
tions of the Persistent Object Service, and they can work together. This is particu-
larly important for storage, whereby mechanisms useful for documents may not
be appropriate for employee databases, or mechanisms appropriate for mobile
computers do not apply to mainframes.

Relationships. The Relationship Service allows entities and relationships to be
explicitly represented. Entities are represented as CORBA objects. The service
defines two new kinds of objects: relationships and roles. A role represents a
CORBA object in a relationship. The Relationship interface can be extended to
add relationship-specific attributes and operations. In addition, relationships of
arbitrary degree can be defined. Similarly, the Role interface can be extended to

8 Programming with VisiBroker

Application Objects

Object Services Common Facilities

Object Request Broker

Domain Objects

Figure 1.1 The OMA Reference Model.

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 8

add role-specific attributes and operations. Type and cardinality constraints can be
expressed and checked. Exceptions are raised when the constraints are violated.

Lifecycle. The Lifecycle Service defines operations that copy, move, and remove
graphs of related objects, while the Relationship Service allows graphs of related
objects to be traversed without activating the related objects. Distributed imple-
mentations of the Relationship Service can have navigation performance and avail-
ability similar to CORBA object references: Role objects can be located with their
objects and need not depend on a centralized repository of relationship informa-
tion. Therefore, navigating a relationship can be a local operation.

Externalization. The Externalization Service defines protocols and conventions for
externalizing and internalizing objects. To externalize an object is to record the
object state in a stream of data (in memory, on a disk file, across the network, and
so forth); it can then be internalized into a new object in the same or a different
process. The externalized object can exist for arbitrary amounts of time, be trans-
ported by means outside of the ORB, and be internalized in a different, discon-
nected ORB. For portability, clients can request that externalized data be stored in
a file whose format is defined with the Externalization Service Specification.

The Externalization Service is related to the Relationship Service and parallels
the Lifecycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for facilities, directory services, and file services.

Transactions. The Transaction Service supports multiple transaction models, includ-
ing the flat (mandatory in the specification) and nested (optional) models. The
Transaction Service supports interoperability between different programming mod-
els. For instance, some users want to add object implementations to existing proce-
dural applications and to augment object implementations with code that uses the
procedural paradigm. To do so in a transaction environment requires the object
and procedural code to share a single transaction. Network interoperability is also
supported, since users need communication between different systems, including
the ability to have one transaction service interoperate with a cooperating transac-
tion service using different ORBs.

Concurrency Control. The Concurrency Control Service enables multiple clients
to coordinate their access to shared resources. Coordinating access to a resource
means that when multiple, concurrent clients access a single resource, any con-
flicting actions by the clients are reconciled so that the resource remains in a
consistent state.

Licensing. The Licensing Service provides a mechanism that allows producers to
control the use of their intellectual property. Producers can implement the Licens-
ing Service according to their own needs and the needs of their customers because
the Licensing Service does not impose its own business policies or practices.

Query. The Query Service allows users and objects to invoke queries on collec-
tions of other objects. The queries are declarative statements with predicates and
include the ability to specify values of attributes, to invoke arbitrary operations,
and to invoke other Object Services.

Properties. The Property Service provides the ability to dynamically associate
named values with objects outside the static IDL-type system. It defines opera-

Introduction to CORBA 9

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 9

tions to create and manipulate sets of name-value or name-value-mode tuples.
The names are simple OMG IDL strings. The values are OMG IDL anys. The use
of type Any is significant in that it allows a Property Service implementation to
deal with any value that can be represented in the OMG IDL–type system.

Security. The Security Service comprises the following:

� Identification and authentication of principals (human users and objects
that need to operate under their own rights) to verify that they are who they
claim to be

� Authorization and access control—deciding whether a principal can access
an object, normally using the identity and/or other privilege attributes of the
principal (such as role, groups, security clearance) and the control attributes
of the target object (stating which principals, or principals with which attrib-
utes can access it)

� Security auditing to make users accountable for their security-related actions.
It is normally the human user who should be accountable. Auditing mecha-
nisms should be able to identify the user correctly, even after a chain of calls
through many objects.

