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Foreword

How many children dream of one day becoming risk managers? I very much doubt little
Carol Jenkins, as she was called then, did. She dreamt about being a wild white horse, or a
mermaid swimming with dolphins, as any normal little girl does. As I start crunching into
two kilos of Toblerone that Carol Alexander-Pézier gave me for Valentine’s day (perhaps to
coax me into writing this foreword), I see the distinctive silhouette of the Matterhorn on the
yellow package and I am reminded of my own dreams of climbing mountains and travelling
to distant planets. Yes, adventure and danger! That is the stuff of happiness, especially when
you daydream as a child with a warm cup of cocoa in your hands.

As we grow up, dreams lose their naivety but not necessarily their power. Knowledge
makes us discover new possibilities and raises new questions. We grow to understand better
the consequences of our actions, yet the world remains full of surprises. We taste the
sweetness of success and the bitterness of failure. We grow to be responsible members of
society and to care for the welfare of others. We discover purpose, confidence and a role to
fulfil; but we also find that we continuously have to deal with risks.

Leafing through the hundreds of pages of this four-volume series you will discover one
of the goals that Carol gave herself in life: to set the standards for a new profession, that of
market risk manager, and to provide the means of achieving those standards. Why is market
risk management so important? Because in our modern economies, market prices balance
the supply and demand of most goods and services that fulfil our needs and desires. We can
hardly take a decision, such as buying a house or saving for a later day, without taking some
market risks. Financial firms, be they in banking, insurance or asset management, manage
these risks on a grand scale. Capital markets and derivative products offer endless ways to
transfer these risks among economic agents.

But should market risk management be regarded as a professional activity? Sampling the
material in these four volumes will convince you, if need be, of the vast amount of knowledge
and skills required. A good market risk manager should master the basics of calculus,
linear algebra, probability – including stochastic calculus – statistics and econometrics. He
should be an astute student of the markets, familiar with the vast array of modern financial
instruments and market mechanisms, and of the econometric properties of prices and returns
in these markets. If he works in the financial industry, he should also be well versed in
regulations and understand how they affect his firm. That sets the academic syllabus for the
profession.

Carol takes the reader step by step through all these topics, from basic definitions and
principles to advanced problems and solution methods. She uses a clear language, realistic
illustrations with recent market data, consistent notation throughout all chapters, and provides
a huge range of worked-out exercises on Excel spreadsheets, some of which demonstrate
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analytical tools only available in the best commercial software packages. Many chapters on
advanced subjects such as GARCH models, copulas, quantile regressions, portfolio theory,
options and volatility surfaces are as informative as and easier to understand than entire
books devoted to these subjects. Indeed, this is the first series of books entirely dedicated to
the discipline of market risk analysis written by one person, and a very good teacher at that.

A profession, however, is more than an academic discipline; it is an activity that fulfils
some societal needs, that provides solutions in the face of evolving challenges, that calls for
a special code of conduct; it is something one can aspire to. Does market risk management
face such challenges? Can it achieve significant economic benefits?

As market economies grow, more ordinary people of all ages with different needs and
risk appetites have financial assets to manage and borrowings to control. What kind of
mortgages should they take? What provisions should they make for their pensions? The range
of investment products offered to them has widened far beyond the traditional cash, bond
and equity classes to include actively managed funds (traditional or hedge funds), private
equity, real estate investment trusts, structured products and derivative products facilitating
the trading of more exotic risks – commodities, credit risks, volatilities and correlations,
weather, carbon emissions, etc. – and offering markedly different return characteristics from
those of traditional asset classes. Managing personal finances is largely about managing
market risks. How well educated are we to do that?

Corporates have also become more exposed to market risks. Beyond the traditional expo-
sure to interest rate fluctuations, most corporates are now exposed to foreign exchange risks
and commodity risks because of globalization. A company may produce and sell exclusively
in its domestic market and yet be exposed to currency fluctuations because of foreign com-
petition. Risks that can be hedged effectively by shareholders, if they wish, do not have
to be hedged in-house. But hedging some risks in-house may bring benefits (e.g. reduction
of tax burden, smoothing of returns, easier planning) that are not directly attainable by the
shareholder.

Financial firms, of course, should be the experts at managing market risks; it is their
métier. Indeed, over the last generation, there has been a marked increase in the size of
market risks handled by banks in comparison to a reduction in the size of their credit risks.
Since the 1980s, banks have provided products (e.g. interest rate swaps, currency protection,
index linked loans, capital guaranteed investments) to facilitate the risk management of their
customers. They have also built up arbitrage and proprietary trading books to profit from
perceived market anomalies and take advantage of their market views. More recently, banks
have started to manage credit risks actively by transferring them to the capital markets
instead of warehousing them. Bonds are replacing loans, mortgages and other loans are
securitized, and many of the remaining credit risks can now be covered with credit default
swaps. Thus credit risks are being converted into market risks.

The rapid development of capital markets and, in particular, of derivative products bears
witness to these changes. At the time of writing this foreword, the total notional size of all
derivative products exceeds $500 trillion whereas, in rough figures, the bond and money
markets stand at about $80 trillion, the equity markets half that and loans half that again.
Credit derivatives by themselves are climbing through the $30 trillion mark. These derivative
markets are zero-sum games; they are all about market risk management – hedging, arbitrage
and speculation.

This does not mean, however, that all market risk management problems have been
resolved. We may have developed the means and the techniques, but we do not necessarily
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understand how to address the problems. Regulators and other experts setting standards and
policies are particularly concerned with several fundamental issues. To name a few:

1. How do we decide what market risks should be assessed and over what time
horizons? For example, should the loan books of banks or long-term liabilities of
pension funds be marked to market, or should we not be concerned with pricing
things that will not be traded in the near future? We think there is no general answer
to this question about the most appropriate description of risks. The descriptions
must be adapted to specific management problems.

