
Web Development / ASP.NET

Take your web development to
the next level using ASP.NET 4

Bill
Evjen

is one of the
most active
proponents
of .NET
technologies.

He is the
founder of the

International .NET Association
(INETA), author or coauthor of
more than two dozen books,
and Global Head of Platform
Architecture at Thomson
Reuters, Lipper.

Scott Hanselman
is a principal
program manager
lead working in

the Server and
Tools Online
Division at
Microsoft.
He has a

popular blog
and weekly podcast

at www.computerzen.com and
speaks worldwide on ASP.NET.

Devin
Rader

Devin Rader
works at
Infragistics
where he
focuses on

delivering
great experiences

to developers using their controls.
He’s also a former INETA board
member.

 $59.99 USA
 $71.99 CAN

Evjen, Hanselman, Rader

Bill Evjen, Scott Hanselman, Devin Rader

Professional

ASP.NET 4
in C# and VB

A
SP.N

ET 4

Professional
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

in C# and VB

Bill
Ev

is

H

is a pr
prog
lead

th

p
d

De
Ra

D

d

ASP.NET is about making you as productive as possible when building
fast and secure web applications. Each release of ASP.NET gets
better and removes a lot of the tedious code that you previously
needed to put in place, making common ASP.NET tasks easier. With
this book, an unparalleled team of authors walks you through the full
breadth of ASP.NET and the new and exciting capabilities of ASP.
NET 4. The authors also show you how to maximize the abundance
of features that ASP.NET offers to make your development process
smoother and more efficient.

Professional ASP.NET 4:

• Demonstrates ASP.NET built-in systems such as the membership and
role management systems

• Covers everything you need to know about working with and manipu-
lating data

• Discusses the plethora of server controls that are at your disposal
• Explores new ways to build ASP.NET, such as working with ASP.NET MVC

and ASP.NET AJAX
• Examines the full life cycle of ASP.NET, including debugging and error

handling, HTTP modules, the provider model, and more
• Features both printed and downloadable C# and VB code examples

wrox.com
Programmer Forums Join our Programmer to Programmer forums
to ask and answer programming questions about this book, join
discussions on the hottest topics in the industry, and connect
with fellow programmers from around the world.
Code Downloads Take advantage of free code samples from this
book, as well as code samples from hundreds of other books, all
ready to use.

Read More Find articles, ebooks, sample chapters, and tables of contents for hundreds
of books, and more reference resources on programming topics that matter to you.

Wrox Professional guides are planned and written by working programmers
to meet the real-world needs of programmers, developers, and IT professionals.
Focused and relevant, they address the issues technology professionals face every
day. They provide examples, practical solutions, and expert education in new
technologies, all designed to help programmers do a better job.

w
P
t
d

Related Wrox Books
Beginning ASP.NET 4: in C# and VB
ISBN: 978-0-470-50221-1
This introductory book offers helpful examples in a step-by-step format and has code examples written in both C# and
Visual Basic. With this book you will gradually build a web site example that takes you through the processes of building
basic ASP.NET web pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Microsoft Visual C# 2010
ISBN: 978-0-470-50226-6
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out” at every stage. By the end, you’ll be able to write useful programming code
following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming,
this book is the perfect one-stop resource.

Professional Visual Basic 2010 and .NET 4
ISBN: 978-0-470-50224-2
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most,
this is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need,
including .NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging,
Visual Studio features, and ASP.NET web programming.

Professional C# 4 and .NET 4
ISBN: 978-0-470-50225-9
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET programming
with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest capabilities
of C# 4.

Visual Studio 2010 and .NET 4 Six-in-One
ISBN: 978-0-470-49948-1
This comprehensive resource offers all you need to know to become productive with .NET 4. Experienced author and .NET guru
Mitchel Sellers reviews all the important features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic
data and jQuery, and F#. The coverage is divided into six distinctive parts for easy navigation and offers a practical approach
and complete examples.

Professional Visual Studio 2010
ISBN: 978-0-470-54865-3
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can
expect from Visual Studio 2010. Packed with helpful examples, this comprehensive guide examines the features of Visual Studio
2010 and walks you through every facet of the Integrated Development Environment (IDE), from common tasks and functions
to its powerful tools.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book serves as an introduction
to WPF development and explains fundamental WPF concepts. It is packed with helpful examples and progresses through
a range of topics that gradually increase in their complexity.

Visual Basic 2010 Programmer’s Reference
ISBN: 978-0-470-49983-2
Visual Basic 2010 Programmer’s Reference is a language tutorial and a reference guide to the 2010 release of Visual Basic.
The tutorial provides basic material suitable for beginners but also includes in-depth content for more advanced developers.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