� Security of communication between objects, which often involves insecure
lower-layer communications. This requires trust to be established between
the client and the target, which may require authentication of clients by tar-
gets and authentication of targets by clients. It also requires integrity protec-
tion and (optionally) confidentiality protection for messages in transit
between objects.

� Nonrepudiation, which provides irrefutable evidence of actions such as
proof of origin of data for the recipient or proof of receipt of data for the
sender, to protect against subsequent attempts to falsely deny receiving or
sending data.

Administration of security information (for example, security policy) is also
needed.

Time. The Time Service enables the user to obtain the current time together with
an error estimate associated with it. It ascertains the order in which events
occurred and computes the interval between two events.

Collections. The Collections Service provides a uniform way to create and manip-
ulate the most common collections. Collections are groups of objects that sup-
port some operations and exhibit specific behaviors that are related to the nature
of the collection rather than to the type of object they contain. Examples of col-
lections are sets, queues, stacks, lists, and binary trees.

Trading. The Trader Service provides a matchmaking service for objects. The service
provider registers the availability of the service by invoking an export operation on
the trader and passing as parameters information about the offered service. The
export operation carries an object reference that can be used by a client to invoke
operations on the advertised service, a description of the type of the offered ser-

10 Programming with VisiBroker

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 10

vice (that is, the names of the operations to which it will respond, along with their
parameters and result types), and information on the distinguishing attributes of
the offered service.

Within the common object services, the following design guidelines have been
employed:

� Basic, flexible services. Each service is designed to perform its main
function well and therefore is only as complicated as it needs to be.

� Generic services. Services are designed to be generic in that they do not
depend on the type of the client object or, in general, on the type of data
passed in requests.

� Allowance for local and remote implementations. This guideline rein-
forces the concept of total location independence.

� Quality of service as an implementation characteristic. Service inter-
faces are designed to allow a wide range of implementation approaches,
depending on the quality of service required in a particular environment. For
example, in the implementation of a particular service, a channel could be
implemented to be fast with unreliable delivery of information, or to be slow,
with guaranteed delivery.

� Use of callback interfaces. Services often employ callback interfaces.
Callback interfaces are interfaces that a client object is required to support
to enable a service to call back to it to invoke some operations. The callback
may be, for example, to pass back data asynchronously to a client.

Common Facilities

Whereas the Object Services provide functionality for use by objects, Common Facili-
ties provide standards for services aimed at applications. Also known as CORBA facil-
ities, this is an in-progress effort that intends to create a set of interfaces to provide
generic functions needed by many applications. Facilities such as printing, document
management, and e-mail have been proposed.

Domain Interfaces

These interfaces will provide domain-specific objects for vertical application domains
such as finance, healthcare, manufacturing, telecom, electronic commerce, and trans-
portation. When this work is completed, it should provide a solid basis for building
industry-wide interoperable software.

Application Objects

This part of the architecture represents those application objects that perform specific
tasks for users. This is the area where developers will be doing most of their work, and
this is, of course, the area of focus for most of this book.

Introduction to CORBA 11

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 11

Sending and Receiving Requests
A request refers to a client invoking an operation on an object residing on a server. In
order to do this, the client’s request is handled locally by a programming construct (a
Java class in the case of Java) known as a stub (also called a proxy). Client stubs and
server skeletons are generated by the IDL-to-language compiler. It appears to the client
that the stub is the actual target object, when in reality the stub is used as a placeholder
for the remote object. The stub and the ORB cooperate to marshal any parameters and
transmit the request to the remote object. An instance of the skeleton is waiting on the
remote system for the client’s request. The skeleton (and the ORB) unmarshals the argu-
ments, executes the requested operation, and creates a reply if necessary.