2. In what contexts should market risks be assessed? Thus, what is more risky, fixed or
floating rate financing? Answers to such questions are often dictated by accounting
standards or other conventions that must be followed and therefore take on economic
significance. But the adequacy of standards must be regularly reassessed. To wit,
the development of International Accounting Standards favouring mark-to-market
and hedge accounting where possible (whereby offsetting risks can be reported
together).

3. To what extent should risk assessments be ‘objective’? Modern regulations of finan-
cial firms (Basel II Amendment, 1996) have been a major driver in the development
of risk assessment methods. Regulators naturally want a ‘level playing field’ and
objective rules. This reinforces a natural tendency to assess risks purely on the
basis of statistical evidence and to neglect personal, forward-looking views. Thus
one speaks too often about risk ‘measurements’ as if risks were physical objects
instead of risk ‘assessments’ indicating that risks are potentialities that can only be
guessed by making a number of assumptions (i.e. by using models). Regulators try
to compensate for this tendency by asking risk managers to draw scenarios and to
stress-test their models.

There are many other fundamental issues to be debated, such as the natural tendency to
focus on micro risk management – because it is easy – rather than to integrate all significant
risks and to consider their global effect – because that is more difficult. In particular, the
assessment and control of systemic risks by supervisory authorities is still in its infancy.
But I would like to conclude by calling attention to a particular danger faced by a nascent
market risk management profession, that of separating risks from returns and focusing on
downside-risk limits.

It is central to the ethics of risk managers to be independent and to act with integrity. Thus
risk managers should not be under the direct control of line managers of profit centres and
they should be well remunerated independently of company results. But in some firms this
is also understood as denying risk managers access to profit information. I remember a risk
commission that had to approve or reject projects but, for internal political reasons, could
not have any information about their expected profitability. For decades, credit officers in
most banks operated under such constraints: they were supposed to accept or reject deals
a priori, without knowledge of their pricing. Times have changed. We understand now, at
least in principle, that the essence of risk management is not simply to reduce or control
risks but to achieve an optimal balance between risks and returns.

Yet, whether for organizational reasons or out of ignorance, risk management is often
confined to setting and enforcing risk limits. Most firms, especially financial firms, claim to
have well-thought-out risk management policies, but few actually state trade-offs between
risks and returns. Attention to risk limits may be unwittingly reinforced by regulators. Of
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course it is not the role of the supervisory authorities to suggest risk–return trade-offs; so
supervisors impose risk limits, such as value at risk relative to capital, to ensure safety and
fair competition in the financial industry. But a regulatory limit implies severe penalties
if breached, and thus a probabilistic constraint acquires an economic value. Banks must
therefore pay attention to the uncertainty in their value-at-risk estimates. The effect would
be rather perverse if banks ended up paying more attention to the probability of a probability
than to their entire return distribution.

With Market Risk Analysis readers will learn to understand these long-term problems
in a realistic context. Carol is an academic with a strong applied interest. She has helped
to design the curriculum for the Professional Risk Managers’ International Association
(PRMIA) qualifications, to set the standards for their professional qualifications, and she
maintains numerous contacts with the financial industry through consulting and seminars.
In Market Risk Analysis theoretical developments may be more rigorous and reach a more
advanced level than in many other books, but they always lead to practical applications
with numerous examples in interactive Excel spreadsheets. For example, unlike 90% of the
finance literature on hedging that is of no use to practitioners, if not misleading at times,
her concise expositions on this subject give solutions to real problems.

In summary, if there is any good reason for not treating market risk management as a
separate discipline, it is that market risk management should be the business of all decision
makers involved in finance, with primary responsibilities on the shoulders of the most senior
managers and board members. However, there is so much to be learnt and so much to be
further researched on this subject that it is proper for professional people to specialize in
it. These four volumes will fulfil most of their needs. They only have to remember that,
to be effective, they have to be good communicators and ensure that their assessments are
properly integrated in their firm’s decision-making process.

Jacques Pézier



Preface to Volume II

For well over a decade, econometrics has been one of the major routes into finance. I took
this route myself several years ago. Starting an academic career as an algebraist, I then had
a brief encounter with game theory before discovering that the skills of an econometrician
were in greater demand. I would have found econometrics much more boring than algebra or
game theory had it not been for the inspiration of some great teachers at the London School
of Economics, and of Professor Robert Engle who introduced me to GARCH models some
twenty years ago.

At that time finance was one of the newest areas of applied econometrics and it was
relatively easy to find interesting problems that were also useful to practitioners. And this
was how my reputation grew, such as it is. I was building GARCH models for banks well
before they became standard procedures in statistical packages, applying cointegration to
construct arbitrage strategies for fund managers and introducing models for forecasting very
large covariance matrices. In the end the appreciation of this work was much greater than
the appreciation I received as an academic so I moved, briefly, to the City. Then, almost a
decade ago, I returned to academic life as a professor of financial risk management. In fact,
I believe I was the first professor to have this title in the UK, financial risk management
being such a new profession at that time. It was the late 1990s, and by then numerous
econometricians were taking the same route into finance that I had. Some of the top finance
journals were populating many of their pages with applied financial econometrics, and
theoretical econometric journals were becoming increasingly focused on financial problems.
Of course I wanted to read and learn all about this so that I could publish the academic
papers that are so important to our profession. But I was disappointed and a little dismayed
by what I read. Too few of the papers were written by authors who seemed to have a
proper grasp of the important practical problems in finance. And too much journal space
was devoted to topics that are at best marginal and at worst completely irrelevant to financial
practitioners.

