

GUIDELINES FOR

Safe Storage and Handling of Reactive Materials

CENTER FOR CHEMICAL PROCESS SAFETY of the AMERICAN INSTITUTE OF CHEMICAL ENGINEERS 345 East 47th Street, New York, New York 10017 This page intentionally left blank

Safe Storage and Handling of Reactive Materials

Publications Available from the CENTER FOR CHEMICAL PROCESS SAFETY of the AMERICAN INSTITUTE OF CHEMICAL ENGINEERS

Guidelines for Safe Storage and Handling of Reactive Materials Guidelines for Technical Planning for On-Site Emergencies Guidelines for Process Safety Documentation Guidelines for Safe Process Operations and Maintenance Guidelines for Process Safety Fundamantals in General Plant Operations Guidelines for Chemical Reactivity Evaluation and Application to Process Design Tools for Making Acute Risk Decisions with Chemical Process Safety Applications Guidelines for Preventing Human Error in Process Safety Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs Guidelines for Implementing Process Safety Management Systems Guidelines for Safe Automation of Chemical Processes Guidelines for Engineering Design for Process Safety Guidelines for Auditing Process Safety Management Systems Guidelines for Investigating Chemical Process Incidents Guidelines for Hazard Evaluation Procedures, Second Edition with Worked Examples Plant Guidelines for Technical Management of Chemical Process Safety, Rev. Ed. Guidelines for Technical Management of Chemical Process Safety Guidelines for Chemical Process Quantitative Risk Analysis Guidelines for Process Equipment Reliability Data, with Data Tables Guidelines for Vapor Release Mitigation Guidelines for Safe Storage and Handling of High Toxic Hazard Materials Guidelines for Use of Vapor Cloud Dispersion Models Understanding Atmospheric Dispersion of Accidental Releases Expert Systems in Process Safety Concentration Fluctuations and Averaging Time in Vapor Clouds Safety, Health, and Loss Prevention in Chemical Processes: Problems for Undergraduate Engineering Curricula Safety, Health, and Loss Prevention in Chemical Processes: Problems for Undergraduate Engineering Curricula-Instructor's Guide Workbook of Test Cases for Vapor Cloud Source Dispersion Models Proceedings of the International Symposium and Workshop on Safe Chemical Process Automation, 1994 Proceedings of the International Process Safety Management Conference and Workshop, 1993 Proceedings of the International Conference on Hazard Identification and Risk Analysis, Human Factors, and Human Reliability in Process Safety, 1992 Proceedings of the International Conference/Workshop on Modeling and Mitigating the Consequences of Accidental Releases of Hazardous Materials, 1991. Proceedings of the International Symposium on Runaway Reactions, 1989

CCPS/AIChE Directory of Chemical Process Safety Services

GUIDELINES FOR

Safe Storage and Handling of Reactive Materials

CENTER FOR CHEMICAL PROCESS SAFETY of the AMERICAN INSTITUTE OF CHEMICAL ENGINEERS 345 East 47th Street, New York, New York 10017 Copyright ©1995 American Institute of Chemical Engineers 345 East 47th Street New York, New York 10017

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Library of Congress Cataloging-in-Publication Data

Guidelines for safe storage and handling of reactive materials / Center for Chemical Process Safety of the American Institute of Chemical Engineers.

p. cm. Includes bibliographical references and index. ISBN 0-8169-0629-7 (hc)
1. Chemicals—Storage—Safety measures. I. American Institute of Chemical Engineers. Center for Chemical Process Safety. TP201.G853 1995
660' .2804—dc20 94-2481 CIP

This book is available at a special discount when ordered in bulk quantities. For further information contact the Center for Chemical Process Safety at the above address.

It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry; however, the American Institute of Chemical Engineers, its consultants, CCPS subcommittee members, their employers, their employers' officers and directors, and Battelle Memorial Institute disclaim making or giving any warranties or representations, express or implied, including with respect to fitness, intended purpose, use or merchantability and/or correctness or accuracy of the content of the information presented in this document. As between (1) the American Institute of Chemical Engineers, its consultants, CCPS subcommittee members, their employers, their employers' officers and directors, and Battelle Memorial Institute and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