Stubs and Skeletons

There is a stub for every interface type. The stub presents access to the OMG IDL–defined
operations on an object in a way that is easy for programmers to predict once they are
familiar with OMG IDL and the language mapping for the particular programming lan-
guage. The stubs make calls on the rest of the ORB using interfaces that are private to, and
presumably optimized for, the particular ORB Core. If more than one ORB is available,
there may be different stubs corresponding to the different ORBs. In this case, it is neces-
sary for the ORB and language mapping to cooperate to associate the correct stubs with
the particular object reference. Java provides a standard set of interfaces that allows ORB
vendors to generate portable stubs, which will run on any ORB.

On the server side, for a particular language mapping, and possibly depending on the
object adapter, there will be an interface to the methods that implement methods sup-
ported by each type of object. This is known as the skeleton. The interface will gener-
ally be an up-call interface, in that the object implementation comprises of routines that
conform to the interface and the ORB calls them through the skeleton. The skeleton is
the bridge between the ORB and the actual code that implements the methods associ-
ated with the object’s interface.

The existence of a skeleton does not imply the existence of a corresponding client
stub (clients can also make requests via the Dynamic Invocation Interface).

Dynamic CORBA

An interface is available that allows the dynamic construction and dispatch of object invo-
cations. This functionality is called the Dynamic Invocation Interface (DII). Rather than
calling a stub routine that is specific to a particular operation on a particular object, a
client may specify the object to be invoked, the operation to be performed, and the set of
parameters for the operation through a sequence of calls. The client code must supply
information about the operation to be performed and the types of the parameters being
passed (perhaps obtaining it from an Interface Repository or other run-time source). The
nature of the Dynamic Invocation Interface may vary substantially from one programming
language mapping to another.

On the server side, an interface exists that allows dynamic handling of object invocations.
This is called the Dynamic Skeleton Interface (DSI). The DSI allows an object’s implemen-
tation to be reached through an interface that provides access to the operation name and

12 Programming with VisiBroker

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 12

parameters in a manner analogous to the client side’s Dynamic Invocation Interface, rather
than relying on a specific skeleton to access an operation’s implementation. Purely static
knowledge of those parameters may be used, or dynamic knowledge (perhaps determined
through an Interface Repository) may be used to determine the parameters.

The implementation code must provide descriptions of all the operation parameters
to the ORB, and the ORB provides the values of any input parameters for use in per-
forming the operation. The implementation code provides the values of any output para-
meters, or any exceptions, to the ORB after performing the operation. The nature of the
dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked through both client stubs and the dynamic invo-
cation interface; both styles of client-request construction interfaces provide identical
results.

CORBA without IDL

Although IDL provides the conceptual framework for describing the objects offered by a
particular server, the availability of IDL source code is not a necessity for a client to inter-
operate with remote objects. As long as the equivalent information is available in the
form of stub routines or a run-time interface repository, a particular client may be able to
function correctly. Inprise’s java2idl compiler uses this characteristic of CORBA to gen-
erate client stubs and server skeletons directly from Java source code rather than IDL.

Interface and Implementation Repositories

The Interface Repository is a service that provides objects that represent the IDL infor-
mation in a form available at run time. The Interface Repository information may be used
by the ORB to perform requests. Moreover, by using the information in the Interface
Repository, it is possible for a program to determine what operations are valid on an
object whose interface was not known when the program was compiled, and to make an
invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a com-
mon place to store additional information associated with interfaces to ORB objects.
For example, debugging information, libraries of stubs or skeletons, or routines that can
format or browse particular kinds of objects might be associated with the Interface
Repository.

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the Imple-
mentation Repository is specific to an ORB or operating environment, the Implementa-
tion Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and exe-
cution of object implementations are done through operations on the Implementation
Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of
ORB objects. For example, information on debugging, administrative control, resource
allocation, and security might be associated with the Implementation Repository.

Introduction to CORBA 13

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 13

CORBA System Design
Critical analysis and design issues for developing successful CORBA systems are men-
tioned throughout this book, and they are examined in detail in Chapter 5.