http://www.wrox.com

PROFESSIONAL ASP.NET 4

INTRODUCTION . xxxix

CHAPTER 1 Application and Page Frameworks .1

CHAPTER 2 ASP.NET Server Controls and Client-Side Scripts . 49

CHAPTER 3 ASP.NET Web Server Controls . 85

CHAPTER 4 Validation Server Controls . 157

CHAPTER 5 Working with Master Pages . 187

CHAPTER 6 Themes and Skins . 217

CHAPTER 7 Data Binding . 237

CHAPTER 8 Data Management with ADO.NET .309

CHAPTER 9 Querying with LINQ . 371

CHAPTER 10 Working with XML and LINQ to XML .405

CHAPTER 11 Introduction to the Provider Model . 457

CHAPTER 12 Extending the Provider Model . 491

CHAPTER 13 Site Navigation . 519

CHAPTER 14 Personalization .569

CHAPTER 15 Membership and Role Management . 597

CHAPTER 16 Portal Frameworks and Web Parts .643

CHAPTER 17 HTML and CSS Design with ASP.NET .683

CHAPTER 18 ASP.NET AJAX .709

CHAPTER 19 ASP.NET AJAX Control Toolkit . 749

CHAPTER 20 Security .805

CHAPTER 21 State Management .835

CHAPTER 22 Caching .865

CHAPTER 23 Debugging and Error Handling .895

CHAPTER 24 File I/O and Streams . 927

CHAPTER 25 User and Server Controls .979

CHAPTER 26 Modules and Handlers . 1045

ffirs.indd iffirs.indd i 2/3/10 11:55:51 AM2/3/10 11:55:51 AM

CHAPTER 27 ASP.NET MVC . 1059

CHAPTER 28 Using Business Objects . 1081

CHAPTER 29 ADO.NET Entity Framework . 1105

CHAPTER 30 ASP.NET Dynamic Data . 1129

CHAPTER 31 Working with Services . 1153

CHAPTER 32 Building Global Applications .1217

CHAPTER 33 Confi guration . 1239

CHAPTER 34 Instrumentation . 1285

CHAPTER 35 Administration and Management . 1315

CHAPTER 36 Packaging and Deploying ASP.NET Applications . 1337

APPENDIX A Migrating Older ASP.NET Projects . 1369

APPENDIX B ASP.NET Ultimate Tools . 1381

APPENDIX C Silverlight 3 and ASP.NET . 1399

APPENDIX D Dynamic Types and Languages . 1419

APPENDIX E ASP.NET Online Resources . 1427

INDEX . 1429

ffirs.indd iiffirs.indd ii 2/3/10 11:55:51 AM2/3/10 11:55:51 AM

PROFESSIONAL

ASP.NET 4

ffirs.indd iiiffirs.indd iii 2/3/10 11:55:52 AM2/3/10 11:55:52 AM

ffirs.indd ivffirs.indd iv 2/3/10 11:55:52 AM2/3/10 11:55:52 AM

PROFESSIONAL

ASP.NET 4

IN C# AND VB

Bill Evjen
Scott Hanselman

Devin Rader

ffirs.indd vffirs.indd v 2/3/10 11:55:52 AM2/3/10 11:55:52 AM

Professional ASP.NET 4: In C# and VB

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-50220-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009943645

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 2/3/10 11:55:53 AM2/3/10 11:55:53 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.wiley.com/go/permissions

To Tuija, always.

—Bill Evjen

To Momo and the boys. Toot!

—Scott Hanselman

ffirs.indd viiffirs.indd vii 2/3/10 11:55:54 AM2/3/10 11:55:54 AM

ffirs.indd viiiffirs.indd viii 2/3/10 11:55:54 AM2/3/10 11:55:54 AM

ABOUT THE AUTHORS

BILL EVJEN is an active proponent of .NET technologies and community-based learning
initiatives for .NET. He has been actively involved with .NET since the fi rst bits
were released in 2000. In the same year, Bill founded the St. Louis .NET User Group
(www.stlnet.org), one of the world’s fi rst such groups. Bill is also the founder and former
executive director of the International .NET Association (www.ineta.org), which represents
more than 500,000 members worldwide.

Based in St. Louis, Missouri, Bill is an acclaimed author and speaker on ASP.NET and Services. He has
authored or coauthored more than 20 books including Professional C# 2010, Professional VB 2008,
ASP.NET Professional Secrets, XML Web Services for ASP.NET, and Web Services Enhancements:
Understanding the WSE for Enterprise Applications (all published by Wiley). In addition to writing, Bill is a
speaker at numerous conferences, including DevConnections, VSLive!, and TechEd. Along with these items,
Bill works closely with Microsoft as a Microsoft Regional Director and an MVP.

Bill is the Global Head of Platform Architecture for Thomson Reuters, Lipper, the international news
and fi nancial services company (www.thomsonreuters.com). He graduated from Western Washington
University in Bellingham, Washington, with a Russian language degree. When he isn’t tinkering on the
 computer, he can usually be found at his summer house in Toivakka, Finland. You can reach Bill on Twitter
at @billevjen.

SCOTT HANSELMAN works for Microsoft as a Principal Program Manager Lead in the
Server and Tools Online Group, aiming to spread the good word about developing software,
most often on the Microsoft stack. Before this, Scott was the Chief Architect at Corillian,
an eFinance enabler, for 6+ years, and before Corillian, he was a Principal Consultant at
Microsoft Gold Partner for 7 years. He was also involved in a few things like the MVP and
RD programs and will speak about computers (and other passions) whenever someone will
listen to him. He blogs at www.hanselman.com, podcasts at www.hanselminutes.com, and

runs a team that contributes to www.asp.net, www.windowsclient.net, and www.silverlight.net.
Follow Scott on Twitter @shanselman.

