Crystal Growth Technology

HANS J. SCHEEL

SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland hans.scheel@bluewin.ch

TSUGUO FUKUDA

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan t-fukuda@tagen.tohoku.ac.jp

Crystal Growth Technology

Crystal Growth Technology

HANS J. SCHEEL

SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland hans.scheel@bluewin.ch

TSUGUO FUKUDA

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan t-fukuda@tagen.tohoku.ac.jp

Copyright © 2003

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Scheel, Hans J.
Crystal growth technology / Hans J. Scheel, Tsuguo Fukuda.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-49059-8 (pbk. : alk. paper)
1. Crystallization. 2. Crystal growth. I. Fukuda, Tsuguo. II. Title.

TP156.C7S34 2003 660'.284298 - dc21

2003050193

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49059-8

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

CONTENTS

Col	Contributors		xix
Pre	Preface		
PA TE	RT 1: G CHNOI	GENERAL ASPECTS OF CRYSTAL GROWTH	1
1	1 The Development of Crystal Growth Technology		
	H. J. S	Scheel	
		Abstract	3
	1.1	Historical Introduction	4
	1.2	The Development of Crystal-growth Methods	5
	1.3	Crystal-growth Technology Now	10
	1.4	Conclusion	13
		References	13
2	Thern	nodynamic Fundamentals of Phase Transitions Applied	
	to Cry	vstal Growth Processes	15
	P. Rua	lolph	
	2.1	Introduction	15
	2.2	Perfect and Real Structure of Grown Crystals	16
		2.2.1 The Principle of Gibbs Free Energy Minimization	16
		2.2.2 Equilibrium Point-defect Concentration	17
	2.3	Thermodynamics of Phase Equilibrium	19
		2.3.1 The Phase Transition	19
		2.3.2 Two-component Systems with Ideal and Real Mixing	21
		2.3.3 Phase Boundaries and Surfaces	23
	2.4	Thermodynamics of Topical Crystal Growth Problems	25
		2.4.1 Mixed Crystals with Nearly Ideal Solid Solution	25
		2.4.2 Systems with Compound Formation	28
		2.4.3 Compositional Modulation and Ordering in Mixed	
		Semiconductor Thin Films	34
	2.5	Deviation from Equilibrium	36
		2.5.1 Driving Force of Crystallization	36
		2.5.2 Growth Mode with Two-dimensional Nucleation	39
		References	40

3	Interfa	ace-kinetics-driven Facet Formation During Melt Growth	42
			43
	S. Brai	ndon, A. Virozub and Y. Liu	42
	2.1	Abstract	43
	3.1	Introduction	44
	3.2	2.2.1 Mathematical Exampletion	40
		3.2.1 Mathematical Formulation	40
	2.2	3.2.2 Numerical lechnique	51
	3.3	Results and Discussion	52
		3.3.1 Effect of Operating Parameters on Facetting	52
		3.3.2 Interaction between Welt Flow and Facet Formation	33
		3.3.3 Transparent Crystalline Phase	60
	2.4	3.3.4 Positioning of Facets along the Interface	61
	3.4	Conclusions	62
		Acknowledgments	64
		Note Added in Proof	65
		References	65
4	Theor	etical and Experimental Solutions of the Striation Problem	69
	H. J. S	cheel	
		Abstract	69
	4.1	Introduction	69
	4.2	Origin and Definitions of Striations	70
	4.3	Homogeneous Crystals with $k_{\rm eff} \rightarrow 1$	74
	4.4	Segregation Phenomena and Thermal Striations	76
	4.5	Growth of Striation–Free KTN Crystals	82
	4.6	Alternative Approaches to Reduce Striations	84
	4.7	Discussion	89
		References	89
5	High-1	resolution X-Ray Diffraction Techniques for Structural	
	Chara	cterization of Silicon and other Advanced Materials	93
	K. Lal		
	5.1	Introduction	93
	5.2	High-resolution X-Ray Diffraction Techniques	94
		5.2.1 Theoretical Background	94
		5.2.2 High-resolution X-Ray Diffraction Experiments: A	
		Five-crystal X-Ray Diffractometer	96
	5.3	Evaluation of Crystalline Perfection and Characterization	100
	<u> </u>	of Crystal Detects	100
	5.4	Accurate Determination of Crystallographic Orientation	104
	5.5	Measurement of Curvature or Bending of Single-crystal	100
	56	Waters Characterization of Process induced Defects in Semicor	108
	3.0	ductors: Implantation induced Denecis in Semicon-	110
		ductors. Implantation-mouced Damage	110

