Electromagnetic Foundations of Electrical Engineering

J. A. Brandão Faria

Instituto Superior Técnico – Technical University of Lisbon, Portugal

Electromagnetic Foundations of Electrical Engineering

Electromagnetic Foundations of Electrical Engineering

J. A. Brandão Faria

Instituto Superior Técnico – Technical University of Lisbon, Portugal

This edition first published 2008 © 2008, John Wiley & Sons, Ltd

Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging in Publication Data

Faria, J. A. Brandão, 1952– Electromagnetic foundations of electrical engineering / by J. A. Brandão Faria.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-72709-6 (cloth)
1. Electric engineering. 2. Electromagnetic fields. 3. Electromagnetism.
I. Title.
TK146.F37 2008
621.3—dc22

2008016867

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-72709-6

Set in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire To the memory of my wife, Fernanda Faria 'Let there be light', and there was light Genesis 1:3

$$\begin{cases} \operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \operatorname{div} \mathbf{B} = 0 \\ \operatorname{curl} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \\ \operatorname{div} \mathbf{D} = \rho \end{cases}$$

Contents

Abo	xi		
Pref	xiii		
For	xvii		
For	For Students		
For	xxi		
Ack	Acknowledgements		
Proj	iect Portfolio	1	
P1	Analysis of a Power Delivery System	3	
P2	Cylindrical Type Transmission Lines	7	
P3	DC Transducer	13	
P4	Determination of the Conductivity of a Circular Conducting		
	Disk	17	
P5	Directional Coupler Analysis	19	
P6	Ill-Defined Grounding Problems	23	
P7	Induction Machine Analysis	25	
P8	Line-Matching Technique using an Exponential Transmission-Line		
-	Section	31	
P9	Linear Variable Differential Transformer	35	
P10	Magnetic Actuator and Sensor Device	39	
P11	Overhead-Line Protection by Ground Wires Power Line Carrier Communication	43	
P12 P13	Power Line Carrier Communication Pseudo-Balanced Three-Phase Lines	47	
P15 P14		53 57	
P15	8 8	61	
P16	5	65	
P17	Transmission-Line System with Balun Transformer for Even- to	05	
11/	Odd-Mode Conversion	69	
P18	Transmission-Line System with Transformer-Stage Matching	73	
P19		73	
P20	Variable Reluctance Transformer	81	
		01	

Pa	art I	A Brief Overview	85		
	Intro	oduction	87		
1	1.1 1.2 1.3	c Field Vectors The Electric and Magnetic Field Vectors Constitutive Relations Units and Notation Fundamental Concepts of Voltage and Current Intensity	89 89 90 91 92		
Pa	Part II Stationary Field Phenomena				
	Intro	oduction	97		
2	Electrostatics				
		Fundamental Equations	99		
		Gradient Electric Field, Electric Potential, Voltage, Kirchhoff's Voltage Law	99		
		Electric Charge, Electric Displacement Vector	102		
		Dielectric Media, Permittivity, Polarization, Dielectric Strength	103		
		Conductors in Electrostatic Equilibrium	105		
		Application Example (Filament of Charge)	107		
		Capacitor, Capacitance, Electric Energy Application Example (Two-Wire Transmission Line)	108 112		
		Multiple Conductor Systems	112		
	2.7	2.9.1 Capacitance Matrix	118		
		2.9.2 Partial Capacitances Scheme	122		
	2.10	Application Example (Electric Coupling in Printed Circuit Boards)	124		
		Electric Forces and Torques	125		
		Proposed Homework Problems	129		
3	Stati	onary Currents	139		
		Fundamental Equations	139		
		Conductivity, Current Density, Electric Circuits	139		
		Current Intensity, Kirchhoff's Current Law	142		
		Resistor, Conductance, Resistance, Ohm's Law	144		
		Application Example (The Potentiometer)	146		
		Application Example (The Wheatstone Bridge)	148		
		Joule Losses, Generator Applied Field	149		
	3.8 3.9	Generator Electromotive Force, Power Balance Proposed Homework Problems	151 153		
	5.9	Proposed Homework Problems	155		
4	Mag	netic Field of Stationary Currents	161		
	4.1	Fundamental Equations	161		
	4.2	Ampère's Law, Magnetomotive Force, Magnetic Voltage	161		
	4.3	Magnetic Induction Field, Magnetic Induction Flux	164		
	4.4	Application Example (Power Line Magnetic Fields)	165		
	4.5	Magnetic Materials, Ferromagnetic Media, Saturation and Hysteresis	168		
	4.6	Magnetic Circuits	169		
	4.7	Application Example (Three-Legged Transformer)	170		
	4.8 4.9	Magnetic Reluctance Inductor, Inductance, Magnetic Flux Linkage, Magnetic Energy	173		
		Application Example (Coaxial Cable)	174		
	4.10	Application Example (Coaxial Cable)	179		