DEVIN RADER works at Infragistics where he focuses on delivering great experiences to
developers using their controls. He’s done work on all of the .NET platforms, but most
recently has been focused on Web technologies ASP.NET and Silverlight. As a co-founder
of the St. Louis .NET User group and a former INETA board member, and a member of
the Central New Jersey .NET user group, he’s an active supporter of the .NET developer
community. He’s also co-author or technical editor of numerous books on .NET, including
Wrox’s Silverlight 3 Programmer’s Reference. Follow Devin on Twitter @devinrader.

ffirs.indd ixffirs.indd ix 2/3/10 11:55:54 AM2/3/10 11:55:54 AM

ABOUT THE TECHNICAL EDITORS

CARLOS FIGUEROA has been developing and designing Web solutions for the last 8 years, participating
in international projects for the pharmaceutical industry, banking, commercial air transportation, and the
government. During these years, Carlos has been deeply involved as an early adopter of Microsoft Web
development technologies, such as ASP.NET and Silverlight.

He has been awarded Microsoft Most Valuable Professional for the last 5 years and holds the MCAD
certifi cation. Carlos is a Senior Software Developer at Oshyn, Inc. (www.oshyn.com), a company
specialized on delivering innovative business solutions for the web, mobile devices and emerging
technology platforms. At Oshyn, Carlos is dedicated to help some of the most recognizable brands in the
world to achieve technology success. You can reach Carlos at cfigueroa1982@hotmail.com or follow
him on twitter @carlosfigueroa.

ANDREW MOORE is a graduate of Purdue University–Calumet in Hammond, Indiana, and has been
developing software since 1998 for radar systems, air traffi c management, discrete-event simulation, and
business communications applications using C, C++, C#, and Java on the Windows, UNIX, and Linux
platforms. Andrew is also a contributor to the Wrox Blox article series.

He is currently working as a Senior Software Engineer at Interactive Intelligence, Inc., in Indianapolis,
Indiana, developing server-side applications for a multimedia unifi ed business communications platform.
Andrew lives in Indiana with his wife Barbara and children Sophia and Andrew.

ffirs.indd xffirs.indd x 2/3/10 11:55:55 AM2/3/10 11:55:55 AM

CREDITS

ACQUISITIONS EDITOR

Paul Reese

SENIOR PROJECT EDITOR

Kevin Kent

TECHNICAL EDITORS

Carlos Figueroa

Andrew Moore

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Paula Lowell

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

PROOFREADERS

Word One

INDEXER

J & J Indexing

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© Jon Feingersh Photography Inc / Blend

Images / Jupiter Images

ffirs.indd xiffirs.indd xi 2/3/10 11:55:56 AM2/3/10 11:55:56 AM

ffirs.indd xiiffirs.indd xii 2/3/10 11:55:56 AM2/3/10 11:55:56 AM

ACKNOWLEDGMENTS

THANKS TO KEVIN KENT, PAUL REESE, AND JIM MINATEL for the opportunity to work on such a great
book. In addition to my co-authors, I would like to thank my family for putting up with all the writing.
Thank you Tuija, Sofi a, Henri, and Kalle!