Econometrics has now become a veritable motorway into finance where, for many,
prospects are presently more lucrative than those for standard macro- or micro-economists.
The industry has enormous demand for properly trained financial econometricians, and this
demand will increase. But few econometricians enter the industry with an adequate knowl-
edge of how their skills can be employed to the best advantage of their firm and its clients,
and many financial econometricians would benefit from improving their understanding of
what constitutes an important problem.
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AIMS AND SCOPE

This book introduces the econometric techniques that are commonly applied to finance,
and particularly to resolve problems in market risk analysis. It aims to fill a gap in the
market by offering a critical text on econometrics that discuss what is and what is not
important to financial practitioners. The book covers material for a one-semester graduate
course in applied financial econometrics in a very pedagogical fashion. Each time a concept
is introduced, an empirical example is given, and whenever possible this is illustrated with
an Excel spreadsheet.

In comparison with Greene (2007), which has become a standard graduate econometrics
text and which contains more than enough material for a one-year course, I have been very
selective in the topics covered. The main focus is on models that use time series data, and
relatively few formal proofs are given. However, every chapter has numerous empirical
examples that are implemented in Excel spreadsheets, many of which are interactive. And
when the practical illustration of the model requires a more detailed exposition, case studies
are included. More details are given in the section about the website below.

Econometrics is a broad discipline that draws on basic techniques in calculus, linear alge-
bra, probability, statistics and numerical methods. Readers should also have a rudimentary
knowledge of regression analysis and the first chapter, which is on factor model, refers
to the capital asset pricing model and other models derived from the theory of asset pric-
ing. All the prerequisite material is covered Market Risk Analysis Volume I: Quantitative
Methods in Finance. However, there is only one chapter on basic regression in Volume I. A
very comprehensive introductory text, written at a more elementary level than this but also
aimed towards the finance student market, is Brooks (2008). For many years Professor Chris
Brooks has been a close colleague at the ICMA Centre.

The other volumes in Market Risk Analysis are Volume III: Pricing, Hedging and Trading
Financial Instruments and Volume IV: Value at Risk Models. Although the four volumes of
Market Risk Analysis are very much interlinked, each book is self-contained. This book could
easily be adopted as a stand-alone course text in applied financial econometrics, leaving
students to follow up cross-references to other volumes only if they wish.

OUTLINE OF VOLUME II

Chapter 1, Factor Models, describes the models that are applied by portfolio managers to
analyse the potential returns on a portfolio of risky assets, to determine the allocation of
their funds to different assets and to measure portfolio risk. The chapter deals with models
having fundamental factors and which are normally estimated by regression. We focus on the
Barra model, giving a detailed description of its construction, and emphasizing the dangers
of using tracking error as a risk metric for actively managed portfolios.

Chapter 2, Principal Component Analysis, covers statistical factor models, which are also
used for portfolio management and risk management, but they are most successful when
applied to a highly correlated system such as a term structure of interest rates, of futures
prices or of volatility. Since it is not easy to find a complete treatment of principal component
analysis in a finance-oriented text, we provide full details of the mathematics but, as usual,
we focus on the applications. Empirical examples include bond portfolio immunization,
asset–liability management and portfolio risk assessment.
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Chapter 3, Classical Models of V olatility and Correlation, provides a critical review of
the time series models that became popular in the industry during the 1990s, making
readers aware of the pitfalls of using simple moving averages for estimating and forecasting
portfolio risk. These are based on the assumption that returns are independent and identically
distributed so the volatility and correlation forecasts from these models are equal to the
current estimates. The sample estimates vary over time, but this is only due to sampling
error. There is nothing in the model to capture the volatility and correlation clustering that
is commonly observed in financial asset returns.

Chapter 4, Introduction to GARCH Models, provides a complete and up-to-date treatment
of the generalized autoregressive conditional heteroscedasticity models that were introduced
by Engle (1982) and Bollerslev (1986). We explain how to: estimate the model parameters
by maximizing a likelihood function; use the model to forecast term structures for volatility
and correlation; target the long term volatility or correlation and use the GARCH model
to forecast volatility and correlation over the short and medium term; and extend the
model to capture non-normal conditional returns distributions and regime-switching volatil-
ity behaviour. There are so many approaches to modelling multivariate distributions with
time varying volatility and correlation that I have been very prescriptive in my treatment
of multivariate GARCH models, recommending specific approaches for different financial
problems. Throughout this long chapter we illustrate the GARCH model optimization with
simple Excel spreadsheets, employing the Excel Solver whenever possible. Excel parameter
estimates for GARCH are not recommended, so the estimates are compared with those
obtained using GARCH procedures in the Matlab and EViews software. The section on
simulation is enlightening, since it demonstrates that only regime-switching GARCH models
can properly capture the observed behaviour of financial asset returns. The final section
covers the numerous applications of GARCH models to finance, including option pricing,
risk measurement and portfolio optimization.

Chapter 5 is on T ime Series Models and Cointegration. Building on the introduction to
stochastic processes given in Chapter I.3, this begins with a mathematical introduction to
stationary and integrated processes, multivariate vector autoregressions and unit root tests.
Then we provide an intuitive definition of cointegration and review the huge literature on
applications of cointegration in financial markets. A case study focuses on the benchmark
tracking and statistical arbitrage applications that I developed more than a decade ago, and
which are now used by major fund managers. The final section provides a didactic approach
to modelling short term dynamics using error correction models, focusing on the response
of cointegrated asset prices to market shocks and the time taken for a spread to mean-revert.
Another case study examines pairs trading volatility indices.

Chapter 6, Introduction toCopulas, took much longer to write than the other chapters. I was
less familiar with copulas than with the other topics in this book, and found the available
literature a little obscure and off-putting. However, copulas are of crucial importance to the
development of our subject and no reputable financial econometrician can afford to ignore
them. So it became quite a challenge to present this material in the pedagogical style of
the rest of the book. I have programmed several copulas, including the normal, normal
mixture, Student’s t, Clayton and Gumbel copulas, in interactive Excel spreadsheets, so that
you can see how the shape of the copula alters on changing its parameters. The quantile
curves of conditional copulas play a crucial role in financial applications – for instance,
in quantile regression – so these have been derived mathematically and also encoded into
Excel. Many other applications such as value-at-risk measurement, portfolio optimization
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and risk aggregation, which are discussed in the last section of the chapter, are based on
simulation with copulas. Two simulation algorithms are described and spreadsheets generate
simulations based on different copulas.