Contents

	5.7	Conclusions	112
		5.7.1 Acknowledgement	112
		References	112
6	Comn	utational Simulations of the Growth of Crystals from	
Ū	Liquid	ls	115
	A. Yech	kel and J. J. Derby	
	6.1	Introduction	115
	6.2	Transport Modeling in Bulk Crystal Growth	116
		6.2.1 Governing Equations	116
		6.2.2 Boundary Conditions	118
	6.3	Computational Issues	121
		6.3.1 Numerical Methods	121
		6.3.2 Software: Commercial versus Research, General	
		versus Specialty	122
	6.4	Examples of One-, Two-, and Three-dimensional Models	123
		6.4.1 Can we still Learn from a 1D Model?	123
		6.4.2 Is 2D Modeling Routine and Accurate?	125
		6.4.3 When are 3D Models Necessary?	129
	6.5	Summary and Outlook	135
		Acknowledgments	135
		References	136
7	Heat a	nd Mass Transfer under Magnetic Fields	139
7	Heat a K. Kak	and Mass Transfer under Magnetic Fields	139
7	Heat a K. Kak	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract	139 139
7	Heat a <i>K. Kak</i> 7.1	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction	139 139 139
7	Heat a K. Kak 7.1 7.2	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth	139 139 139 140
7	Heat a K. Kak 7.1 7.2 7.3	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling	139 139 139 140 141
7	Heat a K. Kak 7.1 7.2 7.3 7.4	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF)	139 139 139 140 141 143
7	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF)	139 139 139 140 141 143 147
7	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF)	139 139 140 141 143 147 150
7	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary	139 139 140 141 143 147 150 150
7	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment	139 139 140 141 143 147 150 150 151
7	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References	 139 139 139 140 141 143 147 150 150 151 152
8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics	 139 139 139 140 141 143 147 150 150 151 152
7 8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth	139 139 139 140 141 143 147 150 150 151 152
7 8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. L. P	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaey	 139 139 139 140 141 143 147 150 150 151 152 155
8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. I. P 8.1	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth <i>olezhaev</i> Introduction	 139 139 139 140 141 143 147 150 150 151 152 155 155
8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. I. P 8.1 8.2	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth <i>olezhaev</i> Introduction Technologically Important Hydrodynamics Processes	 139 139 139 140 141 143 147 150 150 151 152 155
8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. I. P 8.1 8.2	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth <i>olezhaev</i> Introduction Technologically Important Hydrodynamics Processes during Crystal Growth	 139 139 139 140 141 143 147 150 150 151 152 155 155 157
7 8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. I. P 8.1 8.2 8.3	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth <i>olezhaev</i> Introduction Technologically Important Hydrodynamics Processes during Crystal Growth Benchmark Problem	 139 139 139 140 141 143 147 150 150 151 152 155 157 158
8	Heat a K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H V. I. P 8.1 8.2 8.3 8.4	and Mass Transfer under Magnetic Fields <i>cimoto</i> Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth <i>olezhaev</i> Introduction Technologically Important Hydrodynamics Processes during Crystal Growth Benchmark Problem Hierarchy of the Models and Codes and Summary of	 139 139 139 140 141 143 147 150 150 151 152 155 157 158