	4.11	Hysteresis Losses	182		
		Multiple Circuit Systems	183		
		Magnetic Forces and Torques	187		
	4.14	Application Example (U-Shaped Electromagnet)	188		
		Proposed Homework Problems	189		
Pa	Part III Slow Time-Varying Fields				
	Intro	oduction	205		
5	Mag	netic Induction Phenomena	207		
	5.1	Fundamental Equations	207		
	5.2	Gradient and Induction Electric Fields, Potential Vector	207		
		Revisiting the Voltage Concept	208		
	5.4	Induction Law	210		
	5.5	Application Example (Magnetic Noise Effects)	210		
		Voltages and Currents in Magnetically Multicoupled Systems	211		
	5.7	Application Example (Magnetic Coupling in Printed Circuit Boards)	217		
		Eddy Currents	219		
		Generalization of the Induction Law to Moving Circuit Systems	220		
		Application Example (Electromechanical Energy Conversion)	221 223		
		DC Voltage Generation AC Voltage Generation	223		
		Proposed Homework Problems	224		
	5.15	rioposed nonework rioblenis	220		
6		tric Induction Phenomena	237		
	6.1	Fundamental Equations	237		
	6.2	Displacement Current, Generalized Ampère's Law	237		
		Charge Continuity Equation	238		
	6.4	Revisiting the Current Intensity Concept	240		
	6.5	Application Example (Capacitor Self-Discharge)	241 242		
	6.6 6.7	Voltages and Currents in Electrically Multicoupled Systems Proposed Homework Problems	242		
	0.7	Proposed Homework Problems	244		
7		nped Parameters Circuit Analysis	249		
		Introduction	249		
	7.2	Steady-State Harmonic Regimes	250		
		7.2.1 Characterization of Sinusoidal Quantities	251		
		7.2.2 Complex Amplitudes or Phasors	254 255		
		7.2.3 Application Example (RLC Circuit) 7.2.4 Instantaneous Power, Active Power, Power Balance Equation	257		
		7.2.5 Complex Power, Complex Poynting Theorem	260		
		7.2.5 Complex Power, Complex Poynting Theorem 7.2.6 Impedance and Admittance Operators	260		
		7.2.7 Resonance	262		
		7.2.7 Resonance 7.2.8 Application Example (RL C Circuit)	263		
	7.3	Transformer Analysis	267		
	1.5	7.3.1 The Ideal Transformer	269		
		7.3.2 Transformer Impedance, Pseudo Lenz's Law	270		
		7.3.3 Equivalent Circuits	270		
		7.3.4 Application Example (Capacitively Loaded Transformer)	274		
			<i>,</i> -		

	7.4	Transient Regimes	276	
		7.4.1 Free-Regime and Steady-State Solutions	276	
		7.4.2 Initial Conditions	278	
		7.4.3 Analysis of the Capacitor Charging Process	278	
		7.4.4 Connecting an Inductive Load to an AC Generator	282	
		7.4.5 Disconnecting an Inductive Load	284	
		7.4.6 Application Example (Switching Off a Transformer Protected by a Capacitor)	286	
	7.5	Proposed Homework Problems	290	
Pa	Part IV Rapid Time-Varying Fields			
	Intro	oduction	307	
8	Elec	tromagnetic Field Phenomena	309	
	8.1	Electromagnetic Waves	309	
	8.2	Poynting Theorem, Poynting Vector, Power Flow	311	
	8.3	Time-Harmonic Fields, Field Polarization, RMS Field Values	315	
	8.4	Phasor-Domain Maxwell's Equations, Material Media Constitutive Relations	317	
	8.5	Application Example (Uniform Plane Waves)	318	
	8.6	Complex Poynting Vector	320	
	8.7	Application Example (Skin Effect)	322	
	8.8	Proposed Homework Problems	326	
9		nsmission-Line Analysis	335	
		Introduction	335	
	9.2	Time-Domain Transmission-Line Equations for Lossless Lines	337	
		9.2.1 Wave Parameters, Propagation Velocity, Characteristic Wave Resistance	340	
		9.2.2 Pulse Propagation, Pulse Reflection	342	
	9.3	Application Example (Parallel-Plate Transmission Line)	345	
	9.4	Frequency-Domain Transmission-Line Equations for Lossy Lines	349	
		9.4.1 Per-Unit-Length Longitudinal Impedance, Per-Unit-Length Transverse	250	
		Admittance	350	
		9.4.2 Propagation Constant, Phase Velocity, Characteristic Wave Impedance	351	
	0.5	9.4.3 Transfer Matrix, Non-Uniform Line Analysis	354 356	
	9.5	Frequency-Domain Transmission-Line Equations for Lossless Lines	356	
		9.5.1 Terminated Line, Load Reflection Coefficient, Line Input Impedance 9.5.2 Matched Line, Open Line, Short-Circuited Line	358	
		9.5.2 Matched Line, Open Line, Short-Circuited Line 9.5.3 Standing Wave Pattern, Standing Wave Ratio, Active Power	362	
		9.5.4 The Low-Frequency Limit Case, Short Lines	364	
	9.6		365	
	9.7		369	
	9.8	Application Example (Even and Odd Modes)	372	
	9.9	Proposed Homework Problems	375	
А	ppend	lix A Formulas from Vector Analysis	387	
		lix B Lorentz Transformation	389	
		lix C Elements of Complex Algebra	391	
	· ·	lix D Elements of Fourier Analysis	393	
Bi	Bibliography			
In	ndex 3			