—Bill Evjen

ffirs.indd xiiiffirs.indd xiii 2/3/10 11:55:56 AM2/3/10 11:55:56 AM

ffirs.indd xivffirs.indd xiv 2/3/10 11:55:56 AM2/3/10 11:55:56 AM

CONTENTS

INTRODUCTION xxxix

CHAPTER 1: APPLICATION AND PAGE FRAMEWORKS 1

Application Location Options 1

Built-in Web Server 2

IIS 3

FTP 3

Web Site Requiring FrontPage Extensions 4

The ASP.NET Page Structure Options 4

Inline Coding 6

Code-Behind Model 7

ASP.NET 4 Page Directives 9

@Page 10

@Master 13

@Control 14

@Import 15

@Implements 17

@Register 17

@Assembly 18

@PreviousPageType 18

@MasterType 18

@OutputCache 18

@Reference 19

ASP.NET Page Events 19

Dealing with Postbacks 20

Cross-Page Posting 21

ASP.NET Application Folders 26

App_Code Folder 27

App_Data Folder 30

App_Themes Folder 31

App_GlobalResources Folder 31

App_LocalResources Folder 31

App_WebReferences Folder 31

App_Browsers Folder 31

Compilation 32

Build Providers 35

ftoc.indd xvftoc.indd xv 2/3/10 9:02:03 PM2/3/10 9:02:03 PM

xvi

CONTENTS

Using the Built-in Build Providers 36

Using Your Own Build Providers 36

Global.asax 41

Working with Classes Through Visual Studio 2010 44

Summary 47

CHAPTER 2: ASP.NET SERVER CONTROLS AND CLIENT-SIDE SCRIPTS 49

ASP.NET Server Controls 49

Types of Server Controls 50

Building with Server Controls 51

Working with Server Control Events 53

Applying Styles to Server Controls 54

Examining the Controls’ Common Properties 54

Changing Styles Using Cascading Style Sheets 56

CSS Changes in ASP.NET 4 58

HTML Server Controls 59

Looking at the HtmlControl Base Class 60

Looking at the HtmlContainerControl Class 61

Looking at All the HTML Classes 61

Using the HtmlGenericControl Class 62

Identifying ASP.NET Server Controls 63

Manipulating Pages and Server Controls with JavaScript 65

Using Page.ClientScript.RegisterClientScriptBlock 66

Using Page.ClientScript.RegisterStartupScript 68

Using Page.ClientScript.RegisterClientScriptInclude 69

Client-Side Callback 69

Comparing a Typical Postback to a Callback 70

Using the Callback Feature — A Simple Approach 72

Using the Callback Feature with a Single Parameter 75

Using the Callback Feature — A More Complex Example 78

Summary 83

CHAPTER 3: ASP.NET WEB SERVER CONTROLS 85

An Overview of Web Server Controls 85

The Label Server Control 86

The Literal Server Control 88

The TextBox Server Control 88

Using the Focus() Method 89

Using AutoPostBack 89

Using AutoCompleteType 90

ftoc.indd xviftoc.indd xvi 2/3/10 9:02:04 PM2/3/10 9:02:04 PM

xvii

CONTENTS

The Button Server Control 91

The CausesValidation Property 91

The CommandName Property 92

Buttons That Work with Client-Side JavaScript 93

The LinkButton Server Control 94

The ImageButton Server Control 95

The HyperLink Server Control 96

The DropDownList Server Control 96

Visually Removing Items from a Collection 98

The ListBox Server Control 100

Allowing Users to Select Multiple Items 100

An Example of Using the ListBox Control 100

Adding Items to a Collection 102

The CheckBox Server Control 102

How to Determine Whether Check Boxes Are Checked 103

Assigning a Value to a Check Box 104

Aligning Text Around the Check Box 104

The CheckBoxList Server Control 104

The RadioButton Server Control 106

The RadioButtonList Server Control 108

Image Server Control 109

Table Server Control 110

The Calendar Server Control 112

Making a Date Selection from the Calendar Control 112

Choosing a Date Format to Output from the Calendar 113

Making Day, Week, or Month Selections 114

Working with Date Ranges 115

Modifying the Style and Behavior of Your Calendar 116

AdRotator Server Control 119

The Xml Server Control 121

Panel Server Control 122

The PlaceHolder Server Control 124

BulletedList Server Control 124

HiddenField Server Control 129

FileUpload Server Control 130

Uploading Files Using the FileUpload Control 130

Giving ASP.NET Proper Permissions to Upload Files 132

Understanding File Size Limitations 133

Uploading Multiple Files from the Same Page 134

Placing the Uploaded File into a Stream Object 137

Moving File Contents from a Stream Object to a Byte Array 137

ftoc.indd xviiftoc.indd xvii 2/3/10 9:02:05 PM2/3/10 9:02:05 PM

xviii

CONTENTS

MultiView and View Server Controls 138

Wizard Server Control 141

Customizing the Side Navigation 142

Examining the AllowReturn Attribute 143

Working with the StepType Attribute 143

Adding a Header to the Wizard Control 143

Working with the Wizard’s Navigation System 144

Utilizing Wizard Control Events 145

Using the Wizard Control to Show Form Elements 146

ImageMap Server Control 150

Chart Server Control 152

Summary 155

CHAPTER 4: VALIDATION SERVER CONTROLS 157

Understanding Validation 157

Client-Side versus Server-Side Validation 158

ASP.NET Validation Server Controls 159

Validation Causes 160

The RequiredFieldValidator Server Control 160

The CompareValidator Server Control 164

The RangeValidator Server Control 167

