Implementing Service Quality in IP Networks

Vilho Räisänen

Nokia Networks OY, Finland

Implementing Service Quality in IP Networks

Implementing Service Quality in IP Networks

Vilho Räisänen

Nokia Networks OY, Finland

Copyright © 2003

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Räisänen, Vilho.
Implementing service quality in IP networks / Vilho Räisänen.
p. cm.
Includes bibliographical references and index.
ISBN 0-470-84793-X (alk. paper)
1. Computer networks – Quality control. 2. Telecommunication – Quality control. 3.
TCP/IP (Computer network protocol) I. Title.

TK5105.5 .R345 2003 044.6'6 – dc21

2002191078

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84793-X

Typeset in 11/13pt Palatino by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface	xi
Acknowledgements	
List of Figures	
List of Tables	xxi
Abbreviations	xxiii
1 Drivers for the Adoption of Multi-service Networks	1
1.1 Customer Perspective	2
1.2 Network Operator Perspective	4
1.3 Service Provider Perspective	6
1.4 Summary	7
2 Service Quality Requirements	9
2.1 Services on the Internet	12
2.2 Definition of a Service	16
2.2.1 End user service versus provider-level services	18
2.2.2 About service instances and service events	20
2.2.3 Reference model for this section	22
2.3 Service Quality Estimation	23
2.3.1 Measures of end user experienced service quality	24
2.3.2 Recency effect	26
2.3.3 Psychological factors	27
2.3.4 Summary	28
2.4 Service Implementation Aspects	28
2.4.1 Choice of transport protocols	28
2.4.2 Throughput adaptability of services	29
2.5 Inherent Service Quality Requirements	30
2.5.1 Service quality characterizations in standards	30
2.5.2 Availability of service	33

Implementing Service Quality in IP Networks Vilho Räisänen

^{© 2003} John Wiley & Sons, Ltd ISBN: 0-470-84793-X

	2.5.3 Continuity of service	34
	2.5.4 Delivery time end-to-end	35
	2.5.5 Throughput	38
	2.5.6 Support for continuous service data unit transmission	39
	2.5.7 Reliability of service delivery	42
	2.5.8 Support for variable transfer rate	44
	2.5.9 Generic considerations related to service requirements	45
	2.6 Service Quality Descriptors	47
	2.6.1 Measurement-based determination of traffic profile	49
	2.7 Summary	50
3	Network Mechanisms for Multi-service Quality Support	53
	3.1 Introduction to Network Quality Support	54
	3.2 Policing of Traffic at Ingress	58
	3.3 About Layers	61
	3.4 Types of Network Support for Service Quality	62
	3.4.1 Capacity reservation	64
	3.4.2 Differentiated treatment	65
	3.4.3 Differentiation of service quality instantiation	67
	3.4.4 Summary of generic network service quality support	
	mechanisms	68
	3.5 Service Support in ATM	69
	3.5.1 ATM service models	70
	3.5.2 Summary of ATM service support	70
	3.6 Service Support Models in Internet Protocol	71
	3.6.1 Best effort service model	72
	3.6.2 Controlled-load service support	74
	3.6.3 Guaranteed QoS support	75
	3.6.4 RSVP	76
	3.6.5 Statistical QoS: DiffServ model	77
	3.6.5.1 EF PHB	79 81
	3.6.5.2 AF PHB group 3.6.5.3 Other PHBs	82
	3.6.5.4 Functions of a DiffServ router	82
	3.6.5.5 Summary of DiffServ	83
	3.6.6 Summary of IP QoS service models	83
	3.7 Routing in IP Networks	85
	3.7.1 On addressing	86
	3.7.2 IP routing protocol-based methods	87
	3.7.3 ATM overlays	88
	3.7.4 Lower layer tunnels: MPLS	89
	3.8 Link Layer Issues	90
	3.8.1 Performance	92
	3.8.2 A note on scheduling	93
	3.9 Summary	94