Chapter 7 covers the Advanced Econometric Models that have important applications to
finance. A significant portion of this chapter provides a tutorial on quantile regression,
and contains two case studies in Excel. The first implements linear and non-linear quantile
regressions to examine the relationship between an equity index and its volatility, and the
second demonstrates how non-linear quantile regression using copulas can be applied to
hedge a portfolio with futures. A relatively brief treatment of other non-linear models is
restricted to polynomial regression and discrete choice models, the latter being illustrated with
an application to credit scoring models. What I hope is an accessible specification of Markov
switching models is followed with a short review of their applications and the software that
can be used for estimation, and the chapter concludes by describing the main high frequency
data sets and two of the most important financial problems in high frequency data analysis.
First, for capturing the clustering of the times between trades we describe the autoregressive
conditional duration model. Then we review the large and growing literature on using high
frequency data to forecast realized variance and covariance, this being important for pricing
the variance swaps and covariance swaps that are actively traded in over-the-counter markets.

The last chapter, Chapter 8 on Forecasting and Model Evaluation, describes how to select
the best model when several models are available. The model specification and evaluation
criteria and tests described here include goodness-of-fit criteria and tests, which measure the
success of a model to capture the empirical characteristics of the estimation sample, and post-
sample prediction criteria and tests, which judge the ability of the model to provide accurate
forecasts. Models for the conditional expectation, volatility and correlation of financial asset
returns that were introduced in earlier chapters are considered here, and we explain how
to apply both statistical and operational criteria and tests to these models. Amongst the
statistical tests, we emphasize the Kolmogorov–Smirnoff and related tests for the proximity
of two distributions and the coverage tests that are applied to evaluate models for predicting
quantiles of conditional distributions. We also explain how to simulate the critical values
of non-standard test statistics. A long section on operational evaluation first outlines the
model backtesting procedure in general terms, and then explains how backtests are applied in
specific contexts, including tests of: factor models used in portfolio management; covariance
matrices used for portfolio optimization and value-at-risk estimation; and models that are
used for short term hedging with futures, trading implied volatility, trading variance swaps
and hedging options

ABOUT THE WEBSITE

Whenever possible the econometric models, tests and criteria that are introduced in this
book are illustrated in an Excel spreadsheet. The Excel workbooks for each chapter may be
found on the accompanying website. Simply search for the book on wiley.com and select

may change any parameters of the problem (the parameters are indicated in red) and see the
new solution (the output is indicated in blue). Rather than using VBA code, which will be
obscure to many readers, I have encoded the formulae directly into the spreadsheet. Thus
the reader need only click on a cell to read the formula. Whenever a data analysis tool such
as regression or a numerical tool such as Solver is used, clear instructions are given in the

Many of the spreadsheets are interactive, so readersRelated Resources to access the material. ‘ ’
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text, and/or using comments and screenshots in the spreadsheet. Hence, the spreadsheets are
designed to offer tutors the possibility to set, as exercises for their courses, an unlimited
number of variations on the examples in the text.

Excel is not always an adequate program for estimating econometric models, and I
have been particularly emphatic on this point for the spreadsheets that estimate GARCH
model parameters. Excel has its limits in other respects, too, and so references to and
recommendations of proper econometric programs are given where necessary. For instance,
the website includes the EViews code for Markov switching models that was written by
my PhD student Andreas Kaeck.

Several case studies, based on complete and up-to-date financial data, and all graphs and
tables in the text are also contained in the Excel workbooks on the website. The case
study data can be used by tutors or researchers since they were obtained from free internet
sources, and references for updating the data are provided. Also the graphs and tables can be
modified if required, and copied and pasted as enhanced metafiles into lecture notes based
on this book.
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II.1
Factor Models

II.1.1 INTRODUCTION

This chapter describes the factor models that are applied by portfolio managers to analyse
the potential returns on a portfolio of risky assets, to choose the optimal allocation of their
funds to different assets and to measure portfolio risk. The theory of linear regression-based
factor models applies to most portfolios of risky assets, excluding options portfolios but
including alternative investments such as real estate, hedge funds and volatility, as well as
traditional assets such as commodities, stocks and bonds. Stocks and bonds are the major
categories of risky assets, and whilst bond portfolios could be analysed using regression-
based factor models a much more powerful factor analysis for bond portfolios is based on
principal component analysis (see Chapter II.2).

An understanding of both multiple linear regression and matrix algebra is necessary for
the analysis of multi-factor models. Therefore, we assume that readers are already familiar
with matrix theory from Chapter I.2 and the theory of linear regression from Chapter I.4.
We also assume that readers are familiar with the theory of asset pricing and the optimal
capital allocation techniques that were introduced in Chapter I.6.

Regression-based factor models are used to forecast the expected return and the risk of a
portfolio. The expected return on each asset in the portfolio is approximated as a weighted
sum of the expected returns to several market risk factors. The weights are called factor
sensitivities or, more specifically, factor betas and are estimated by regression. If the portfo-
lio only has cash positions on securities in the same country then market risk factors could
include broad market indices, industry factors, style factors (e.g. value, growth, momentum,
size), economic factors (e.g. interest rates, inflation) or statistical factors (e.g. principal com-
ponents).1 By inputting scenarios and stress tests on the expected returns and the volatilities
and correlations of these risk factors, the factor model representation allows the portfolio
manager to examine expected returns under different market scenarios.