The RegularExpressionValidator Server Control 171

The CustomValidator Server Control 172

The ValidationSummary Server Control 176

Turning Off Client-Side Validation 179

Using Images and Sounds for Error Notifi cations 180

Working with Validation Groups 181

Summary 185

CHAPTER 5: WORKING WITH MASTER PAGES 187

Why Do You Need Master Pages? 187

The Basics of Master Pages 189

Coding a Master Page 190

Coding a Content Page 192

Mixing Page Types and Languages 196

Specifying Which Master Page to Use 197

Working with the Page Title 198

Working with Controls and Properties from the Master Page 199

Specifying Default Content in the Master Page 205

Programmatically Assigning the Master Page 207

ftoc.indd xviiiftoc.indd xviii 2/3/10 9:02:05 PM2/3/10 9:02:05 PM

xix

CONTENTS

Nesting Master Pages 207

Container-Specifi c Master Pages 211

Event Ordering 212

Caching with Master Pages 213

ASP.NET AJAX and Master Pages 214

Summary 216

CHAPTER 6: THEMES AND SKINS 217

Using ASP.NET Themes 217

Applying a Theme to a Single ASP.NET Page 217

Applying a Theme to an Entire Application 219

Removing Themes from Server Controls 219

Removing Themes from Web Pages 220

Understanding Themes When Using Master Pages 221

Understanding the StyleSheetTheme Attribute 221

Creating Your Own Themes 222

Creating the Proper Folder Structure 222

Creating a Skin 222

Including CSS Files in Your Themes 224

Having Your Themes Include Images 227

Defi ning Multiple Skin Options 229

Programmatically Working with Themes 231

Assigning the Page’s Theme Programmatically 231

Assigning a Control’s SkinID Programmatically 231

Themes, Skins, and Custom Controls 232

Summary 235

CHAPTER 7: DATA BINDING 237

Data Source Controls 237

SqlDataSource Control 239

AccessDataSource Control 247

LinqDataSource Control 247

EntityDataSource Control 253

XmlDataSource Control 255

ObjectDataSource Control 256

SiteMapDataSource Control 259

Data Source Control Caching 259

Storing Connection Information 260

Using Bound List Controls with Data Source Controls 262

GridView 262

ftoc.indd xixftoc.indd xix 2/3/10 9:02:05 PM2/3/10 9:02:05 PM

xx

CONTENTS

Editing GridView Row Data 275

Deleting GridView Data 281

Other GridView Formatting Features 283

DetailsView 283

Inserting, Updating, and Deleting Data Using DetailsView 287

ListView 289

FormView 296

Other Databound Controls 300

TreeView 300

AdRotator 301

Menu 301

Inline Data-Binding Syntax 302

Data-Binding Syntax 302

XML Data Binding 303

Expressions and Expression Builders 303

Summary 308

CHAPTER 8: DATA MANAGEMENT WITH ADO.NET 309

Basic ADO.NET Features 310

Common ADO.NET Tasks 310

Basic ADO.NET Namespaces and Classes 314

Using the Connection Object 315

Using the Command Object 317

Using the DataReader Object 318

Using DataAdapter 320

Using Parameters 322

Understanding DataSet and DataTable 325

Using Oracle as Your Database with ASP.NET 329

The DataList Server Control 330

Looking at the Available Templates 331

Working with ItemTemplate 331

Working with Other Layout Templates 334

Working with Multiple Columns 336

The ListView Server Control 336

Connecting the ListView to a Database 337

Creating the Layout Template 338

Creating the ItemTemplate 340

Creating the EditItemTemplate 341

Creating the EmptyItemTemplate 341

Creating the InsertItemTemplate 341

Viewing the Results 342

ftoc.indd xxftoc.indd xx 2/3/10 9:02:05 PM2/3/10 9:02:05 PM

xxi

CONTENTS

Using Visual Studio for ADO.NET Tasks 344

Creating a Connection to the Data Source 344

Working with a Dataset Designer 345

Using the CustomerOrders DataSet 348

Asynchronous Command Execution 352

Asynchronous Methods of the SqlCommand Class 352

IAsyncResult Interface 353

AsyncCallback 354

WaitHandle Class 354

Approaches of Asynchronous Processing in ADO.NET 355

Canceling Asynchronous Processing 370

Asynchronous Connections 370

Summary 370

CHAPTER 9: QUERYING WITH LINQ 371

LINQ to Objects 371

Understanding Traditional Query Methods 371

Replacing Traditional Queries with LINQ 378

Data Grouping 384

Using Other LINQ Operators 385

Making LINQ Joins 385

Paging Using LINQ 386

LINQ to XML 387

Joining XML Data 390

LINQ to SQL 391

Making Insert, Update, and Delete Queries through LINQ 399

Extending LINQ 403

Summary 403

CHAPTER 10: WORKING WITH XML AND LINQ TO XML 405

The Basics of XML 406

The XML InfoSet 408

XSD–XML Schema Defi nition 409

Editing XML and XML Schema in Visual Studio 2010 410

XmlReader and XmlWriter 413

Using XDocument Rather Than XmlReader 415

Using Schema with XmlTextReader 416

Validating Against a Schema Using an XDocument 417

Including NameTable Optimization 419

Retrieving .NET CLR Types from XML 420

ftoc.indd xxiftoc.indd xxi 2/3/10 9:02:05 PM2/3/10 9:02:05 PM

xxii

CONTENTS

ReadSubtree and XmlSerialization 422

Creating CLR Objects from XML with LINQ to XML 423

Creating XML with XmlWriter 424

Creating XML with LINQ for XML 426