Perhaps the two most important issues have nothing to do with CORBA per se:

� Your IS group should create a development process and strive to continually
improve it. A company without a development process is unlikely to achieve
repeatable, successful development efforts. We strongly believe that the only

place a true development-centric process can come from is the developers them-
selves. Your development team should certainly allow management to interact
with and improve your process so it meets their needs as well, but, in our experi-
ence, management cannot sufficiently dictate a good development model. Creat-
ing a good development process is never an easy task, but it is always worth
undertaking. Even small improvements will pay large dividends over time.

� Each CORBA project team should spend the necessary time up front to lay the
foundation for good analysis and design work. A strong object model is not built
by accident. It will take several revisions in order to discover an appropriate
structure that will not only work in your current implementation, but will con-
tinue to work for years to come. We encourage the use of some form of use case
analysis for object discovery and robustness analysis to solidify your long-term
object model.

Summary

This chapter has given a high-level overview of CORBA, including the sum of its parts
and how they work together. If you would like a more extensive look at the details of
CORBA, browse the CORBA specification, which can be found at the OMG’s Web page
(www.omg.org) in the documentation section.

14 Programming with VisiBroker

7215_Natarajan_01_jm.qxd 7/27/00 8:55 PM Page 14

15

This chapter describes the Interface Definition Language, or IDL, in depth. It should be
noted that the IDL is part of the CORBA standard; therefore, once you learn IDL, you can
use it with any CORBA implementation.

IDL is the means by which a particular object implementation tells all potential
clients what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming languages
or object systems.

The OMG IDL grammar is similar, in many ways, to the C++ grammar, with additional
constructs, including support for the CORBA operation invocation mechanism. OMG IDL
is a declarative language. It supports C++ like syntax for constants, type, and operation
declarations.

IDL has constructs to describe an interface. Interfaces, obviously, are the most impor-
tant constructs in IDL because they form the basis for describing the players in a dis-
tributed system. In addition, IDL allows you to define data structures that are used to
represent the data that flows through the distributed system.

The Preprocessor

The IDL preprocessor is similar to the C++ preprocessor, so many of its functions and its
syntax are similar. IDL provides preprocessing directions that allow for macro substitution,
conditional compilation, and source file inclusion.

As with a C++ include file, the following directive should be used in an IDL file to pre-
vent multiple inclusion errors.

The OMG Interface
Definition Language

C H A P T E R

2

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 15

//IDL

#ifndef <unique_name>

#define <unique_name>

<Body of IDL file.>

#endif

The other preprocessing directives available in IDL are as follows: #define, #undef,
#include, #if, #ifdef, #indef, #elif, #else, #endif, #defined, #pragma.

Modules

An interface can be defined within a module; this allows interfaces and other IDL-type
definitions to be grouped together in a useful fashion. Modules also create a naming
scope; thus a type name used within one module will not conflict with the same name
used in another module.

The following pseudo-IDL illustrates the use of a module:

//IDL

module holdings{

interface account { . . . };

interface security { . . . };

interface security_factory { . . . };

interface quote_service { . . . };

}

Note that the full or scoped name is specified as Module::Interface, or holdings::
account, for example.

Interfaces

The IDL interface provides a description of the functionality that will be provided by an
object. An interface definition provides all the information needed to develop a client that
can use this defined interface to interact with the object. An interface definition typically
specifies the attributes and operations belonging to that interface, as well as the parame-
ters of each operation. Defining the interfaces between components is the most important
aspect of distributed object design. Interfaces are the single most important feature of IDL.