Factor models also allow the market risk manager to quantify the systematic and specific
risk of the portfolio:

The market risk management of portfolios has traditionally focused only on the undi-
versifiable risk of a portfolio. This is the risk that cannot be reduced to zero by holding a
large and diversified portfolio. In the context of a factor model, which aims to relate the
distribution of a portfolio’s return to the distributions of its risk factor returns, we also
call the undiversifiable risk the systematic risk. A multi-factor model, i.e. a factor model
with more than one risk factor, would normally be estimated using a multiple linear
regression where the dependent variable is the return on an individual asset and the

1 But for international portfolios exchange rates also affect the returns, with a beta of one. And if the portfolio contains futures
then zero coupon rates should also be included in the market risk factors.



2 Practical Financial Econometrics

independent variables are the returns on different risk factors. Then the systematic risk is
identified with the risk of the factor returns and the net portfolio sensitivities to each risk
factor.
The specific risk, also called the idiosyncratic risk or residual risk, is the risk that is
not associated with the risk factor returns. In a linear regression model of the asset
return on risk factor returns, it is the risk arising from the variance of the residuals. The
specific risk on an individual asset may be high, especially when the model has only
a few factors to explain the asset’s returns. But in a sufficiently large and diversified
portfolio the specific risk may be reduced to almost zero, since the specific risks on
a large number of assets in different sectors of the economy, or in different countries,
tend to cancel each other out.

The outline of the chapter is as follows. Section II.1.2 explains how a single-factor model
is estimated. We compare two methods for estimating factor betas and show how the total
risk of the portfolio can be decomposed into the systematic risk due to risk of the factors,
and the specific risk that may be diversified away by holding a sufficiently large portfolio.
Section II.1.3 describes the general theory of multi-factor models and explains how they are
used in style attribution analysis. We explain how multi-factor models may be applied to
different types of portfolios and to decompose the total risk into components related to broad
classes of risk factors. Then in Section II.1.4 we present an empirical example which shows
how to estimate a fundamental factor model using time series data on the portfolio returns
and the risk factor returns. We suggest a remedy for the problem of multicollinearity that
arises here and indeed plagues the estimation of most fundamental factor models in practice.

Then Section II.1.5 analyses the Barra model, which is a specific multi-factor model that
is widely used in portfolio management. Following on from the Barra model, we analyse the
way some portfolio managers use factor models to quantify active risk, i.e. the risk of a fund
relative to its benchmark. The focus here is to explain why it is a mistake to use tracking
error, i.e. the volatility of the active returns, as a measure of active risk. Tracking error is
a metric for active risk only when the portfolio is tracking the benchmark. Otherwise, an
increase in tracking error does not indicate that active risk is increased and a decrease in
tracking error does not indicate that active risk has been reduced. The active risk of actively
managed funds which by design do not track a benchmark cannot be measured by tracking
error. However, we show how it is possible to adjust the tracking error into a correct, but
basic active risk metric. Section II.1.6 summarizes and concludes.

II.1.2 SINGLE FACTOR MODELS

This section describes how single factor models are applied to analyse the expected return on
an asset, to find a portfolio of assets to suit the investor’s requirements, and to measure
the risk of an existing portfolio. We also interpret the meaning of a factor beta and derive
a fundamental result on portfolio risk decomposition.

II.1.2.1 Single Index Model

The capital asset pricing model (CAPM) was introduced in Section I.6.4. It hypothesizes the
following relationship between the expected excess return on any single risky asset and the
expected excess return on the market portfolio:

E Ri Rf βi E RM Rf
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where Ri is the return on the ith risky asset, Rf is the return on the risk free asset, RM is the
return on the market portfolio and βi is the beta of the ith risky asset. The CAPM implies
the following linear model for the relationship between ordinary returns rather than excess
returns:

E Ri i βiE RM (II.1.1)

where i 0 unless βi 1.
The single index model is based on the expected return relationship (II.1.1) where the

return X on a factor such as a broad market index is used as a proxy for the market
portfolio return RM . Thus the single index model allows one to investigate the risk and
return characteristics of assets relative to the broad market index. More generally, if the
performance of a portfolio is measured relative to a benchmark other than a broad market
index, then the benchmark return is used for the factor return X .

We can express the single index model in the form

Rit i βiX t it it i.i.d. 0 2
i (II.1.2)

Here i measures the asset’s expected return relative to the benchmark or index (a positive
value indicates an expected outperformance and a negative value indicates an expected
underperformance); βi is the risk factor sensitivity of the asset; βi X is the systematic
volatility of the asset, X being the volatility of the index returns; and i is the specific
volatility of the asset.

Consider a portfolio containing m risky assets with portfolio weights w w1

w2 wm , and suppose that each asset has a returns representation (II.1.2). Then the
portfolio return may be written

Y t βX t t t 1 T (II.1.3)

where each characteristic of the portfolio (i.e. its alpha and beta and its specific return) is a
weighted sum of the individual assets’ characteristics, i.e.

m

i 1

wi i β
m

i 1

wiβi t

m

i 1

wi it (II.1.4)

Now the portfolio’s characteristics can be estimated in two different ways:

Assume some portfolio weights w and use estimates of the alpha, beta and residuals
for each asset in (II.1.4) to infer the characteristics of this hypothetical portfolio. This
way an asset manager can compare many different portfolios for recommendation to
his investors.
A risk manager, on the other hand, will apply the weights w of an existing portfolio
that is held by an investor to construct a constant weighted artificial returns history for
the portfolio. This series is used for Y t in (II.1.3) to assess the relative performance,
the systematic risk and the specific risk of an existing portfolio.2

Thus risk managers and asset managers apply the same factor model in different ways,
because they have different objectives. Asset managers need estimates of (II.1.2) for every

2 The reconstructed ‘constant weight’ series for the portfolio returns will not be the same as the actual historical returns series for
the portfolio, unless the portfolio was rebalanced continually so as to maintain the weights constant. The reason for using current
weights is that the risk manager needs to represent the portfolio as it is now, not as it was last week or last year, and to use this
representation to forecast its risk over a future risk horizon of a few days, weeks or months.
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asset in the investor’s universe in order to forecast the performance of many different
portfolios and hence construct an optimal portfolio; by contrast, a risk manager takes an
existing portfolio and uses (II.1.3) to forecast its risk characteristics. The next section
explains how risk managers and asset managers also use different data and different statistical
techniques to estimate the factor models that they use.