Improvements for XmlReader and XmlWriter 429

XmlDocument and XPathDocument 429

Problems with the DOM 429

XPath, the XPathDocument, and XmlDocument 430

DataSets 434

Persisting DataSets to XML 434

XmlDataDocument 435

The XmlDataSource Control 437

XSLT 441

XslCompiledTransform 442

XSLT Debugging 445

Databases and XML 446

FOR XML AUTO 446

SQL Server and the XML Data Type 451

Summary 456

CHAPTER 11: INTRODUCTION TO THE PROVIDER MODEL 457

Understanding the Provider 458

The Provider Model in ASP.NET 4 459

Setting Up Your Provider to Work with Microsoft SQL Server

7.0, 2000, 2005, or 2008 461

Membership Providers 466

Role Providers 469

The Personalization Provider 473

The SiteMap Provider 474

SessionState Providers 476

Web Event Providers 478

Confi guration Providers 485

The Web Parts Provider 487

Confi guring Providers 489

Summary 489

CHAPTER 12: EXTENDING THE PROVIDER MODEL 491

Providers Are One Tier in a Larger Architecture 491

Modifying Through Attribute-Based Programming 492

Simpler Password Structures Through the SqlMembershipProvider 492

Stronger Password Structures Through the SqlMembershipProvider 495

ftoc.indd xxiiftoc.indd xxii 2/3/10 9:02:06 PM2/3/10 9:02:06 PM

xxiii

CONTENTS

Examining ProviderBase 496

Building Your Own Providers 497

Creating the CustomProviders Application 498

Constructing the Class Skeleton Required 499

Creating the XML User Data Store 502

Defi ning the Provider Instance in the web.confi g File 502

Not Implementing Methods and Properties of the

MembershipProvider Class 503

Implementing Methods and Properties of

the MembershipProvider Class 504

Using the XmlMembershipProvider for User Login 510

Extending Pre-Existing Providers 511

Limiting Role Capabilities with a New LimitedSqlRoleProvider Provider 511

Using the New LimitedSqlRoleProvider Provider 515

Summary 518

CHAPTER 13: SITE NAVIGATION 519

XML-Based Sitemaps 520

SiteMapPath Server Control 521

The PathSeparator Property 523

The PathDirection Property 525

The ParentLevelsDisplayed Property 525

The ShowToolTips Property 526

The SiteMapPath Control’s Child Elements 526

TreeView Server Control 527

Identifying the TreeView Control’s Built-In Styles 530

Examining the Parts of the TreeView Control 531

Binding the TreeView Control to an XML File 532

Selecting Multiple Options in a TreeView 534

Specifying Custom Icons in the TreeView Control 537

Specifying Lines Used to Connect Nodes 538

Working with the TreeView Control Programmatically 540

Menu Server Control 545

Applying Diff erent Styles to the Menu Control 546

Using Menu Events 550

Binding the Menu Control to an XML File 551

SiteMap Data Provider 552

ShowStartingNode 552

StartFromCurrentNode 553

StartingNodeOff set 554

StartingNodeUrl 555

SiteMap API 555

ftoc.indd xxiiiftoc.indd xxiii 2/3/10 9:02:06 PM2/3/10 9:02:06 PM

xxiv

CONTENTS

URL Mapping 557

Sitemap Localization 558

Structuring the Web.sitemap File for Localization 558

Making Modifi cations to the Web.confi g File 559

Creating Assembly Resource (.resx) Files 560

Testing the Results 561

Security Trimming 561

Setting Up Role Management for Administrators 562

Setting Up the Administrators’ Section 563

Enabling Security Trimming 564

Nesting SiteMap Files 566

Summary 567

CHAPTER 14: PERSONALIZATION 569

The Personalization Model 570

Creating Personalization Properties 570

Adding a Simple Personalization Property 570

Using Personalization Properties 571

Adding a Group of Personalization Properties 574

Using Grouped Personalization Properties 575

Defi ning Types for Personalization Properties 576

Using Custom Types 576

Providing Default Values 579

Making Personalization Properties Read-Only 579

Anonymous Personalization 579

Enabling Anonymous Identifi cation of the End User 579

Working with Anonymous Identifi cation 582

Anonymous Options for Personalization Properties 583

Warnings about Anonymous User Profi le Storage 583

Programmatic Access to Personalization 584

Migrating Anonymous Users 584

Personalizing Profi les 585

Determining Whether to Continue with Automatic Saves 586

Personalization Providers 587

Working with SQL Server Express Edition 587

Working with Microsoft’s SQL Server 7.0/2000/2005/2008 588

Using Multiple Providers 590

Managing Application Profi les 590

Properties of the Profi leManager Class 591

Methods of the Profi leManager Class 591

Building the Profi leManager.aspx Page 592

ftoc.indd xxivftoc.indd xxiv 2/3/10 9:02:06 PM2/3/10 9:02:06 PM

xxv

CONTENTS

Examining the Profi leManager.aspx Page’s Code 594

Running the Profi leManager.aspx Page 595

Summary 596

CHAPTER 15: MEMBERSHIP AND ROLE MANAGEMENT 597

ASP.NET 4 Authentication 598

Setting Up Your Web Site for Membership 598

Adding Users 600

Asking for Credentials 613

Working with Authenticated Users 620

Showing the Number of Users Online 622

Dealing with Passwords 623

ASP.NET 4 Authorization 627

