TZE-FUN CHAN | KELI SHI

Companion Website

APPLIED INTELLIGENT CONTROL OF INDUCTION MOTOR DRIVES

APPLIED INTELLIGENT CONTROL OF INDUCTION MOTOR DRIVES

APPLIED INTELLIGENT CONTROL OF INDUCTION MOTOR DRIVES

Tze-Fun Chan

The Hong Kong Polytechnic University, Hong Kong, China

Keli Shi

Netpower Technologies, Inc., Texas, USA

John Wiley & Sons (Asia) Pte Ltd

This edition first published 2011 © 2011 John Wiley & Sons (Asia) Pte Ltd

Registered office John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB[®] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] software.

Library of Congress Cataloging-in-Publication Data

Chan, Tze Fun.
Applied intelligent control of induction motor drives / Tze-Fun Chan, Keli Shi. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-82556-3 (cloth)
1. Intelligent control systems. 2. Electric motors, Induction. I. Shi, Keli. II. Title.
TJ217.5.C43 2011
621.46-dc22

2010035690

Print ISBN: 978-0-470-82556-3 ePDF ISBN: 978-0-470-82557-0 oBook ISBN: 978-0-470-82558-7 ePub ISBN: 978-0-470-82828-1

Typeset in 10/12pt Times by Thomson Digital, Noida, India.

Contents

Pref	ace		xiii	
Ack	nowled	gments	xvii	
Abo	ut the A	Authors	xxi	
List	of Sym	bols	xxiii	
1	Intro	roduction		
	1.1	Induction Motor	1	
	1.2	Induction Motor Control	2	
	1.3	Review of Previous Work	2 2 3	
		1.3.1 Scalar Control		
		1.3.2 Vector Control	3	
		1.3.3 Speed Sensorless Control	4	
		1.3.4 Intelligent Control of Induction Motor	4	
		1.3.5 Application Status and Research Trends of Induction		
		Motor Control	4	
	1.4	Present Study	4	
		References	7	
2	2 Philosophy of Induction Motor Control			
	2.1	Introduction	9	
	2.2	Induction Motor Control Theory	10	
		2.2.1 Nonlinear Feedback Control	10	
		2.2.2 Induction Motor Models	11	
		2.2.3 Field-Oriented Control	13	
		2.2.4 Direct Self Control	14	
		2.2.5 Acceleration Control Proposed	15	
		2.2.6 Need for Intelligent Control	16	
		2.2.7 Intelligent Induction Motor Control Schemes	17	
	2.3	Induction Motor Control Algorithms	19	
	2.4 Speed Estimation Algorithms		23	
	2.5	Hardware	25	
		References	29	

3	Mode	eling and Simulation of Induction Motor	31				
	3.1	Introduction	31				
	3.2	Modeling of Induction Motor	32				
	3.3	Current-Input Model of Induction Motor	34				
		3.3.1 Current (3/2) Rotating Transformation Sub-Model	35				
		3.3.2 Electrical Sub-Model	35				
		3.3.3 Mechanical Sub-Model	37				
		3.3.4 Simulation of Current-Input Model of Induction Motor	37				
	3.4	Voltage-Input Model of Induction Motor	40				
		3.4.1 Simulation Results of 'Motor 1'	43				
		3.4.2 Simulation Results of 'Motor 2'	43				
		3.4.3 Simulation Results of 'Motor 3'	44				
	3.5	Discrete-State Model of Induction Motor	45 49				
	3.6	e					
	3.7	Modeling and Simulation of Encoder	51				
	3.8	Modeling of Decoder	54				
	3.9	Simulation of Induction Motor with PWM Inverter and					
		Encoder/Decoder	54				
		MATLAB [®] /Simulink Programming Examples	55				
	3.11	Summary	73				
		References	74				
4		amentals of Intelligent Control Simulation	75				
	4.1	Introduction	75				
	4.2	Getting Started with Fuzzy Logical Simulation	75				
		4.2.1 Fuzzy Logic Control	75				
		4.2.2 Example: Fuzzy PI Controller	77				
	4.3	Getting Started with Neural-Network Simulation	83				
		4.3.1 Artificial Neural Network	83				
		4.3.2 Example: Implementing Park's Transformation	0.7				
		Using ANN	85				
	4.4	Getting Started with Kalman Filter Simulation	90				
		4.4.1 Kalman Filter	92				
		4.4.2 Example: Signal Estimation in the Presence of Noise by	0.4				
	15	Kalman Filter	94 98				
	4.5	Getting Started with Genetic Algorithm Simulation	98 98				
		4.5.1 Genetic Algorithm 4.5.2 Example: Optimizing a Simuliak Model by	98				
		4.5.2 Example: Optimizing a Simulink Model by Genetic Algorithm	100				
	4.6	Summary	100				
	4.0	References	107				
		Kelelences	108				
5	Expe	rt-System-based Acceleration Control	109				
	5.1	Introduction	109				
	5.2	Relationship between the Stator Voltage Vector and					
		Rotor Acceleration	110				
	5.3	Analysis of Motor Acceleration of the Rotor	113				