II.1.2.2 Estimating Portfolio Characteristics using OLS

The main lesson to learn from this section is that risk managers and asset managers require
quite different techniques to estimate the parameters of factor models because they have
different objectives:

When asset managers employ a factor model of the form (II.1.2) they commonly use
long histories of asset prices and benchmark values, measuring returns at a weekly or
monthly frequency and assuming that the true parameters are constant. In this case,
the ordinary least squares (OLS) estimation technique is appropriate and the more data
used to estimate them the better, as the sampling error will be smaller. Three to five
years of monthly or weekly data is typical.
When risk managers employ a factor model of the form (II.1.3) they commonly use
shorter histories of portfolio and benchmark values than the asset manager, measuring
returns daily and not assuming that the true values of the parameters are constant. In
this case, a time varying estimation technique such as exponentially weighted moving
averages or generalized autoregressive conditional heteroscedasticity is appropriate.

We shall now describe how to estimate (II.1.2) and (II.1.3) using the techniques that are
appropriate for their different applications. For model (II.1.2) the OLS parameter estimates
based on a sample of size T are given by the formulae3

βi
T
t 1 X t X Rit Ri

T
t 1 X t X

2 and i Ri βiX (II.1.5)

where X denotes the sample mean of the factor returns and Ri denotes the sample mean of
the ith asset returns. The OLS estimate of the specific risk of the ith asset is the estimated
standard error of the model, given by

si
RSSi

T 2
(II.1.6)

where RSSi is the residual sum of squares in the ith regression. See Section I.4.2 for further
details. The following example illustrates the use of these formulae to estimate model (II.1.2)
for two US stocks, using the S&P 500 index as the risk factor.

Example II.1 .1 : OLS estimates of alpha and beta for two stocks

Use weekly data from 3 January 2000 until 27 August 2007 to estimate a single factor
model for the Microsoft Corporation (MSFT) stock and the National Western Life Insurance
Company (NWL) stock using the S&P 500 index as the risk factor.4

3 See Section I.4.2.2.
4 Dividend adjusted data were downloaded from Yahoo! Finance.



Factor Models 5

(a) What do you conclude about the stocks’ characteristics?
(b) Assuming the stocks’ specific returns are uncorrelated, what are the characteris-

tics of a portfolio with 70% of its funds invested in NWL and 30% invested in
MSFT?

Solution The spreadsheet for this example computes the weekly returns on the index and
on each of the stocks and then uses the Excel regression data analysis tool as explained in
Section I.4.2.7. The results are

RNWL 0 00358
2 224

0 50596
7 129

RSPX sNWL 0 03212

RMSFT 0 00066
0 3699

1 10421
14 002

RSPX sMSFT 0 03569
(II.1.7)

where the figures in parentheses are the t ratios. We conclude the following:

Since NWL 0 00358 and this is equivalent to an average outperformance of 18.6%
per annum, NWL is a stock with a significant alpha. It also has a low systematic risk
because βNWL 0 50596, which is much less than 1. Its specific risk, expressed as an
annual volatility, is 0 03212 52 23 17%.
Since the t ratio on MSFT is very small, MSFT has no significant outperformance or
underperformance of the index. It also has a high systematic risk because the beta is
slightly greater than 1 and a specific risk of 0 03569 52 25 74%, which is greater
than the specific risk of NWL.

Now applying (II.1.4) gives a portfolio with the following characteristics:

0 7 0 00358 0 3 0 00066 0 00231
β 0 7 0 50596 0 3 1 10421 0 68543

and assuming the specific returns are uncorrelated implies that we can estimate the specific
risk of the portfolio as

s 0 72 23 172 0 32 25 742 17 96%

The next example shows that it makes no difference to the portfolio alpha and beta estimates
whether we estimate them:

from the OLS regressions for the stocks, applying the portfolio weights to the stocks
alphas and betas using (II.1.4) as we did above;
by using an OLS regression of the form (II.1.3) on the constant weighted portfolio
returns.

However, it does make a difference to our estimate of the specific risk on the portfolio!

Example II.1 .2: OLS estimates of portfolio alpha and beta

A portfolio has 60% invested in American Express (AXP) stock and 40% invested in Cisco
Systems (CSCO). Use daily data from 3 January 2000 to 31 December 2007 on the prices of
these stocks and on the S&P 100 index (OEX) to estimate the portfolio’s characteristics by:5

5 Data were downloaded from Yahoo! Finance. The reason we use log returns in this example is explained in Section I.1.4.4.
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(a) applying the same method as in Example II.1.1;
(b) regressing the constant weighted returns series 0 6 Amex Return 0 4 Cisco

Return on the index returns.

Solution The results are computed using an OLS regression of each stock return and of
the constant weighted portfolio returns, and the alpha and beta estimates are summarized in
Table II.1.1. Note that for the first two rows the last column is a weighted sum of the first
two. That is, the portfolio’s alpha could equally well have been calculated by just taking the
weighted sum of the stocks’ alphas, and similarly for the beta. However, if we compute the
specific risk of the portfolio using the two methods we obtain, using method (a),

sP 0 62 0 014162 0 42 0 023372 250 19 98%

But using method (b), we have

sP 0 01150 250 18 19%

The problem is that the specific risks are not uncorrelated, even though we made this
assumption when we applied method (a).