Using the LoginView Server Control 627

Setting Up Your Web Site for Role Management 630

Adding and Retrieving Application Roles 632

Deleting Roles 634

Adding Users to Roles 635

Getting All the Users of a Particular Role 635

Getting All the Roles of a Particular User 637

Removing Users from Roles 638

Checking Users in Roles 638

Understanding How Roles Are Cached 639

Using the Web Site Administration Tool 640

Public Methods of the Membership API 640

Public Methods of the Roles API 641

Summary 642

CHAPTER 16: PORTAL FRAMEWORKS AND WEB PARTS 643

Introducing Web Parts 643

Building Dynamic and Modular Web Sites 645

Introducing the WebPartManager Control 645

Working with Zone Layouts 646

Understanding the WebPartZone Control 649

Allowing the User to Change the Mode of the Page 651

Modifying Zones 660

Working with Classes in the Portal Framework 666

Creating Custom Web Parts 669

Connecting Web Parts 674

Building the Provider Web Part 675

ftoc.indd xxvftoc.indd xxv 2/3/10 9:02:06 PM2/3/10 9:02:06 PM

xxvi

CONTENTS

Building the Consumer Web Part 677

Connecting Web Parts on an ASP.NET Page 679

Understanding the Diffi culties in Dealing with Master Pages

When Connecting Web Parts 681

Summary 682

CHAPTER 17: HTML AND CSS DESIGN WITH ASP.NET 683

Caveats 684

HTML and CSS Overview 684

Creating Style Sheets 685

CSS Rules 687

CSS Inheritance 694

Element Layout and Positioning 695

Working with HTML and CSS in Visual Studio 702

Working with CSS in Visual Studio 703

Managing Relative CSS Links in Master Pages 706

Styling ASP.NET Controls 706

Summary 708

CHAPTER 18: ASP.NET AJAX 709

Understanding the Need for AJAX 709

Before AJAX 710

AJAX Changes the Story 710

ASP.NET AJAX and Visual Studio 2010 712

Client-Side Technologies 713

Server-Side Technologies 714

Developing with ASP.NET AJAX 714

Building ASP.NET AJAX Applications 714

Building a Simple ASP.NET Page without AJAX 716

Building a Simple ASP.NET Page with AJAX 718

ASP.NET AJAX’s Server-Side Controls 722

The ScriptManager Control 723

The ScriptManagerProxy Control 725

The Timer Control 726

The UpdatePanel Control 727

The UpdateProgress Control 731

Using Multiple UpdatePanel Controls 733

Working with Page History 737

Script Combining 741

Summary 745

ftoc.indd xxviftoc.indd xxvi 2/3/10 9:02:07 PM2/3/10 9:02:07 PM

xxvii

CONTENTS

CHAPTER 19: ASP.NET AJAX CONTROL TOOLKIT 747

Downloading and Installing the AJAX Control Toolkit 749

The ASP.NET AJAX Controls 750

ASP.NET AJAX Control Toolkit Extenders 751

AlwaysVisibleControlExtender 751

AnimationExtender 753

AutoCompleteExtender 755

CalendarExtender 757

CollapsiblePanelExtender 758

ColorPickerExtender 760

Confi rmButtonExtender and ModalPopupExtender 761

DragPanelExtender 763

DropDownExtender 764

DropShadowExtender 766

DynamicPopulateExtender 768

FilteredTextBoxExtender 772

HoverMenuExtender 772

ListSearchExtender 774

MaskedEditExtender and MaskedEditValidator 774

MutuallyExclusiveCheckBoxExtender 776

NumericUpDownExtender 778

PagingBulletedListExtender 778

PopupControlExtender 780

ResizableControlExtender 781

RoundedCornersExtender 783

SliderExtender and MultiHandleSliderExtender 784

SlideShowExtender 785

TextBoxWatermarkExtender 788

ToggleButtonExtender 789

UpdatePanelAnimationExtender 790

ValidatorCalloutExtender 791

ASP.NET AJAX Control Toolkit Server Controls 793

Accordion Control 793

CascadingDropDown 795

NoBot Control 798

PasswordStrength Control 799

Rating Control 800

TabContainer Control 801

Summary 803

ftoc.indd xxviiftoc.indd xxvii 2/3/10 9:02:07 PM2/3/10 9:02:07 PM

xxviii

CONTENTS

CHAPTER 20: SECURITY 805

Applying Authentication Measures 806

The <authentication> Node 806

Windows-Based Authentication 807

Forms-Based Authentication 813

Passport Authentication 821

Authenticating Specifi c Files and Folders 822

Programmatic Authorization 822

Working with User.Identity 823

Working with User.IsInRole() 824

Pulling More Information with WindowsIdentity 824

Identity and Impersonation 827

Securing Through IIS 828

IP Address and Domain Name Restrictions 829

Working with File Extensions 829

Using the ASP.NET MMC Snap-In 832

Using the IIS 7.0 Manager 832

Summary 833

CHAPTER 21: STATE MANAGEMENT 835

Your Session State Choices 835

Understanding the Session Object in ASP.NET 838

Sessions and the Event Model 838

Confi guring Session State Management 839

In-Process Session State 840

Out-of-Process Session State 846

SQL-Backed Session State 851

Extending Session State with Other Providers 854

Cookieless Session State 855

Choosing the Correct Way to Maintain State 856

The Application Object 856

QueryStrings 857

Cookies 857

PostBacks and Cross-Page PostBacks 857

Hidden Fields, ViewState, and ControlState 859

Using HttpContext.Current.Items for Very Short-Term Storage 863

Summary 864

ftoc.indd xxviiiftoc.indd xxviii 2/3/10 9:02:07 PM2/3/10 9:02:07 PM

xxix

CONTENTS

CHAPTER 22: CACHING 865