Contents

Pre	face	xiii
Aci	knowledgments	xυ
Acronyms xi Introduction x		xvii
		xix
1.	Chemical Reactivity Hazards	1
	1.1. Framework for Understanding Reactivity Hazards	2
	1.1.1. Grouping of Reactivity Hazards into General Categories	2
	1.1.2. Key Parameters That Drive Reactions	5
	1.1.3. Types of Runaway Reactions	13
	1.1.4. How Reactive Chemical Storage and Handling Accidents Are Initiated	14
	1.2. Self-Reactive Polymerizing Chemicals	17
	1.2.1. Thermal Instability	17
	1.2.2. Induction Time	18
	1.2.3. Example	19
	1.3. Self-Reactive Decomposing Chemicals	19
	1.3.1. Peroxides	20
	1.3.2. Self-Accelerating Decomposition Temperature	20
	1.3.3. Predicting Instability Potential	21
	1.3.4. Deflagration and Detonation of Pure Material	21
	1.3.5. Slow Gas-Forming Reactions	22
	1.3.6. Heat of Compression	22
	1.3.7. Minimum Pressures for Vapor Decomposition	23
	1.3.8. Shock Sensitivity	23
	1.3.9. Examples of Shock Sensitivity	25
	1.4. Self-Reactive Rearranging Chemicals	25
	1.4.1. Isomerization	25
	1.4.2. Disproportionation	26
	1.5. Reactivity with Oxygen	26

v

1.5.1. Spontaneous Ignition and Pyrophoricity	27
1.5.2. Pyrophoricity versus Hypergolic Properties	29
1.5.3. Accumulation and Explosion of Pyrophoric Materials	30
1.5.4. Competition between Air and Atmospheric Moisture	31
1.5.5. Peroxide Formation	31
1.6. Reactivity with Water	33
1.6.1. Water Reactivity: Fast and Slow Reactions	34
1.6.2. Water-Reactive Structures	34
1.7. Reactivity with Other Common Substances	35
1.7.1. Reactions with Metals	37
1.7.2. Surface Area Effects	37
1.7.3. Catalyst Deactivation and Surface Passivation	38
1.8. Reactive with Other Chemicals: Incompatibility	38
1.8.1. Oxidizing and Reducing Properties	39
1.8.2. Acidic and Basic Properties	40
1.8.3. Formation of Unstable Materials	40
1.8.4. Thermite-Type Reactions	40
1.8.5. Incompatibility with Heat Transfer Fluids and Refrigerants	41
1.8.6. Adsorbents	41
References	42

2.	Chemical Reactivity Classifications	45
	2.1. NFPA Reactivity Hazard Signal	45
	2.1.1. NFPA 704 Rating System for Overall Reactivity	46
	2.1.2. Definitions for Reactivity Signal Ratings	46
	2.1.3. Reactivity Hazards Not Identified by NFPA 704	48

2.1.4. NFPA Reactivity Ratings for Specific Chemicals	48
2.2. NPCA Hazardous Materials Identification System	49
2.3. Classifications of Organic Peroxides	49
2.3.1. SPI 19A Classification of Organic Peroxides	49
2.3.2. NFPA 43B Classification of Organic Peroxides	51
2.4. Classification of Materials That Form Peroxides	52
2.5. Classification of Water-Reactive Materials	55
2.5.1. Materials That React Violently with Water	55
2.5.2. Materials That React Slowly with Water	55
References	56

3.	Materials Assessment	57
	3.1. Prior Experience Review	59
	3.1.1. Common Knowledge	61
	3.1.2. Analogy	61
	3.1.3. Safety Data and Literature	61

3.2. Theoretical Evaluations	62
3.2.1. Unstable Atomic Groups	63
3.2.2. Oxygen Balance	66
3.2.3 Thermodynamics: Heat of Formation	70
3.2.4. Thermodynamics: Heats of Reaction and Self-Reaction	75
3.2.5. Thermodynamics: Equilibrium Considerations	77
3.2.6. CHETAH	79
3.2.7. Example Evaluation	82
3.3. Expert Determination	85
3.3.1. Expert Committees	86
3.3.2. Kinetics Determination Factors	86
3.4. Reactivity Screening Tests	88
3.4.1. Thermal Stability Screening Tests	90
3.4.2. Shock Sensitivity Screening	95
3.4.3. Pyrophoricity Screening	98
3.4.4. Water Reactivity Screening	98
3.4.5. Peroxide Formation Screening	99
3.4.6. Compatibility Screening	100
References	101