vii

	8.5	Gravity-driven Convection Instability and Oscillations in	170
	06	Benchmark Configuration	172
	8.0	Industrial CoAs Crashraldri Crowth	172
		8.6.1 Axisymmetrical Approach: Nonlinear Coupling Fluid	1/5
		Flow and Control Possibilities	174
		8.6.2 Three Dimensional Analysis	174
	07	6.0.2 Three-Dimensional Analysis	1/0
	0.7		101
		Acknowledgments	102
		Kelelelices	162
PA	RT 2: S	ILICON	187
9	Influe	nce of Boron Addition on Oxygen Behavior in Silicon	400
	Melts		189
	K. Tere	ashima	
		Abstract	189
	9.1	Introduction	189
	9.2	Oxygen Behavior in Boron-doped Silicon Melts	190
		9.2.1 Oxygen Solubility in Silicon Melt	191
		9.2.2 Fused Quartz Dissolution Rate in Silicon Melts9.2.3 Evaporation from Free Surface of Boron-doped Sil-	196
		icon Melts in Fused-quartz Crucible	200
	9.3	Conclusion	203
		Acknowledgments	203
		References	204
10	Octah	edral Void Defects in Czochralski Silicon	205
	M. Itsı	ımi	
	10.1	Background	205
	10.2	Observation Methods	206
	10.3	Characterization	209
	10.4	Generation Mechanism	213
	10.5	Elimination	215
	10.6	Oxide Defect Generation	216
	10.7	Concluding Remarks	219
		References	222
11	The C	ontrol and Engineering of Intrinsic Point Defects in Sili-	
	con W	afers and Crystals	225
	R. Fal.	ster, V. V. Voronkov and P. Mutti	
		Abstract	225
	11.1	Introduction	225
		11.1.1 Vacancy-type Defects	226

Contents

12

	11.1.2	Silicon Self-interstitial-type Defects	226
	11.1.3	The Precipitation of Oxygen	226
11.2	The Cor	ntrol of the Agglomeration of Intrinsic Point Defects	
	during (Crystal Growth	227
	11.2.1	The v/G Rule for the Type of Grown-in Microdefects	227
	11.2.2	Alternative Views to the v/G Rule	228
	11.2.3	Void Reaction Control	229
	11.2.4	Perfect Silicon	230
11.3	The Co	ntrol of Oxygen Precipitation through the Engineer-	
	ing of	Vacancy Concentration in Silicon Wafers: Magic	
	Denude	d Zone TM Wafers	231
	11.3.1	'Tabula Rasa' Silicon and the Suppression of Oxy-	
		gen Precipitation in Low-Vacancy-Concentration	
		Material	231
	11.3.2	Material 'Switching' and Transfer Functions	233
	11.3.3	Comparison of Conventional and Vacancy-	
		Engineered Control of Oxygen Precipitation	233
	11.3.4	The Installation of Vacancy Concentration Profiles	
	11 0 5	in Thin Silicon Wafers	235
	11.3.5	Advantages of the Use of Vacancies to Control	• • • •
	1126	Oxygen Precipitation in Wafers	236
	11.3.6	The Mechanism of the Vacancy Effect on Oxygen	226
11 /	Canalus	Precipitation	236
11.4	Domente	sions Drawn Regarding the Intrinsic Point-Defect	
		Transmission and Combination of Crystal Growin	220
		Decombination Data	238
	11.4.1	Recombination Rate	238
	11.4.2	Self-interstitial Diffusivity	239
	11.4.3	Vacancy Diffusivity The Difference of Equilibrium Vacancy and Inter	239
	11.4.4	stitiel Concentrations	220
	11 / 5	Suitar Concentrations	239
	11.4.3	Critical a / C Datio	240
	11.4.0	Vision V/G Kallo	241
11.5	11.4.7 Unified	Schematic Pictures of Vacancy Control for Crystal	241
11.5	Growth	and Wafer Processing	212
	Acknow	and water ribecssing	242
	Deferen		240
	Kelelell		240
The F	rmation	of Defects and Crowth Interface Shapes in C7	
Silicon	71 mau01	To Derects and Orowin interface shapes in CL	251
			431
1. ADE			