	5.4	Control Strategy of Voltage Vector Comparison and Voltage			
		Vector Retaining	114		
	5.5	Expert-System Control for Induction Motor	118		
	5.6		122		
		5.6.1 The First Simulation Example	123		
		5.6.2 The Second Simulation Example	125		
		5.6.3 The Third Simulation Example	126		
		5.6.4 The Fourth Simulation Example	127		
		5.6.5 The Fifth Simulation Example	129		
	5.7	Summary	131		
		References	131		
6	Hybi	rid Fuzzy/PI Two-Stage Control	133		
	6.1	Introduction	133		
	6.2	Two-Stage Control Strategy for an Induction Motor	135		
	6.3	Fuzzy Frequency Control	136		
		6.3.1 Fuzzy Database	138		
		6.3.2 Fuzzy Rulebase	139		
		6.3.3 Fuzzy Inference	141		
		6.3.4 Defuzzification	142		
		6.3.5 Fuzzy Frequency Controller	142		
	6.4	e	143		
	6.5	Hybrid Fuzzy/PI Two-Stage Controller for an Induction Motor	145		
	6.6		145		
		6.6.1 Comparison with Field-Oriented Control	146		
		6.6.2 Effects of Parameter Variation	148		
		6.6.3 Effects of Noise in the Measured Speed and Input Current	149		
		6.6.4 Effects of Magnetic Saturation	149		
		6.6.5 Effects of Load Torque Variation	150		
	6.7				
	6.8				
		6.8.1 Programming Example 1: Voltage-Input Model of an			
		Induction Motor	158		
		6.8.2 Programming Example 2: Fuzzy/PI Two-Stage Controller	163		
	6.9	Summary	165		
		References	166		
7		al-Network-based Direct Self Control	167		
	7.1	Introduction	167		
	7.2	Neural Networks	168 170		
	7.3				
		7.3.1 Flux Estimation Sub-Net	170		
		7.3.2 Torque Calculation Sub-Net	171		
		7.3.3 Flux Angle Encoder and Flux Magnitude Calculation			
		Sub-Net	173		
		7.3.4 Hysteresis Comparator Sub-Net	178		