Table II.1.1 OLS alpha, beta and specific risk for two stocks and a 60:40
portfolio

Amex Cisco Portfolio

Alpha 0 00018 0 00022 0 00002
Beta 1 24001 1 76155 1 44863
Regression standard error 0 01416 0 02337 0 01150
Specific risk 22.39 % 36.96 % 18.19 %

We conclude that to estimate the specific risk of a portfolio we need to apply method
(b). That is, we need to reconstruct a constant weighted portfolio series and calculate the
specific risk from that regression. Alternatively and equivalently, we can save the residuals
from the OLS regressions for each stock return and calculate the covariance matrix of these
residuals. More details are given in Section II.1.3.3 below.

II.1.2.3 Estimating Portfolio Risk using EWMA

Whilst OLS may be adequate for asset managers, it is not appropriate to use a long price
history of monthly or weekly data for the risk management of portfolios. Market risks require
monitoring on a frequent basis – daily and even intra-daily – and the parameter estimates
given by OLS will not reflect current market conditions. They merely represent an average
value over the time period covered by the sample used in the regression model.

So, for the purpose of mapping a portfolio and assessing its risks, higher frequency data
(e.g. daily) could be used to estimate a time varying portfolio beta for the model

Y t t βtX t t (II.1.8)

where X t and Y t denote the returns on the market factor and on the stock (or portfolio),
respectively, at time t. In this model the systematic and specific risks are no longer assumed
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constant over time. The time varying beta estimates in (II.1.8) better reflect the current
risk factor sensitivity for daily risk management purposes. To estimate time varying betas
we cannot apply OLS so that it covers only the recent past. This approach will lead to
very significant problems, as demonstrated in Section II.3.6. Instead, a simple time vary-
ing model for the covariance and variance may be applied to estimate the parameters of
(II.1.8). The simplest possible time varying parameter estimates are based on an exponen-
tially weighted moving average (EWMA) model. However the EWMA model is based on
a very simple assumption, that returns are i.i.d. The EWMA beta estimates vary over time,
even though the model specifies only a constant, unconditional covariance and variance.
More advanced techniques include the class of generalized autoregressive conditional het-
eroscedasticity (GARCH) models, where we model the conditional covariance and variance
and so the true parameters as well as the parameter estimates change over time.6

A time varying beta is estimated as the covariance of the asset and factor returns divided
by the variance of the factor returns. Denoting the EWMA smoothing constant by , the
EWMA estimate of beta that is made at time t is

βt
Cov X t Y t

V X t

(II.1.9)

That is, the EWMA beta estimate is the ratio of the EWMA covariance estimate to the
EWMA variance estimate with the same smoothing constant. The modeller must choose
a value for between 0 and 1, and values are normally in the region of 0.9–0.975. The
decision about the value of is discussed in Section II.3.7.2.

We now provide an example of calculating the time varying EWMA betas for the portfolio
in Example II.1.2. Later on, in Section II.4.8.3 we shall compare this beta with the beta that
is obtained using a simple bivariate GARCH model. We assume 0 95, which corresponds
to a half-life of approximately 25 days (or 1 month, in trading days) and compare the EWMA
betas with the OLS beta of the portfolio that was derived in Example II.1.2. These are
shown in Figure II.1.1, with the OLS beta of 1.448 indicated by a horizontal grey line. The
EWMA beta, measured on the left-hand scale, is the time varying black line. The OLS beta
is the average of the EWMA betas over the sample. Also shown in the figure is the EWMA
estimate of the systematic risk of the portfolio, given by

Systematic Risk βt V X t h (II.1.10)

where h denotes the number of returns per year, assumed to be 250 in this example.
During 2001 the portfolio had a beta much greater than 1.448, and sometimes greater than

2. The opposite is the case during the latter part of the sample. But note that this remark does
depend on the choice of : the greater the value of the smoother the resulting series, and
when 1 the EWMA estimate coincides with the OLS estimate. However, when < 1
the single value of beta, equal to 1.448, that is obtained using OLS does not reflect the
day-to-day variation in the portfolio’s beta as measured by the EWMA estimate.

A time varying estimate of the systematic risk is also shown in Figure II.1.1. The portfolio’s
systematic risk is depicted in the figure as an annualized percentage, measured on the right-
hand scale. There are two components of the systematic risk, the beta and the volatility of
the market factor, and the systematic risk is the product of these. Hence the systematic risk
was relatively low, at around 10% for most of the latter part of the sample even though the

6 EWMA and GARCH models are explained in detail in Chapters II.3 and II.4.
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Figure II.1.1 EWMA beta and systematic risk of the two-stock portfolio

portfolio’s beta was greater than 1, because the S&P 100 index had a very low volatility
during this period. On the other hand, in August and October 2002 the portfolio had a
high systematic risk, not because it had a high beta but because the market was particularly
volatile then. By contrast, the OLS estimate of systematic risk is unable to reflect such time
variation. The average volatility of the S&P 100 over the entire sample was 18.3% and so
OLS produces the single estimate of 18 3% 1 448 26 6% for systematic risk. This figure
represents only an average of the systematic risk over the sample period.

II.1.2.4 Relationship between Beta, Correlation and Relative Volatility

In the single index model the beta, market correlation and relative volatility of an asset or a
portfolio with return Y when the market return is X are defined as

β
Cov X Y

V X

Cov X Y

V X V Y

V Y

V X
(II.1.11)

Hence,

β (II.1.12)

i.e. the equity beta is the product of the market correlation and the relative volatility of
the portfolio with respect to the index or benchmark.

The correlation is bounded above and below by 1 and 1 and the relative volatility
is always positive. So the portfolio beta can be very large and negative if the portfolio is
negatively correlated with the market, which happens especially when short positions are
held. On the other hand, very high values of beta can be experienced for portfolios containing
many risky stocks that are also highly correlated with the market.