The interface body can contain the following kinds of declarations:

� Constant declarations, which specify the constants that the interface exports

� Type declarations, which specify the type definitions that the interface exports

� Exception declarations, which specify the exception structures that the interface
exports

� Attribute declarations, which specify the associated attributes exported by the
interface

16 Programming with VisiBroker

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 16

� Operation declarations, which specify the operations that the interface exports
and the format of each, including the operation name, necessary parameters,
and exceptions that might be returned

Here is a little snippet of IDL that will give you an idea of how it is used. Imagine that
you are creating a stock market pricing server. Your IDL might look something like this:

interface security {

//attributes

attribute string ticker;

attribute string issuing_company;

//operations

float get_current_price();

}

interface security_factory {

//operations

security get_security(in string ticker);

void remove_security(in security aSecurity);

}

We have two interfaces here, a security and a security_factory. The value and use of the
security object should be fairly obvious. Note that, as already defined, an object has attrib-
utes, and methods or operations that can be invoked upon an instance of that object.
Attributes are defined using the following syntax:

‘attribute’ <attribute_type> <attribute_name>;

Operations or methods have this syntax:

<method_return_type> <method_name> (<parameter_direction>

<parameter_type> <parameter_name>, (1-n))

Parameters that are used in methods can have one of the three direction adjectives:

1. in. The parameter is passed from the client to the called object.

2. out. The parameter is passed from the called object to the client.

3. inout. The parameter is passed in both directions.

The security interface has two attributes: its ticker and the name of its issuing com-
pany. It has one operation, which allows us to determine its current price.

The second interface is security_factory. This introduces the concept of an object fac-
tory. We use an object factory to control an object lifecycle within our system. Our secu-
rity_factory has two operations to do exactly that: (1) get_security, whereby the factory
would create a new security object and, presumably, do some sort of database lookup
to populate the issuing_company attribute, then return the security object reference to
the calling client, and (2) remove_security, which would destroy the object and remove
it from use within the system. The factory pattern is one that will be used often in your
CORBA systems.

The OMG Interface Definition Language 17

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 17

Oneway Operations

Normally, operations will block the calling client until the called method returns. How-
ever, an IDL operation can be defined as oneway. A oneway operation will not block the
calling client, so it can proceed with its functions once the request is dispatched to the
server. Unfortunately, there are some limitations with the oneway operation: (1) It must
be declared with a void return type, (2) it cannot have any out or inout parameters, and
(3) it cannot have a raises clause.

Here is an example of how a oneway operation can be used:

interface user_display {

oneway void alert (in string theAlertText);

}

Inheritance

An interface can be derived from another interface. A derived interface may be extended
by adding new elements that are not supported in the base interface. In addition, unless
redefined in the derived interface, the elements of a base interface can be referred to as if
they were elements of the derived interface. The name resolution operator (::) may be
used to refer to a base element explicitly. A derived interface may redefine any of the type,
constant, and exception names that have been inherited.

An interface is called a direct base if it is mentioned in the inheritance declaration. An
interface is called an indirect base if it is not a direct base but is still a base (direct or
indirect) interface of one of the direct base interfaces mentioned in the inheritance
specification.

An interface may be derived from any number of base interfaces. Such use of more
than one direct base is called multiple inheritance. The order of derivation is not signif-
icant, functionally.

An interface may not be specified as a direct base interface of a derived interface
more than once; it may be an indirect base more than once.

Figure 2.1 displays a legal path of inheritance.

18 Programming with VisiBroker

Account

Premium Account

Savings AccountChecking Account

Figure 2.1 Multiple inheritance.

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 18

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interface. It should be noted that it is currently illegal
to inherit from two interfaces with the same operation or attribute name, or to redefine
an operation or attribute in the derived interface. Ambiguities can be resolved by quali-
fying a name with its interface name using the scoped name.

References to constants, types, and exceptions are bound to an interface when it is
defined. This means that the names used are replaced with the fully scoped names upon
definition.

Operation names are used at run time by both the stub and the dynamic interfaces. As
a result, all operations that might apply to a particular object must have unique names.
In other words, CORBA IDL does not support overloading of operation names.

Exceptions

The standard way of processing errors in CORBA is through exceptions. An IDL oper-
ation may raise an exception indicating that an error has occurred. Exceptions provide
a clean way for an operation to raise an error to the caller. This is illustrated in the fol-
lowing:

interface security {

exception invalid_ticker{ string reason; };

//attributes

attribute string ticker;

attribute string issuing_company;

//operations

float get_current_price()

raises(invalid_ticker);

}

The preceding exception, invalid_ticker, will be raised when the operation get_current
_price is called with an invalid ticker.