		7.3.5 Optimum Switching Table Sub-Net	180		
		7.3.6 Linking of Neural Networks	183		
	7.4	Simulation of Neural-Network-based DSC	184		
	7.5	MATLAB [®] /Simulink Programming Examples	187		
		7.5.1 Programming Example 1: Direct Self Controller	187		
		7.5.2 Programming Example 2: Neural-Network-based			
		Optimum Switching Table	192		
	7.6	Summary	196		
		References	197		
8	Para	meter Estimation Using Neural Networks	199		
	8.1	Introduction	199		
	8.2	Integral Equations Based on the 'T' Equivalent Circuit	200		
	8.3	Integral Equations based on the ' Γ ' Equivalent Circuit	203		
	8.4	Parameter Estimation of Induction Motor Using ANN	205		
		8.4.1 Estimation of Electrical Parameters	206		
		8.4.2 ANN-based Mechanical Model	208		
		8.4.3 Simulation Studies	210		
	8.5	ANN-based Induction Motor Models	214		
	8.6	Effect of Noise in Training Data on Estimated Parameters	217		
	8.7	Estimation of Load, Flux and Speed	218		
		8.7.1 Estimation of Load	218		
		8.7.2 Estimation of Stator Flux	222		
		8.7.3 Estimation of Rotor Speed	226		
	8.8	MATLAB [®] /Simulink Programming Examples	231		
		8.8.1 Programming Example 1: Field-Oriented Control			
		(FOC) System	231		
		8.8.2 Programming Example 2: Sensorless Control of			
		Induction Motor	234		
	8.9	Summary	240		
		References	241		
9	GA-0	Optimized Extended Kalman Filter for Speed Estimation	243		
	9.1	Introduction	243		
	9.2	Extended State Model of Induction Motor	244		
	9.3	Extended Kalman Filter Algorithm for Rotor Speed Estimation	245		
		9.3.1 Prediction of State	245		
		9.3.2 Estimation of Error Covariance Matrix	245		
		9.3.3 Computation of Kalman Filter Gain	245		
		9.3.4 State Estimation	246		
	0.4	9.3.5 Update of the Error Covariance Matrix	246 247		
	9.4	1			
	9.5				
	9.6	1			
	9.7	Speed Estimation for a Field-Oriented Controller	255		
	9.8	MATLAB [®] /Simulink Programming Examples	260		

			rogramming Example 1: Voltage-Frequency Controlled /FC) Drive	260
			rogramming Example 2: GA-Optimized EKF for	200
			peed Estimation	264
			rogramming Example 3: GA-based EKF Sensorless	
			oltage-Frequency Controlled Drive	268
			rogramming Example 4: GA-based EKF Sensorless	
			OC Induction Motor Drive	269
	9.9	Summary		270
		References	S	270
10	Optim	ized Rano	lom PWM Strategies Based On Genetic Algorithms	273
	10.1	Introduc	tion	273
	10.2	PWM Pe	erformance Evaluation	274
		10.2.1	Fourier Analysis of PWM Waveform	276
			Harmonic Evaluation of Typical Waveforms	277
	10.3		PWM Methods	283
			Random Carrier-Frequency PWM	283
			Random Pulse-Position PWM	285
			Random Pulse-Width PWM	285
		10.3.4	Hybrid Random Pulse-Position and Pulse-Width	
			PWM	286
		10.3.5	Harmonic Evaluation Results	287
	10.4	-	ed Random PWM Based on Genetic Algorithm	288
		10.4.1	GA-Optimized Random Carrier-Frequency PWM	289
		10.4.2	1	290
		10.4.3	1	292
		10.4.4	GA-Optimized Hybrid Random Pulse-Position and	
			Pulse-Width PWM	293
		10.4.5	Evaluation of Various GA-Optimized Random	
			PWM Inverters	295
		10.4.6	Switching Loss of GA-Optimized Random Single-Phase	•
		10.1.5	PWM Inverters	296
		10.4.7	Linear Modulation Range of GA-Optimized Random	
		10.4.0	Single-Phase PWM Inverters	297
		10.4.8	Implementation of GA-Optimized Random	••••
		10.4.0	Single-Phase PWM Inverter	298
		10.4.9	Limitations of Reference Sinusoidal Frequency of	200
	10.5		GA-Optimized Random PWM Inverters	298
	10.5		B [®] /Simulink Programming Examples	299
		10.5.1	Programming Example 1: A Single-Phase	200
		1050	Sinusoidal PWM	299
		10.5.2	Programming Example 2: Evaluation of a Four-Pulse	202
		1052	Wave	302
		10.5.3	Programming Example 3: Random Carrier-Frequency	202
			PWM	303