In Figures II.1.2 and II.1.3 we show the daily EWMA estimates of beta, relative volatil-
ity and correlation (on the right-hand scale) of the Amex and Cisco stocks between
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Figure II.1.2 EWMA beta, relative volatility and correlation of Amex ( 0 95)
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Figure II.1.3 EWMA beta, relative volatility and correlation of Cisco ( 0 95)

January 2001 and December 2007.7 The same scales are used in both graphs, and it is clear
that Cisco has a greater systematic risk than Amex. The average market correlation of both
stocks is higher for Amex (0.713 for Amex and 0.658 for Cisco) but Cisco is much more
volatile than Amex, relative to the market. Hence, EWMA correlation is more unstable and
its EWMA beta is usually considerably higher than the beta on Amex.

7 As before, 0 95.
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II.1.2.5 Risk Decomposition in a Single Factor Model

The principle of portfolio diversification implies that asset managers can reduce the specific
risk of their portfolio by diversifying their investments into a large number of assets that have
low correlation – and/or by holding long and short positions on highly correlated assets. This
way the portfolio’s specific risk can become insignificant. Passive managers, traditionally
seeking only to track the market index, should aim for a net 0 and a net portfolio
β 1 whilst simultaneously reducing the portfolio’s specific risk as much as possible. Active
managers, on the other hand, may have betas that are somewhat greater than 1 if they are
willing to accept an increased systematic risk for an incremental return above the index.

Taking the expectation and variance of (II.1.3) gives

E Y βE X (II.1.13)

If we assume Cov X 0,

V Y β2V X V (II.1.14)

It is very important to recognize that the total portfolio variance (II.1.14) represents the
variance of portfolio returns around the expected return (II.1.13). It does not represent the
variance about any other value! This is a common mistake and so I stress it here: it is
statistical nonsense to measure the portfolio variance using a factor model and then to assume
this figure represents the dispersion of portfolio returns around a mean that is anything other
than (II.1.13). For example, the variance of a portfolio that is estimated from a factor model
does not represent the variance about the target returns, except in the unlikely case that the
expected return that is estimated by the model is equal to this target return.

The first term in (II.1.14) represents the systematic risk of the portfolio and the second
represents the specific risk. When risk is measured as standard deviation the systematic
risk component is β V X and the specific risk component is V . These are normally
quoted as an annualized percentage, as in the estimates given in the examples above.

From (II.1.14) we see that the volatility of the portfolio return – about the expected return
given by the factor model – can be decomposed into three sources:

the sensitivity to the market factor beta,
the volatility of the market factor, and
the specific risk.

One of the limitations of the equity beta as a risk measure is that it ignores the other two
sources of risk: it says nothing about the risk of the market factor itself or about the specific
risk of the portfolio.

We may express (II.1.14) in words as

Total Variance Systematic Variance Specific Variance (II.1.15)

or, since risk is normally identified with standard deviation (or annualized standard deviation,
i.e. volatility),

Total Risk Systematic Risk2 Specific Risk2 1/ 2 (II.1.16)

Thus the components of risk are not additive. Only variance is additive, and then only under
the assumption that the covariance between each risk factor’s return and the specific return
is 0.
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II.1.3 MULTI-FACTOR MODELS

The risk decomposition (II.1.14) rests on an assumption that the benchmark or index is
uncorrelated with the specific returns on a portfolio. That is, we assumed in the above
that Cov X 0. But this is a very strong assumption that would not hold if there were
important risk factors for the portfolio, other than the benchmark or index, that have some
correlation with the benchmark or index. For this reason single factor models are usually
generalized to include more than one risk factor, as assumed in the arbitrage pricing theory
developed by Ross (1976). By generalizing the single factor model to include many risk
factors, it becomes more reasonable to assume that the specific return is not correlated with
the risk factors and hence the risk decomposition (II.1.16) is more likely to hold.

The success of multi-factor models in predicting returns in financial asset markets and
analysing risk depends on both the choice of risk factors and the method for estimating
factor sensitivities. Factors may be chosen according to fundamentals (price–earning ratios,
dividend yields, style factors, etc.), economics (interest rates, inflation, gross domestic
product, etc.), finance (such as market indices, yield curves and exchange rates) or statistics
(e.g. principal component analysis or factor analysis). The factor sensitivity estimates for
fundamental factor models are sometimes based on cross-sectional regression; economic or
financial factor model betas are usually estimated via time series regression; and statistical
factor betas are estimated using statistical techniques based on the analysis of the eigenvectors
and eigenvalues of the asset returns covariance or correlation matrix. These specific types of
multi-factor models are discussed in Sections II.1.4–II.1.6 below. In this section we present
the general theory of multi-factor models and provide several empirical examples.

II.1.3.1 Multi-factor Models of Asset or Portfolio Returns

Consider a set of k risk factors with returns X 1, , Xk and let us express the systematic
return of the asset or the portfolio as a weighted sum of these. In a multi-factor model for
an asset return or a portfolio return, the return Y is expressed as a sum of the systematic
component and an idiosyncratic or specific component that is not captured by the risk
factors. In other words, a multi-factor model is a multiple regression model of the form8

Y t β1X 1t βkX kt t (II.1.17)

In the above we have used a subscript t to denote the time at which an observation is made.
However, some multi-factor models are estimated using cross-sectional data, in which case
the subscript i would be used instead.

Matrix Form

It is convenient to express (II.1.17) using matrix notation, but here we use a slightly different
notation from that which we introduced for multivariate regression in Section I.4.4.2. For
reasons that will become clear later, and in particular when we analyse the Barra model, it
helps to isolate the constant term alpha in the matrix notation. Thus we write

y Xβ t i.i.d. 0 2 (II.1.18)

8 In this chapter, since we are dealing with alpha models, it is convenient to separate the constant term alpha from the other
coefficients. Hence we depart from the notation used for multiple regression models in Chapter I.4. There the total number of
coefficients including the constant is denoted k, but here we have k 1 coefficients in the model.