In addition to user-defined exceptions, like the invalid_ticker exception above, a set of
standard exceptions is defined in CORBA. These correspond to the standard run-time
errors that may occur during the execution of a request.

Basic IDL Types

Table 2.1 lists the basic types supported in IDL.

Constructed Types

IDL supports three constructed types: structures, enumerated types, and discriminated
unions.

The OMG Interface Definition Language 19

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 19

Structures
A struct data type allows related items to be grouped together in a useful fashion. For
example,

//IDL

struct account_details {

string name_of_owner;

float total_value;

string date_opened;

};

interface account {

attribute account_details the_account_details;

};

Enumerated Types
Enumerated types consist of ordered lists of identifiers. Here is an example of one:

enum months (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

20 Programming with VisiBroker

Table 2.1 Basic Types

TYPE IDL IDENTIFIER DESCRIPTION

float point type float IEEE single-precision floating point numbers
double IEEE double-precision numbers
long double IEEE long double

integer type long 32 bit
short 16 bit
unsigned long 32 bit
unsigned short 16 bit
long long 64 bit
unsigned long long 64 bit

char type char An 8-bit quantity
wchar A wide character

boolean type boolean TRUE or FALSE

octet type octet An 8-bit quantity that is guaranteed not to
undergo any conversion during transmission

any type any The any type allows the specification of
values that can express an arbitrary IDL type

string type string ISO-Latin 1 string
wstring A wide character string

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 20

Discriminated Unions
The IDL union type is a space-saving type whereby the amount of storage required for a
union is the amount necessary to store its largest element. The tag field is used to spec-
ify which member of a union instance is currently assigned a value.

//IDL

union token switch (long) {

case 1 : long 1;

case 2 : float f;

default : string s;

};

OMG IDL unions are a cross between the C union and switch statements. IDL unions
must be discriminated; that is, the union header must specify a typed tag field that deter-
mines which union member to use for the current instance of a call. Each expression that
follows the case keyword must be compatible with the tag type. The type specified in
parentheses after the switch keyword must be an integer, char, boolean, or enum type. A
default case can appear at most once in a union declaration, and cannot appear if all legal
values of the discriminator type appear in case labels.

Arrays

IDL provides multidimensional fixed-size arrays to hold lists of elements of the same type.
The size of each dimension should be specified in the definition. Some examples are as
follows:

//IDL

//A one dimensional array

Employee theEmployees[100];

//A two dimensional array

short grid[10] [10];

Template Types

IDL provides for only two template types: sequence and string.

Sequences
A sequence is a one-dimensional array with two characteristics: a maximum size (which
is fixed at compile time) and a maximum length (which is determined at run time). A
sequence is similar to a one-dimensional array, but a sequence is not a fixed length.
Sequences are often preferred to arrays because of this feature. You can create a sequence
of any type.

The OMG Interface Definition Language 21

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 21

//IDL

typedef sequence<long, 10> theBoundedSequence;

This first example is of a bounded sequence.

//IDL

typedef<long> theUnboundedSequence;

This example is unbounded and can be of unlimited length.
A sequence that is used in an interface definition (i.e., in its operation or attribute def-

initions) must be named by a typedef declaration.

Strings
The string type is implemented in a fashion similar to a sequence of char. A string may
be bounded or unbounded depending on whether your model calls for a fixed-length
string or not.

//IDL

interface library {

//misc details

//A bounded string

attribute string<12> dewey_decimal_code;

//An unbounded string

attribute string title;

};

Constants

Constants can be defined at any level: interface, module, global, or file level. A constant
is defined as follows:

//IDL

interface account {

const long maximum_holdings = 1000;

//rest of the definition

};

Constants can be of type long, unsigned long, unsigned short, char, boolean, float, dou-
ble, and string.