About the Author

J. A. Brandão Faria received his PhD degree and aggregate title in electrical engineering from the Instituto Superior Técnico of the Technical University of Lisbon, where, since 1994, he has been a Full Professor of Electrical Engineering teaching undergraduate and graduate courses in electromagnetics. His teaching activities also include lecturing courses at the Portuguese Air Force Academy.

Professor Brandão Faria was a senior scientist with the former Centro de Electrotecnia Teórica e Medidas Eléctricas where he served as President from 1994 until 2000. Since 2008, he has been at the recently created CIEEE (Center for Innovation in Electrical and Energy Engineering).

Professor Brandão Faria was the recipient of two Honorable Mentions awarded in 1994 and 2007 by the Portuguese State Department of Science and Technology, and by the Technical University of Lisbon, respectively. His areas of interest include electromagnetic field

problems, power lines, and wave propagation phenomena in multiconductor transmission lines. He is the author of two books on electrical engineering subjects, namely *Optica* and *Multiconductor Transmission-Line Structures*, and has published over 100 technical papers.

Professor Brandão Faria is a member of the Editorial Board of the *European Transactions* on *Electrical Power* (John Wiley & Sons, Ltd) and a senior member of the IEEE.

For more details follow the author's website link at: https://fenix.ist.utl.pt:443/homepage/ist11545.

Preface

This book has been written bearing in mind not only my own students but also electrical engineering students in general, including European students now facing the challenges of the Bologna Reform.

The primary goal of this textbook, *Electromagnetic Foundations of Electrical Engineering*, is to provide undergraduate students taking courses in electrical engineering with a scientifically founded and unified basis of fundamental knowledge on electromagnetic field phenomena, which will enable them to grasp advanced topics and specialized applications that will be dealt with later in their courses, or that they will come across in their professional lives as engineers.

Several distinguishing features make this new textbook unique in its area. It is primarily a balanced foundations book with a broad scope. The emphasis is on basic principles, concepts and governing laws that can be used precisely by electrical engineering students pursuing studies in areas as diverse as power and energy systems, telecommunications, electronic circuits, control systems, bioengineering, etc. In order to reach and serve as large a readership as possible, bias towards specific areas has been deliberately avoided. Electrical engineering professionals (practitioners) with a need for a refresher course in electromagnetic foundations will also find the book a valuable asset.

A project-solving oriented posture is adopted to capture more easily the reader's interest. However, it is not my intention to provide ready-made recipes or rote procedures for students; my approach emphasizes problem solving as a thought process based on concepts and on concept linking. Right at the beginning of the book, a project portfolio is proposed and offered to students in order to capture their attention and trigger their curiosity (project solutions will be available separately). These projects tie together a diversity of knowledge components whose roots lie in different chapters in the text; this salient feature, it is hoped, will help readers understand the big picture, avoiding segmented perspectives. The key idea is to enable students' knowledge integration skills so that, after completing the book, they can solve the various problems and questions included in the proposed project portfolio. When they do, both the students and the book will have accomplished their goals.

In addition, in all chapters, several fully worked-out application examples are presented to illustrate the theory and concepts that have just been introduced and developed. Endof-chapter homework problems, intended to help guide students in their learning process,