	Abstract	251
12.1	Introduction	251
12.2	Experiments	254

ix

Contents

	12.3	Results	256
	12.4	Discussion	258
		12.4.1 Balance Equation	258
		12.4.2 Discussion of Voronkov's Relation	262
		12.4.3 Interface-shape Formation	263
	12.5	Conclusions	264
		References	264
13	Silicor	1 Crystal Growth for Photovoltaics	267
	T. F. C	Ziszek	
	13.1	Introduction	267
	13.2	Basic Concepts	268
		13.2.1 The Photovoltaic Effect	268
		13.2.2 Minority-carrier Lifetime, τ	269
		13.2.3 Light Absorption	271
	13.3	Silicon Source Materials	272
	13.4	Ingot Growth Methods and Wafering	275
		13.4.1 Single-crystal Growth	276
		13.4.2 Multicrystalline Growth	277
	13.5	Ribbon/Sheet Growth Methods	279
	13.6	Thin-Layer Growth on Substrates	283
	13.7	Comparison of Growth Methods	285
	13.8	Future Trends	285
		References	287
PAI	RT 3: C	COMPOUND SEMICONDUCTORS	291
14	Funda of Hig	mental and Technological Aspects of Czochralski Growth h-quality Semi-insulating GaAs Crystals	293
	P. Rud	olph and M. Jurisch	
	14.1	Introduction	293
		14.1.1 Historical Background	293
	14.2	14.1.2 The Importance of SI GaAs and its Performance Features and Fundamental Aspects of LEC Growth of SI	295
		GaAs Crystals	297
		14.2.1 The Principle of Modern LEC Technique14.2.2 Correlation between Heat Transfer, Thermomechan-	297
		ical Stress and Dislocation Density	300
		14.2.3 Dislocation Patterns	303
		14.2.4 Principles of Native-defect Control	305
		14.2.5 Carbon Control	310
	14.3	Modified Czochralski Technologies 14.3.1 Vapour-pressure-controlled Czochralski (VCz)	313
		Method	313

Con	tents		xi
		14.3.2 Fully-Encapsulated Czochralski (FEC) Growth	315
		14.3.3 Hotwall Czochralski (HWC) Technique	316
	14.4	Conclusions and Outlook	317
		Acknowledgement	318
		References	318
15	Growt gradie	h of III-V and II-VI Single Crystals by the Vertical- nt-freeze Method	323
	T. Asa	hi, K. Kainosho, K. Kohiro, A. Noda, K. Sato and O. Oda	
	15.1	Introduction	323
	15.2	InP Crystal Growth by the VGF Method	324
	15.3	GaAs Crystal Growth by the VGF Method	331
		15.3.1 Growth of Undoped GaAs	331
		15.3.2 Growth of Si-doped GaAs Crystals	335
		15.3.3 Growth of Zn-doped Crystals	336
	15.4	CdTe Crystal Growth by the VGF Method without Seed	
	15.5	Crystals ZnTe Crystal Growth by VGF without Seed Crystals using	337
		the High-pressure Furnace	344
	15.6	Summary	346
		References	346
16	Growt	h Technology of III-V Single Crystals for Production	349
	Т. Кам	vase, M. Tatsumi and Y. Nishida	• •
	16.1	Introduction	349
	16.2	Properties of III-V Materials	349
	16.3	Growth Technology of III-V Materials	350
		16.3.1 HB and HGF Techniques	351
		16.3.2 LEC Technique	352
		16.3.3 Vapor-pressure-controlled Czochralski (VCZ)	
		Technique	353
		16.3.4 VB and VGF Techniques	355
	16.4	Applications and Requirements for GaAs Single	
		Crystals	356
	16.5	Growth of Large Single Crystals	357
	16.6	Growth of Low-Dislocation-Density GaAs Crystal	359
	16.7	Control of Quality and Yield of GaAs Crystals	361
		16.7.1 Twinning	362
		16.7.2 Lineage	364
	16.8	Control of the Electronic Quality of GaAs	365
		16.8.1 Absolute Value of Resistivity	365
		16.8.2 Uniformity of Microscopic Resistivity	366
	16.9	Trend of Growth Methods for GaAs	367
	16.10	InP	367