4 Traffic Engineering for Multi-service IP Networks	97
4.1 Traffic Engineering	98
4.1.1 Context of traffic engineering	100
4.1.2 The traffic engineering process	102
4.1.3 Obtaining performance data from the network and	
analysing it	104
4.1.3.1 Traffic aggregate performance measurements	105
4.1.3.2 Obtaining data relevant for routing control	110
4.1.4 Performance enhancement	113
4.1.5 Scope of network optimization	116
4.2 IP Routing Control and Traffic Engineering	117
4.2.1 Optimizing routing based on service quality	
characteristics	119
4.2.2 Traffic engineering using MPLS	120
4.2.2.1 DiffServ over MPLS	121
4.2.3 Traffic engineering using IP routing protocols	123
4.2.4 Summary	124
4.3 Configuration	125
4.3.1 Policy-based management	126
4.3.2 Policy-based management of DiffServ	129
4.3.2.1 Case study of policy-based management of	
DiffServ	130
4.4 Summary	132
5 Mapping Service Requirements to Network Resources	133
5.1 Scope of this Chapter	135
5.2 ETSI EP TIPHON Reference Model	137
5.2.1 Architecture	137
5.2.2 QoS model	140
5.2.3 Summary	141
5.3 QBONE	142
5.3.1 Service support models	143
5.3.2 Summary	144
5.4 3GPP QoS Model	145
5.4.1 QoS model	146
5.4.2 Summary	148
5.5 Other Models	148
5.6 Utility-based Allocation of Resources	149
5.6.1 Summary	152
5.7 Generic Resource Allocation Framework	152
5.7.1 Signalling	154
5.7.2 Mapping of services onto network resources	156
5.7.3 Network quality support configuration	
for DiffServ	160
5.7.4 End-to-end service quality budgets	163

5.7.4.1 Delay	164
5.7.4.2 Delay variation	168
5.7.4.3 Packet loss rate	171
5.7.4.4 Packet loss correlation	172
5.7.4.5 Throughput	173
5.7.5 Optimization of resource allocation	174
5.8 Summary	176
6 Service Level Management Techniques	179
6.1 Models for Service Level Management	179
6.1.1 Areas of service level management	180
6.1.2 Layers of service level management	181
6.1.3 Models for managed data	183
6.2 Service Planning and Creation Process	184
6.2.1 Interests of the customer	184
6.2.2 Network operator viewpoint	187
6.2.3 Service definition	188
6.2.4 Reporting	190
6.3 Service Level Agreements	191
6.3.1 SLA and DiffServ	193
6.3.2 SLA contents	196
6.3.3 End user SLAs	197
6.4 End-to-end Services	198
6.4.1 Assumptions about connection endpoints	200
6.4.2 Assumptions about per-domain service management	204
6.4.3 Requirements for end-to-end service management	206
6.5 Service Brokers and Charging	207
6.6 Summary	209
7 Measurements	211
7.1 Traffic Characterization	213
7.2 Network Monitoring	216
7.2.1 Troubleshooting measurements for services	217
7.3 Traffic Control	219
7.4 Definition of Measured Characteristics 7.5 Sources of Measurement Data	220 222
7.5 Sources of Measurement Data 7.5.1 Measurement interfaces	222
7.5.2 Measured characteristics	222
7.6 Measurement Methods	225
7.6.1 Obtaining performance data from network elements	225
7.6.2 Monitoring a link	223
7.6.3 Monitoring a route or node pair	228
7.7 Traffic Engineering Measurement Infrastructure	230
7.7.1 Measuring entity	230
7.7.2 Interface to measuring entity	230
7.7.3 Measurement control and analysis function	232
7.8 Internet Service Quality Measurement Architectures	235

7.8.1 QBone measurement architecture	235
7.8.1.1 Discussion	241
7.8.2 Nokia Research Center measurement architecture	
demonstrator	241
7.8.2.1 Discussion	247
7.9 Summary	248
8 Mechanisms for Dynamic Service Quality Control	251
8.1 Previous Studies	254
8.1.1 Two-bit DiffServ architecture	255
8.1.2 Bandwidth broker in QBone architecture	256
8.1.2.1 Phase 0 Bandwidth Broker	259
8.1.2.2 Phase 1 Bandwidth Broker	259
8.1.3 QoS Agents	261
8.2 Generic Model	263
8.2.1 Service quality support instantiation control	265
8.2.1.1 Signalling interface	266
8.2.1.2 Internal bandwidth broker operation	267
8.2.2 Domain control	268 269
8.2.2.1 Link to traffic engineering 8.2.2.2 Means of maintaining information about	209
resource availability	270
8.2.3 Inter-domain signalling	270
8.2.4 Link to service admission control	273
8.3 Summary	274
9 Case Study: Service Quality Support in an IP-based Cellular RAN	275
9.1 Motivation for Using IP-based Transport in Cellular RAN	276
9.2 IP RAN Transport Architecture	279
9.2.1 PLMN transport architecture	279
9.2.2 IP RAN transport architecture	281
9.2.3 Handover traffic	282
9.2.4 Service mapping in IP RAN	283
9.3 Traffic Engineering in All-IP RAN	285
9.3.1 Capacity planning	286
9.3.2 Capacity management	289
9.3.3 Traffic management	291
9.4 Enabling Technologies for Traffic Engineering in IP RAN	292
9.4.1 Policy-based management	292
9.4.2 Measurements	294
9.5 Inter-operation with IP-based Backbones and Roaming Networks	295
9.6 Summary	296
10 Conclusion	299
10.1 IP as the Convergence Network	300
10.2 DiffServ	301
10.2.1 Complementary technologies for DiffServ	302