4.1. Identifying Potential Accident Scenarios 4.1.1. Process Hazard Analysis 4.1.2. Checklist of Potentially Hazardous Events 4.1.3. Chemical Interaction Matrix 4.1.4. Industry Experience 4.1.5. Local Site Experience 4.2. Severity Testing 2.1. Calorimetric Testing for Consequence Analysis 4.2.2. Self-Accelerating Decomposition Temperature 4.2.3. Isoperibolic Calorimetry 4.2.4. Assessment of Maximum Pressure and Temperature 4.3. Where to Find Methods for Estimating Immediate Consequences 4.3.1. Reactive Chemical Explosions

4. Consequence Analysis

1.5.1. Reactive Chemical Explosions	
4.3.2. Reactive Chemical Fires	121
4.3.3. Toxic Releases	121
4.4. Where to Find Methods for Estimating Immediate Impact	122
4.4.1. Explosion Effect Models	123
4.4.2. Thermal Effect Models	123
4.4.3. Toxic Gas Effect Models	125
4.4.4. Modeling Systems	125
4.4.5. Caveats	126
4.5. Applications of Consequence Analysis	126
4.5.1. Selection of Size, Quantity, and Location of Facilities	126

vii

135

4.5.2. Selection of Dedicated Safeguard Systems	127
4.5.3. Basis for Emergency Response Systems and Planning	127
4.5.4. Better Understanding of the Hazard and the Consequences	130
4.5.5. Significant Step toward a Well-Managed Operating Facility	130
References	

5. General Design Considerations

5.1. Summary of General Design Strategies	136
5.1.1. Reduce the Inherent Hazards	136
5.1.2. Build Reliable Safety Layers	136
5.1.3. Conduct In-Depth Reviews	137
5.1.4. Use Previous Experience	138
5.2. Compatibility	138
5.2.1. Identifying Potential Incompatibility Problems	138
5.2.2. Compatibility with Process Materials/Reagents	140
5.2.3. Compatibility with Impurities	141
5.2.4. Compatibility with Heat Transfer Fluids	142
5.2.5. Compatibility with Materials of Construction and Corrosion Products	142
5.2.6. Compatibility with Insulation	143
5.2.7. Compatibility with Fire-Extinguishing Agents	144
5.2.8. Compatibility with Other Materials	144
5.2.9. Other Compatibility-Related Practices	144
5.3. Storage Time and Shelf Life	145
5.3.1. Storage Time Limitations	145
5.3.2. Practices for Increasing Shelf Life	146
5.3.3. Handling and Disposal of Too-Old Material	148
5.4. Storage Quantity and Configuration	148
5.4.1. Determining Maximum Inventory	149
5.4.2. Storage Configurations	149
5.4.3. Top versus Bottom Discharge	150
5.4.4. Facility Siting	151
5.4.5. Restrictions on Container Shape or Configuration	152
5.4.6. Mixing and Recirculation	153
5.5. Air and Moisture Exclusion	153
5.5.1. Air Exclusion Practices	154
5.5.2. Moisture Exclusion Practices	155
5.6. Monitoring and Control	156
5.6.1. Oxygen Concentration Monitoring	156
5.6.2. Humidity/Moisture Content Monitoring	157
5.6.3. Pressure Monitoring	157
5.6.4. Temperature Monitoring	158
5.6.5. Temperature Control	158
5.7. Handling and Transfer	160
5.7.1. Manual Handling	161

5.7.2. Piping Specifications and Layout	162
5.7.3. Fittings and Connections	163
5.7.4. Pumps and Pump Seals	164
5.7.5. Valves	165
5.7.6. Drain Systems	166
5.7.7. Cleaning Equipment	166
5.7.8. Transfer Systems Operating and Maintenance Practices	166
5.8. Last-Resort Safety Features	167
5.8.1. Inhibitor Injection	168
5.8.2. Quench System	169
5.8.3. Dump System	169
5.8.4. Depressuring System	170
5.8.5. Emergency Relief Configuration	171
5.8.6. Emergency Relief Sizing Basis	172
5.8.7. Emergency Relief Headers	173
5.8.8. Emergency Relief Treatment Systems	174
5.8.9. Explosion Suppression	174
5.9. Passive Mitigation	174
5.9.1. Flow-Limiting Orifices	175
5.9.2. Fire-Resistant/Explosion-Resistant Construction	175
5.9.3. Weak Seams and Explosion Venting	175
5.9.4. Bunkers, Blast Walls and Barricades	176
5.9.5. Secondary Containment	176
5.9.6. Separation Distances	177
5.10. Detection, Warning and Isolation	177
5.10.1. Release Detection	177
5.10.2. Release Warning	178
5.10.3. Release Isolation	180
5.11. Fire Prevention and Protection	181
5.11.1. Ignition Source Control	182
5.11.2. Fireproofing and Insulation	182
5.11.3. Extinguishing Systems	183
5.12. Postrelease Mitigation	184
5.12.1. Release Countermeasures	184
5.12.2. Reactive Chemicals Personal Protective Equipment	186
5.12.3. Reactive Chemicals Emergency Response	187
5.13. Hazard Reviews	18/
5.13.3. Hazard Severity Categories	188
5.13.2. Reactive Chemicals Hazard Reviews	188
5.14. Codes and Standards	187
Keterences	190