Typedef Declaration

A typedef declaration can be used to define a meaningful name for a basic or a user-defined
type. For example,

22 Programming with VisiBroker

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 22

//IDL

typedef long lsize;

will define lsize as a synonym for long.

Forward Declarations

An interface must be declared before it can be referenced. A forward declaration declares
the name of an interface without defining it. This allows the definition of interfaces that
mutually reference each other. The syntax is simply the keyword interface followed by the
interface identifier. The actual definition must follow later in the specification.

//IDL

interface account;

Pseudotypes

CORBA defines a number of IDL pseudo interfaces, that is, interfaces defined in IDL but
whose implementation does not necessarily follow the normal mapping from interfaces
to a target programming language. In particular, the following pseudotypes are defined:

� NamedValue

� NVList

� Request

� ServerRequest

� Context

� TypeCode

� ORB

� Environment

Valuetypes

CORBA objects are represented in IDL by interfaces and are passed by reference. This
means that when an object is passed as a parameter to an IDL operation, an object ref-
erence is created and sent over the wire to the client. No state information associated
with the object is transferred. As a result, any invocation using the object reference is a
remote operation and is handled by the remote implementation.

It is sometimes more desirable to pass objects by value, rather than by reference. If
the primary purpose of the object is to encapsulate data or if the application wants to
copy an object, it is preferable to pass the state information associated with an object,
construct an instance of the object implementation locally, and populate the state infor-

The OMG Interface Definition Language 23

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 23

mation, rather than passing a reference to the object. Such passing of state information
is termed pass by value. This does match the pass by value semantics used commonly in
programming languages. The IDL equivalent of representing an object passed by value
is called a valuetype. An IDL valuetype looks like:

//IDL

valuetype StockQuote {

// state members

private string ticker;

private float stockprice;

// an attribute

attribute float price;

//A method

float calculate();

// a factory method

factory create (in string sym, in float cur_price);

};

The valuetype StockQuote defined above contains two private state members, one
attribute, one operation, and one factory method. In some sense, an IDL valuetype is mid-
way between an IDL struct and an IDL interface. An IDL valuetype can be imagined to be
an IDL struct with operations and inheritance. It can contain state members who can be
either private or public operations and attributes. Note that attributes are only shorthand
for two methods—a mutator and an accessor, and do not really represent state. Under-
standing the difference between attributes and state is key to understanding the differ-
ence between an IDL interface and an IDL valuetype. Factory declarations provide
portable interfaces to create IDL valuetypes. The important characteristics of IDL value-
types are listed below:

� IDL valuetypes are local. They are implemented locally and reside locally. Their
state information is marshaled across from one entity to another (client or server).
They cannot be invoked upon remotely like a CORBA Object.

� Valuetypes impose constraints on the implementation in that all entities (clients
and servers) dealing with a given valuetype need to have a local implementation
of that valuetype. With IDL interfaces, there is no constraint at all on the imple-
mentation of an interface. The receiving side of a parameter that is passed by
value needs to know the implementation of the valuetype so that it can instanti-
ate an instance of the valuetype and fill in with the state information passed to
it. In other words, the implementation of a valuetype at the receiving side should
be structurally similar to the implementation of the valuetype on the sending
side.

� Valuetypes can singly inherit from another concrete valuetype and multiply
inherit from zero or more abstract valuetypes. Valuetypes can also support one

24 Programming with VisiBroker

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 24

or more IDL interfaces, with at most one being nonabstract, using the supports
IDL keyword.

� Sharing semantics. Valuetypes allow sharing. Valuetype instances can be
shared between other valuetype instances. If the same valuetype is passed mul-
tiple times as arguments to a method invocation, the single valuetype is received
on the receiving end instead of multiple copies. Similarly, if a valuetype is
referred at multiple points in a graph, the same relationship is maintained in a
receiving context. This is not possible with IDL structs, unions, or sequences.
This allows arbitrary graphs to be passed and to have that graph structure main-
tained in the receiving context.