10.3 Service Level Management 10.4 Traffic Engineering 10.5 Potential Future Development Directions	303 304 305
References	307
Index	323

Preface

Development of packet-switched data communication networking technologies has been rapid in recent years, a phenomenon made possible by the open standardization process and the potential new territories for intellectual property creation. As a consequence, new ways of creating services have been devised, bringing more flexibility as compared to traditional telecommunications schemes. Such possibilities bring certain consequences with them – since services as such are no longer necessarily standardized and can be created rapidly, tailoring them to different access technologies is less feasible. New service creation models also allow for the existence of sole service providers making use of separate network transport operators' facilities. Interworking of different players of end-to-end service delivery requires advanced Service Level Agreement (SLA) handling capabilities between the parties involved.

This brings us to another major theme of this book, namely that of building a platform for converged service access. Internet Protocol (IP) has emerged as a tried-and-tested unifying endto-end communication layer that can be run over multiple link layer technologies. Subsequently, using IP networks as a basis for providing end-to-end services makes perfect sense. The challenge to present-day IP networks comes from advanced realtime services such as streaming and voice/video conferencing, which are demanding applications from the viewpoint of network technology. This book addresses the service quality support technologies needed to deliver different types of content over IP network.

The economic environment of network operators has changed in the past years, becoming a very competitive business area. Price

Implementing Service Quality in IP Networks Vilho Räisänen

^{© 2003} John Wiley & Sons, Ltd ISBN: 0-470-84793-X

competition among players is at worst fierce, leading to the target of reduced operating costs for production networks. At the same time, the network operator must be able to provide service quality support to new services with as short time-to-market delays as possible. This situation calls for advanced management techniques and models for managing the resources of the multi-service network as effectively as possible.

A set of technologies and techniques known as traffic engineering addresses this need, providing for processes and frameworks to accommodate performance management of a network. The technologies belonging to this area, including measurements, multiprotocol label switching, and routing control in general, complement the capabilities of the IP protocol suite. The new, open Internet standardization process defines effective and scalable means of configuring the novel protocols complementing IP as the building blocks of multi-service networks. An example of such endeavours is the policy-based management work, bringing automated network configuration and management while at the same time raising the abstraction level of management.

In the chapters that follow, the steps needed to be taken to create and manage services in a multi-service IP network are presented. The vision of multi-service, multi-access networks with flexible service creation is presented first. A framework is developed for describing service quality, and the generic steps of service creation to service level specification are covered. The protocol tools available for managing service quality in IP environment are described within a service support framework. The managed technologies considered in this book include Internet Protocol versions 4 and 6 and Differentiated Services (DiffServ). The statistical service quality support model of DiffServ is compared with Integrated Services (IntServ) and Asynchronous Transfer Mode (ATM). Advanced IP service quality management techniques such as Multi-Protocol Label Switching (MPLS) and policy-based management are covered. Finally, the role of measurements and Service Level Agreements (SLAs) within the framework is described, and novel ideas such as the use of bandwidth broker and utility-based allocation of resources are discussed.

The approach of this book could perhaps be best described as a system level solution viewpoint, not going very deep into individual technologies while attempting to provide an overview of the relevant technologies.

This book represents the author's attempt to best capture the multi-faceted area of service quality in IP environment of today. Due to commercial factors and novel innovations, the reader is strongly encouraged to take heed of J.W. Goethe's advice:

Gray, my friend, is all theory;

Green only the tree of life.

ORGANIZATION OF MATERIAL IN THIS BOOK

Chapter 1 describes the technological and business scenario for multi-service networks. Chapter 2 describes the service quality requirements of IP service types in the network. Chapter 3 describes service quality support mechanisms that can be used in an IP-based access or transit network. Chapter 4 describes how traffic engineering processes can be used in optimizing the performance of a multi-service IP network domain, and technologies that can be used by policy management. Chapter 5 describes how services can be mapped to network resources in an IP domain as a part of an end-to-end service quality support chain. Chapter 6 describes technologies for service quality management and service level agreements (SLAs). Chapter 7 describes measurement technologies that can be used by service management and traffic engineering processes. Chapter 8 describes means of managing dynamic service quality within a DiffServ domain, and between Internet domains in general. Chapter 9 describes the implementation of service quality in IP RAN as a case study of the technologies discussed in the book. Chapter 10 summarizes the central themes of the book, and discusses potential emerging technologies relevant to the topic of the book.

Major interdependencies between chapters with respect to each other are illustrated by the matrix below.