


This page intentionally left blank 



‘‘This book is much more than a wake-up call. It is also an eye-opener. Even
for those who are already awake to the problems of Web server security, it is

a serious guide for what to do and what not to do.’’

Peter G. Neumann, risks.org



This page intentionally left blank 



Innocent Code
A Security Wake-Up Call for Web Programmers

Sverre H. Huseby



Copyright c© 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system for
exclusive use by the purchase of the publication. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Huseby, Sverre H.
Innocent code : a security wake-up call for Web programmers / Sverre

H. Huseby.
p. cm.

”A Wiley-Interscience publication.”
ISBN 0-470-85744-7

1. Computer security. 2. Computer networks--Security measures. 3.
World Wide Web--Security measures. I. Title.

QA76.9.A25H88 2003
005.8--dc22

2003015774

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85744-7

Typeset in 10.5/13pt Sabon by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wileyeurope.com


Contents

Foreword ix

Acknowledgments xi

Introduction xiii
0.1 The Rules xiv
0.2 The Examples xv
0.3 The Chapters xvi
0.4 What is Not in This Book? xvii
0.5 A Note from the Author xviii
0.6 Feedback xviii

1 The Basics 1
1.1 HTTP 1

1.1.1 Requests and responses 2
1.1.2 The Referer header 6
1.1.3 Caching 7
1.1.4 Cookies 9

1.2 Sessions 10
1.2.1 Session hijacking 11

1.3 HTTPS 15
1.4 Summary 19
1.5 Do You Want to Know More? 19

2 Passing Data to Subsystems 21
2.1 SQL Injection 22

2.1.1 Examples, examples and then some 22
2.1.2 Using error messages to fetch information 30



vi Contents

2.1.3 Avoiding SQL injection 33
2.2 Shell Command Injection 39

2.2.1 Examples 40
2.2.2 Avoiding shell command injection 42

2.3 Talking to Programs Written in C/C++ 48
2.3.1 Example 48

2.4 The Evil Eval 50
2.5 Solving Metacharacter Problems 50

2.5.1 Multi-level interpretation 52
2.5.2 Architecture 53
2.5.3 Defense in depth 54

2.6 Summary 55

3 User Input 57
3.1 What is Input Anyway? 57

3.1.1 The invisible security barrier 62
3.1.2 Language peculiarities: totally unexpected input 65

3.2 Validating Input 67
3.2.1 Whitelisting vs. blacklisting 71

3.3 Handling Invalid Input 74
3.3.1 Logging 76

3.4 The Dangers of Client-side Validation 79
3.5 Authorization Problems 82

3.5.1 Indirect access to data 83
3.5.2 Passing too much to the client 86
3.5.3 Missing authorization tests 90
3.5.4 Authorization by obscurity 91

3.6 Protecting server-generated input 92
3.7 Summary 95

4 Output Handling: The Cross-site Scripting Problem 97
4.1 Examples 98

4.1.1 Session hijacking 99
4.1.2 Text modification 103
4.1.3 Socially engineered Cross-site Scripting 104
4.1.4 Theft of passwords 108
4.1.5 Too short for scripts? 109

4.2 The Problem 111
4.3 The Solution 112

4.3.1 HTML encoding 113
4.3.2 Selective tag filtering 114
4.3.3 Program design 120

4.4 Browser Character Sets 121
4.5 Summary 122
4.6 Do You Want to Know More? 123

5 Web Trojans 125
5.1 Examples 125
5.2 The Problem 130



Contents vii

5.3 A Solution 131
5.4 Summary 133

6 Passwords and Other Secrets 135
6.1 Crypto-Stuff 135

6.1.1 Symmetric encryption 137
6.1.2 Asymmetric encryption 137
6.1.3 Message digests 139
6.1.4 Digital signatures 140
6.1.5 Public key certificates 141

6.2 Password-based Authentication 142
6.2.1 On clear-text passwords 142
6.2.2 Lost passwords 144
6.2.3 Cracking hashed passwords 146
6.2.4 Remember me? 150

6.3 Secret Identifiers 151
6.4 Secret Leakage 153

6.4.1 GET request leakage 154
6.4.2 Missing encryption 156

6.5 Availability of Server-side Code 157
6.5.1 Insecure file names 157
6.5.2 System software bugs 158

6.6 Summary 160
6.7 Do You Want to Know More? 161

7 Enemies of Secure Code 163
7.1 Ignorance 163
7.2 Mess 165
7.3 Deadlines 171
7.4 Salesmen 173
7.5 Closing Remarks 174
7.6 Do You Want to Know More? 174

8 Summary of Rules for Secure Coding 177

Appendix A Bugs in the Web Server 187

Appendix B Packet Sniffing 193
B.1 Teach Yourself TCP/IP in Four Minutes 193
B.2 Sniffing the Packets 195
B.3 Man-In-The-Middle Attacks 196
B.4 MITM with HTTPS 197
B.5 Summary 198
B.6 Do You Want to Know More? 198

Appendix C Sending HTML Formatted E-mails with a Forged
Sender Address 199



viii Contents

Appendix D More Information 201
D.1 Mailing Lists 201
D.2 OWASP 203

Acronyms 205

References 209

Index 221



Foreword

There has been a rude awakening for the IT industry in the last few years. For
nearly a decade corporations have been told by the media and consultants that
they needed firewalls, intrusion detection systems and network scanning tools
to stop the barrage of cyber attacks that we all read about daily. Hackers
are stealing credit cards, booking flights to exotic locations for free and
downloading personal information about the latest politicians’ affair with an
actress. We have all seen the stories and those of us with an inquisitive mind
have all wondered how it really happens.

