


This page intentionally left blank 



‘‘This book is much more than a wake-up call. It is also an eye-opener. Even
for those who are already awake to the problems of Web server security, it is

a serious guide for what to do and what not to do.’’

Peter G. Neumann, risks.org
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Foreword

There has been a rude awakening for the IT industry in the last few years. For
nearly a decade corporations have been told by the media and consultants that
they needed firewalls, intrusion detection systems and network scanning tools
to stop the barrage of cyber attacks that we all read about daily. Hackers
are stealing credit cards, booking flights to exotic locations for free and
downloading personal information about the latest politicians’ affair with an
actress. We have all seen the stories and those of us with an inquisitive mind
have all wondered how it really happens.

As the information security market grew into a vast commercial machine
pushing network and operating system security technology and processes as
the silver bullet to cure all ills, the IT industry itself grew in a new direction.
Business leaders and marketing managers discovered that the lowest common
denominator to any user (or potential user) is the web browser, and quite
frankly why in the world wouldn’t they want to appeal to all the possible
clients out there? Why would you want to restrict the possibility of someone
signing up for your service? Web enabling applications and company data
was not just a trend, it has been a phenomena. Today there are web interfaces
to almost all major applications from development source code systems to
human resources payroll systems and sales tracking databases. When we
browse the Web and the local weather is displayed so conveniently in the
side-menu, it’s a web application that put it there. When we check our online
bank balance, it’s a system of complex web applications that compute and
display the balance.

Creating these vast complex pieces of technology is no trivial task. From a
technology stance, Microsoft and Sun are leading the charge with platforms
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and supporting languages that provide flexible and extensible bases from
which to build. With flexibility comes choice, and whilst it is true that these
platforms can provide excellent security functionality, the security level is a
choice of the designer and developer. All of the platforms on offer today can
equally create secure and insecure applications, and as with many things in
life, the devil is in the details. When building a web application the details are
almost exclusively the responsibility of the developer.

This book takes a unique and highly effective approach to educating the
people that can effect a change by addressing the people who are actually
responsible for writing code; the developers themselves. It is written by a
developer for developers, which means it speaks the developer lingo and
explains issues in a way that as a developer you will understand. By taking a
pragmatic approach to the issue, the author walks you, the reader, through
an overview of the issues and then delves into the devilish details supporting
issues with examples and real life scenarios that are both easy to understand
and easy to realize in your own code.

This book is a serious must have for all developers who are building web
sites. I know you will enjoy it as much as I did.

Mark Curphey

Mark Curphey has a Masters degree in Information Security and runs the Open Web Application

Security Project. He moderates the sister security mailing list to Bugtraq called webappsec that

specializes in web application security. He is a former Director of Information Security for Charles

Schwab, consulting manager for Internet security Systems and veteran of more banks and consulting

clients than he cares to remember.
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Introduction

This book is kind of weird. It’s about the security of a web site, but it hardly
mentions firewalls. It’s about the security of information, but it says very little
about encryption. So what’s this book all about? It describes a small, and
often neglected, piece of the web site security picture: Program code security.

Many people think that a good firewall, encrypted communication and
staying up to date on software patches is all that is needed to make a web
site secure. They’re wrong. Many of today’s web sites contain program code
that make them dynamic. Code written using tools such as Java, PHP, Perl,
ASP/VBScript, Zope, ColdFusion, and many more. Far too often, this code is
written by programmers who seem to think that security is handled by the
administrators. The effect is that an enormous number of dynamic web sites
have logical holes in them that make them vulnerable to all kinds of nasty
attacks. Even with both firewall and encryption in place.

Current programmer education tends to see security as off topic. Something
for the administrators, or for some elite of security specialists. We learn how
to program. Period. More specifically, to make programs that please the
customers by offering the requested functionality. Some years ago, that would
probably suffice. Back then, programs were internal to organizations. Every
person with access to our program wanted it to operate correctly, so that they
could do their day to day job.

In the age of the Web, however, most of us get to create programs that are
available to the entire world. Legitimate users still just want the program to
do its job for them. Unfortunately, our program is also available to lots of
people who find amusement in making programs break. Or better, making
them do things they were not supposed to do.