	10.6	Experiments on Various PWM Strategies	305	
		10.6.1 Implementation of PWM Methods Using DSP	305	
		10.6.2 Experimental Results	307	
	10.7	Summary	310	
		References	310	
11	Experi	imental Investigations	313	
	11.1	Introduction	313	
	11.2	Experimental Hardware Design for Induction Motor Control	314	
		11.2.1 Hardware Description	314	
	11.3	Software Development Method	320	
		Experiment 1: Determination of Motor Parameters	321	
	11.5	Experiment 2: Induction Motor Run Up	321	
		11.5.1 Program Design	322	
		11.5.2 Program Debug	324	
	11.6	11.5.3 Experimental Investigations	327	
	11.6	Experiment 3: Implementation of Fuzzy/PI Two-Stage Controller 11.6.1 Program Design	330 330	
		11.6.2 Program Debug	338	
		11.6.3 Performance Tests	339	
	11.7	Experiment 4: Speed Estimation Using a GA-Optimized	559	
	11.7	Extended Kalman Filter	344	
		11.7.1 Program Design	345	
		11.7.2 GA-EKF Experimental Method	345	
		11.7.3 GA-EKF Experiments	346	
		11.7.4 Limitations of GA-EKF	349	
	11.8	DSP Programming Examples	352	
		11.8.1 Generation of 3-Phase Sinusoidal PWM	354	
		11.8.2 RTDX Programming	359	
		11.8.3 ADC Programming	361	
		11.8.4 CAP Programming	364	
	11.9 Summary			
		References	370	
12	Conclu	usions and Future Developments	373	
	12.1	Main Contributions of the Book	374 375	
	12.2	11		
	12.3	Future Developments	377	
		12.3.1 Expert-System-based Acceleration Control	378	
		12.3.2 Hybrid Fuzzy/PI Two-Stage Control	378	
		12.3.3 Neural-Network-based Direct Self Control	378	
		12.3.4 Genetic Algorithm for an Extended Kalman Filter	378	
		12.3.5 Parameter Estimation Using Neural Networks	378	
		12.3.6 Optimized Random PWM Strategies Based on	270	
		Genetic Algorithms	378	
		12.3.7 AI-Integrated Algorithm and Hardware Reference	379 379	
			519	

Appendix A Equivalent Circuits of an Induction Motor	381
Appendix B Parameters of Induction Motors	383
Appendix C M-File of Discrete-State Induction Motor Model	385
Appendix D Expert-System Acceleration Control Algorithm	387
Appendix E Activation Functions of Neural Network	391
Appendix F M-File of Extended Kalman Filter	393
Appendix G ADMC331-based Experimental System	395
Appendix H Experiment 1: Measuring the Electrical Parameters of Motor 3	397
Appendix I DSP Source Code for the Main Program of Experiment 2	403
Appendix J DSP Source Code for the Main Program of Experiment 3	407
Index	417

Preface

Induction motors are the most important workhorses in industry and they are manufactured in large numbers. About half of the electrical energy generated in a developed country is ultimately consumed by electric motors, of which over 90% are induction motors. For a relatively long period, induction motors have mainly been deployed in constant-speed motor drives for general purpose applications. The rapid development of power electronic devices and converter technologies in the past few decades, however, has made possible efficient speed control by varying the supply frequency, giving rise to various forms of adjustable-speed induction motor drives. In about the same period, there were also advances in control methods and artificial intelligence (AI) techniques, including expert system, fuzzy logic, neural networks and genetic algorithm. Researchers soon realized that the performance of induction motor drives can be enhanced by adopting artificial-intelligence-based methods. Since the 1990s, AI-based induction motor drives have received greater attention and numerous technical papers have been published. Speed-sensorless induction drives have also emerged as an important branch of induction motor research. A few good reference books on intelligent control and power electronic drives were written. Some electric drive manufacturers began to incorporate AI-control in their commercial products.

This book aims to explore possible areas of induction motor control that require further investigation and development and focuses on the application of intelligent control principles and algorithms in order to make the controller independent of, or less sensitive to, motor parameter changes. Intelligent control is becoming an important and necessary method to solve difficult problems in control of induction motor drives. Based on classical electrical machine and control theory, the authors have investigated the applications of expert-system control, fuzzy-logic control, neural-network control, and genetic algorithm to various forms of induction motor drive.

This book is the result of over fifteen years of research on intelligent control of induction motors undertaken by the authors at the Department of Electrical Engineering, the Hong Kong Polytechnic University and the United States. The methods are original and most of the work has been published in IEEE Transactions and international conferences. In the past few years, our publications have been increasingly cited by Science Citation Index journal papers, showing that our work is being rigorously followed up by the induction motor drives research community.

We believe that the publication of a book or monograph summarizing our latest research findings on intelligent control will benefit the research community. This book will complement