As the information security market grew into a vast commercial machine
pushing network and operating system security technology and processes as
the silver bullet to cure all ills, the IT industry itself grew in a new direction.
Business leaders and marketing managers discovered that the lowest common
denominator to any user (or potential user) is the web browser, and quite
frankly why in the world wouldn’t they want to appeal to all the possible
clients out there? Why would you want to restrict the possibility of someone
signing up for your service? Web enabling applications and company data
was not just a trend, it has been a phenomena. Today there are web interfaces
to almost all major applications from development source code systems to
human resources payroll systems and sales tracking databases. When we
browse the Web and the local weather is displayed so conveniently in the
side-menu, it’s a web application that put it there. When we check our online
bank balance, it’s a system of complex web applications that compute and
display the balance.

Creating these vast complex pieces of technology is no trivial task. From a
technology stance, Microsoft and Sun are leading the charge with platforms



x Foreword

and supporting languages that provide flexible and extensible bases from
which to build. With flexibility comes choice, and whilst it is true that these
platforms can provide excellent security functionality, the security level is a
choice of the designer and developer. All of the platforms on offer today can
equally create secure and insecure applications, and as with many things in
life, the devil is in the details. When building a web application the details are
almost exclusively the responsibility of the developer.

This book takes a unique and highly effective approach to educating the
people that can effect a change by addressing the people who are actually
responsible for writing code; the developers themselves. It is written by a
developer for developers, which means it speaks the developer lingo and
explains issues in a way that as a developer you will understand. By taking a
pragmatic approach to the issue, the author walks you, the reader, through
an overview of the issues and then delves into the devilish details supporting
issues with examples and real life scenarios that are both easy to understand
and easy to realize in your own code.

This book is a serious must have for all developers who are building web
sites. I know you will enjoy it as much as I did.

Mark Curphey

Mark Curphey has a Masters degree in Information Security and runs the Open Web Application

Security Project. He moderates the sister security mailing list to Bugtraq called webappsec that

specializes in web application security. He is a former Director of Information Security for Charles

Schwab, consulting manager for Internet security Systems and veteran of more banks and consulting

clients than he cares to remember.



Acknowledgments

This book would have been less readable, less consistent, and more filled with
bugs if it wasn’t for a handful of smart friends and colleagues that helped me
pinpoint troublesome areas along the way. All I did was to promise them a
beer and honorable mention in this section, and they started spending hours
and days (and some even weeks) helping me out.

First of all, Jan Ingvoldstad has spent an amazing amount of time reading,
commenting, and suggesting improvements to almost every paragraph.

In addition, the following people have spent quite some time reading
and commenting on early versions of the text: Lars Preben S. Arnesen, Erik
Assum, Jon S. Bratseth, Per Otto Christensen, Per Kristian Gjermshus, Morten
Grimnes, Leif John Korshavn, Rune Offerdal, Frode Sandnes, Frank Solem,
Rune Steinberg, Kent Vilhelmsen and Sigmund Øy.

Kjetil Valstadsve made me rethink some sections, and Tore Anderson, Kjetil
Barvik, Maja Bratseth, Lasse G. Dahl, Dennis Groves, Jan Kvile, Filip van
Laenen, Glenn T. Lines, Kevin Spett, Thorkild Stray and Bjørn Stærk gave
valuable feedback and ideas to parts of the text.

Please note that none of the people on this list of gratitude should be blamed
for any errors or omissions whatsoever in this book. I was stupid enough not
to follow all the advice given to me by these kind and experienced people,
so I’m the only one to blame if you feel like blaming anyone for anything
(concerning this book, that is).

I would also like to thank my editor Gaynor Redvers-Mutton and her friends
at Wiley for believing in my book proposal even though most of their reviewers
wanted to turn the book into a traditional infrastructure security thing. :-)



xii Acknowledgments

As I find book dedications quite meaningless, I’d rather say ‘‘hi’’ to Markus
and Matilde in this section. Thanks for giving me good memories while you
keep me busy throughout the days.

And last, but certainly not least, I bow deeply for my beloved wife, Hanne
S. Finstad. She always makes me feel safe and free of worries. Without that
kind of support (which I’m not sure she knows she’s giving me), I would
never have been able to write a book (cliche, but true anyway). She’s the most
creative, intelligent, beautiful, . . . oh, sorry. I’ll tell her face to face instead.

S. H. H.



Introduction

This book is kind of weird. It’s about the security of a web site, but it hardly
mentions firewalls. It’s about the security of information, but it says very little
about encryption. So what’s this book all about? It describes a small, and
often neglected, piece of the web site security picture: Program code security.

Many people think that a good firewall, encrypted communication and
staying up to date on software patches is all that is needed to make a web
site secure. They’re wrong. Many of today’s web sites contain program code
that make them dynamic. Code written using tools such as Java, PHP, Perl,
ASP/VBScript, Zope, ColdFusion, and many more. Far too often, this code is
written by programmers who seem to think that security is handled by the
administrators. The effect is that an enormous number of dynamic web sites
have logical holes in them that make them vulnerable to all kinds of nasty
attacks. Even with both firewall and encryption in place.

Current programmer education tends to see security as off topic. Something
for the administrators, or for some elite of security specialists. We learn how
to program. Period. More specifically, to make programs that please the
customers by offering the requested functionality. Some years ago, that would
probably suffice. Back then, programs were internal to organizations. Every
person with access to our program wanted it to operate correctly, so that they
could do their day to day job.

In the age of the Web, however, most of us get to create programs that are
available to the entire world. Legitimate users still just want the program to
do its job for them. Unfortunately, our program is also available to lots of
people who find amusement in making programs break. Or better, making
them do things they were not supposed to do.