205

6.	Process Safety Management of Reactive		
•••	Material Facilities	193	
	6.1 Accountability: Objectives and Goals	194	
	6.2. Process Knowledge and Documentation	194	
	6.3. Capital Project Review and Design Procedures	195	
	6.4. Process Risk Management	196	
	6.5. Management of Change	197	
	6.6. Process and Equipment Integrity	197	
	6.7. Human Factors	198	
	6.8. Personnel Training and Performance	198	
	6.9 Incident Investigation	199	
	(10 C 1 4 C 1 and Regulations	199	

6.11. Audits and Corrective Actions206.12. Enhancement of Process Safety Knowledge206.13. Other Elements Required by Regulatory Authorities20Bibliography20References20	6.10. Standards, Codes, and Regulations	199
6.12. Enhancement of Process Safety Knowledge206.13. Other Elements Required by Regulatory Authorities20Bibliography20References20	6.11. Audits and Corrective Actions	201
6.13. Other Elements Required by Regulatory Authorities20Bibliography20References20	6.12. Enhancement of Process Safety Knowledge	201
Bibliography 20 References 20	6.13. Other Elements Required by Regulatory Authorities	202
References 20	Bibliography	202
	References	203

7. Specific Design Considerations

7.1. Polymerizable Materials: Acrylic Acid	206
7.2. Polymerizable Materials: Styrene	211
7.3. Organic Peroxides	213
7.4. Organic Peroxides: Dibenzoyl Peroxide	219
7.5. Organic Peroxides: MEK Peroxide	223
7.6. Temperature-Sensitive Materials: Ethylene Oxide	227
7.7. Pyrophoric Materials: Aluminum Alkyls	229
7.8. Peroxide Formers: 1,3-Butadiene	235
7.9. Water-Reactive Materials: Sodium	240
7.10. Water-Reactive Materials: Chlorosulfonic Acid	244
References	249

APPENDIX A. Reactive Chemicals Literature Sources 257

Procedures for Hazard Evaluation and Testing	257
Accident and Loss Prevention	264
Data Sources and Compilations	268
Material Safety Data Sheets	270
Computerized On-line Databases	273
Educational and Training Materials	277

APPENDIX B. Industry Practice Survey Results	281
Glossary	351
Index	356

This page intentionally left blank

Preface

The Center for Chemical Process Safety (CCPS) was established in 1985 by the American Institute of Chemical Engineers (AIChE) for the express purpose of assisting industry in avoiding or mitigating catastrophic chemical accidents. To achieve this goal, CCPS has focused its work on four areas:

- Establishing and publishing the latest scientific, engineering, and management practices for prevention and mitigation of incidents involving toxic, flammable, and/or reactive material.
- Encouraging the use of such information by dissemination through publications, seminars, symposia, and continuing education programs for engineers.
- Advancing the state of the art in engineering practices and technical management through research in prevention and mitigation of catastrophic events.
- Developing and encouraging the use of undergraduate engineering curricula that will improve the safety, knowledge, and consciousness of engineers.

In 1988, Guidelines for Safe Storage and Handling of High Toxic Hazard Materials was published. A more recent work, Guidelines for Chemical Reactivity Evaluation and Applications to Process Design, gives details of current methods for evaluating chemical reactivity and the use of evaluation results in the engineering design of reactive chemical processes. This document, Guidelines for Safe Storage and Handling of Reactive Materials, builds on the preceding CCPS guidelines, but nevertheless is intended as a stand-alone resource for persons responsible for reactive chemical handling. Many books and articles have been written on chemical reactivity, and the intent of this book is not to give an exhaustive discussion of reactivity. Rather, the purpose of this book is to summarize current process industry practices for designing and operating facilities to safely store and handle reactive materials.