Contents

	16.11	Summary	369
		References	369
17	CdTe	and CdZnTe Growth	373
	R. Trił	poulet	
	17.1	Introduction	373
	17.2	Phase Equilibria in the Cd–Te System	373
	17.3	Crystal Growth versus Cd– le Chemical Bond	277
	17 4	Characteristics	3//
	17.4	Crystal Growth Modeling and Interface-shape	301
	17.5	Determination	388
	17.6	CdZnTe Properties	393
	17.0	17.6.1 Properties at Macroscopic and Microscopic Scale	393
		17.6.2 Segregation	394
		17.6.3 Industrial Growth	396
	17.7	Properties and Defects of the Crystals	396
	17.8	Purity. Contamination. Doping	399
	17.9	Conclusions and Perspectives	400
		References	400
PA	RT 4• С	DVIDES AND HALIDES	407
			-107
18	Phase	diagram Study for Growing Electro-optic Single	400
	Crysta	lls	409
	S. Miy	azawa	400
	10.1	ADSTRACT	409
	18.1	Introduction Disease relation Study of LiTeO	409
	18.2	Phase-relation Study of LifaO ₃	410
		18.2.1 Preminary Studies by A-Ray Diffractometry	411
		Composition	412
		1823 Ontical Quality of the Congruent LiTaO ₂	415
		18.2.4 Conclusion	417
	18.3	Phase-relation Study of Bi ₁₂ TiO ₂₀	418
		18.3.1 Re-examination of Phase Diagram	419
		18.3.2 Lattice-constant Variations of the $Bi_{12}TiO_{20}$	-
		Phase	419
		18.3.3 New Phase Diagram	422
		18.3.4 Growth of Long Single Crystals	424
		18.3.5 Conclusion	426
	18.4	Summary	426
		Acknowledgment	427
		References	427

Con	tents		xiii
19	Melt (and N	Growth of Oxide Crystals for SAW, Piezoelectric, onlinear-Optical Applications	429
	A. Shii	Introduction	420
	19.1	LiTeO for SAW Devices	429
	19.2	Linao3 101 SAW Devices	431
	19.5	Nonlinear-Ontical Crystals for Blue SHG	439
	19.4	Summary	439
	17.5	References	443
20	Growt	th of Nonlinear-optical Crystals for Laser-frequency	
	Conve	rsion	445
	T. Sase	aki, Y. Mori and M. Yoshimura	
	20.1	Introduction	445
	20.2	Crystals Grown from Low-temperature Solutions 20.2.1 Growth of Large KDP (Potassium Dihydrogen	445
		Phosphate) Crystals of Improved Laser-damage	445
		20.2.2 Growth and Characterization of Organic NLO	445
	20.2	Crystals	448
	20.3	20.3.1 Growth and Optical Characterization of KTP (Potassium Titanyl Phosphate) Crystal	451
		[12–14]	451
		20.3.2 Growth and NLO Properties of Cesium Lithium	
		Borate CLBO	454
	20.4	Conclusions	458
		References	458
21	Growt	th of Zirconia Crystals by Skull-Melting Technique	461
	E. E. L	Lomonova and V. V. Osiko	161
	$\frac{21.1}{21.2}$	Physical and Technical Aspects of the Direct Radio-	401
	21.2	frequency Melting in a Cold Container (Skull Melting)	462
	21.3	RF-furnaces for Zirconia Melting and Crystallization Phase Relations in Zirconia Solid Solutions, V stabilized	467
	21.4	(VCZ) and Partially Stabilized (PSZ) Zirconia	470
	21.5	Growth Processes of VCZ and PSZ Crystals	470
	21.5	Structure, Defects, and Properties of YCZ and PSZ	472
	01 -	Crystals	475
	21.7	Applications of YCZ and PSZ Crystals	479
	21.8	Conclusion	482
		Acknowledgments	484
		References	484