� Null semantics. Valuetypes allow passing NULL as a valid value for valuetype
parameters to IDL operations as opposed to IDL strings, structs, or sequences.
Since this is possible, valuetypes can act as wrappers to wrap any non-value IDL
type to give these types value semantics.

� Valuetypes can be of two types: concrete or stateful valuetypes and abstract value-
types.

Concrete Valuetypes
Concrete or stateful valuetypes contain state members that could be either public or private.
Concrete valuetypes can be used to describe complex state, such as an arbitrary graph.
Using stateful values, it is possible to describe recursive data structures such as a cyclic
graph, or a linked list, which was previously not possible. The following IDL shows a con-
crete valuetype:

//IDL

valuetype Vertex;

typedef sequence<Vertex> Vertices;

valuetype Vertex {

private string label;

private Vertices branches;

Vertices traverse();

void add (in Vertex vert);

void remove (in Vertex ver);

};

valuetype Graph {

// private state member

private Vertex root;

//A method

Vertex traverse();

};

Abstract Valuetypes
Abstract valuetypes contain operations only and no state data. They cannot be instanti-
ated. Only concrete or stateful valuetypes derived from abstract valuetypes can be instan-

The OMG Interface Definition Language 25

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 25

tiated. Abstract valuetypes can multiply inherit from abstract valuetypes. Concrete value-
types may also inherit from multiple abstract valuetypes. This is possible because abstract
valuetypes have no state. Abstract valuetypes can also support multiple interfaces with at
most one of them being non abstract. They are represented in IDL using the prefix
abstract. The following IDL modifies the concrete valuetype example to show an abstract
valuetype in IDL:

//IDL

abstract valuetype traversable {

Vertices traverse();

};

valuetype Vertex : traversable {

private string label;

private Vertices branches;

void add (in Vertex vert);

void remove (in Vertex ver);

};

Boxed Valuetypes
It is sometimes convenient to define a valuetype with a single state member with no inher-
itance or methods. Such valuetypes can be defined in IDL using a short hand IDL notation
called a boxed valuetype. A boxed valuetype can be used to support sharing semantics
and null semantics described above. The following IDL shows a boxed valuetype:

//IDL

valuetype Label string;

It is a shorthand representation of the following valuetype:

//IDL

valuetype Label {

// state member

private string value

};

Custom-Marshaling
If users want to provide their own implementations of marshaling routines for value-
types, they should use the custom prefix when declaring the valuetype in IDL. The fol-
lowing IDL represents a valuetype that is custom-marshaled. The code to read and write
the state of this valuetype needs to be implemented by the user:

//IDL

custom valuetype Date {

// private state member

26 Programming with VisiBroker

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 26

private unsigned long day;

private string month;

private unsigned long year;

// method

String findTomorrow();

};

Abstract Interfaces

If, at compile time, we cannot determine whether an object is to be passed by reference or by
value, it is possible to declare such a parameter’s type as an abstract interface in IDL. IDL
abstract interfaces allow the decision to be deferred until runtime. An IDL abstract interface
can be thought of as a super class to an IDL interface as well as an IDL valuetype. Therefore,
by themselves, abstract interfaces do not support any standard CORBA::Object operations.
If an IDL abstract interface can be successfully narrowed to be an IDL interface, then
CORBA::Object operations can be invoked on the narrowed object reference. The following
IDL defines an abstract interface Person:

Typedef sequence<string> Details;

abstract interface Person {

Details getDetails();

};

interface Employee : Person {

// attributes

attribute unsigned long identity;

attribute string identity;

};

valuetype PersonValue supports Person {

// state members

private string name;

private unsigned long birthYear;

// method

unsigned long calculateAge();

};

interface Company {

// operation

Details printDetails(in Person person);

};

When an IDL abstract interface is used as a parameter to an IDL operation, if at runtime:

� the actual parameter passed can be determined to be of a regular interface type,
or a subtype of the regular interface type

� that regular interface type is a subtype of the signature abstract interface

The OMG Interface Definition Language 27

7215_Natarajan_02_jm.qxd 7/27/00 8:56 PM Page 27