Caching 865

Output Caching 865

Partial Page (UserControl) Caching 869

Post-Cache Substitution 870

HttpCachePolicy and Client-Side Caching 871

Caching Programmatically 873

Data Caching Using the Cache Object 873

Controlling the ASP.NET Cache 874

Cache Dependencies 875

.NET 4’s New Object Caching Option 879

Using the SQL Server Cache Dependency 882

Enabling Databases for SQL Server Cache Invalidation 883

Enabling Tables for SQL Server Cache Invalidation 883

Looking at SQL Server 2000 883

Looking at the Tables That Are Enabled 884

Disabling a Table for SQL Server Cache Invalidation 885

Disabling a Database for SQL Server Cache Invalidation 885

SQL Server 2005 and 2008 Cache Invalidation 885

Confi guring Your ASP.NET Application 886

Testing SQL Server Cache Invalidation 887

Adding More Than One Table to a Page 890

Attaching SQL Server Cache Dependencies to the Request Object 890

Attaching SQL Server Cache Dependencies to the Cache Object 890

Summary 894

CHAPTER 23: DEBUGGING AND ERROR HANDLING 895

Design-Time Support 895

Syntax Notifi cations 896

Immediate and Command Window 897

Task List 898

Tracing 898

System.Diagnostics.Trace and ASP.NET’s Page.Trace 899

Page-Level Tracing 899

Application Tracing 899

Viewing Trace Data 900

Tracing from Components 902

Trace Forwarding 904

TraceListeners 904

Diagnostic Switches 908

Web Events 909

ftoc.indd xxixftoc.indd xxix 2/3/10 9:02:07 PM2/3/10 9:02:07 PM

xxx

CONTENTS

Debugging 910

What’s Required 910

IIS versus ASP.NET Development Server 911

Starting a Debugging Session 912

Tools to Help You with Debugging 914

Historical Debugging with IntelliTrace 917

Debugging Multiple Threads 919

Client-side JavaScript Debugging 920

SQL Stored Proc Debugging 921

Exception and Error Handling 922

Handling Exceptions on a Page 922

Handling Application Exceptions 923

Http Status Codes 924

Summary 925

CHAPTER 24: FILE I/O AND STREAMS 927

Working with Drives, Directories, and Files 928

The DriveInfo Class 928

The Directory and DirectoryInfo Classes 931

File and FileInfo 937

Working with Paths 943

File and Directory Properties, Attributes, and Access Control Lists 947

Reading and Writing Files 953

Streams 953

Readers and Writers 960

Compressing Streams 964

Memory-Mapped Files 966

Working with Serial Ports 968

IPC Using Pipes 970

Network Communications 970

WebRequest and WebResponse 971

Sending Mail 977

Summary 977

CHAPTER 25: USER AND SERVER CONTROLS 979

User Controls 980

Creating User Controls 980

Interacting with User Controls 982

Loading User Controls Dynamically 983

Server Controls 988

Server Control Projects 988

Control Attributes 992

ftoc.indd xxxftoc.indd xxx 2/3/10 9:02:08 PM2/3/10 9:02:08 PM

xxxi

CONTENTS

Control Rendering 993

Styling HTML 998

Themes and Skins 1001

Adding Client-Side Features 1002

Browser Capabilities 1010

Using ViewState 1012

Raising Postback Events 1015

Handling Postback Data 1018

Composite Controls 1021

Templated Controls 1023

Design-Time Experiences 1027

Summary 1043

CHAPTER 26: MODULES AND HANDLERS 1045

Processing HTTP Requests 1045

IIS 6 and ASP.NET 1046

IIS 7 and ASP.NET 1046

ASP.NET Request Processing 1047

HttpModules 1048

HttpHandlers 1052

Generic Handlers 1052

Mapping a File Extension in IIS 1056

Summary 1058

CHAPTER 27: ASP.NET MVC 1059

Defi ning Model-View-Controller 1059

MVC on the Web Today 1060

Model-View-Controller and ASP.NET 1061

Serving Methods, Not Files 1061

Is This Web Forms 4.0? 1061

Why Not Web Forms? 1062

ASP.NET MVC Is Totally Diff erent! 1062

Why “(ASP.NET > ASP.NET MVC) == True” 1062

Convention over Confi guration 1064

The Third Request Is the Charm 1066

Understanding Routes and URLs 1068

Routing Compared to URL Rewriting 1069

Defi ning Routes 1070

Controllers 1073

Defi ning the Controller: The IController Interface 1073

ftoc.indd xxxiftoc.indd xxxi 2/3/10 9:02:08 PM2/3/10 9:02:08 PM

xxxii

CONTENTS

The Controller Class and Actions 1074

Working with Parameters 1074

Working with Multiple Parameters 1075

Views 1076

Specifying a View 1076

Strongly Typed Views 1077

Using HTML Helper Methods 1078

HtmlHelper Class and Extension Methods 1078

Summary 1079

CHAPTER 28: USING BUSINESS OBJECTS 1081

Using Business Objects in ASP.NET 4 1081

Creating Precompiled .NET Business Objects 1082

Using Precompiled Business Objects in Your ASP.NET Applications 1084

COM Interop: Using COM Within .NET 1085

The Runtime Callable Wrapper 1086

Using COM Objects in ASP.NET Code 1086

Error Handling 1091

Deploying COM Components with .NET Applications 1093

Using .NET from Unmanaged Code 1095

The COM-Callable Wrapper 1095

Using .NET Components Within COM Objects 1097

Early versus Late Binding 1100

Error Handling 1100

Deploying .NET Components with COM Applications 1102

Summary 1103

CHAPTER 29: ADO.NET ENTITY FRAMEWORK 1105

Can We Speak the Same Language? 1106

The Conceptual and Logical Layers 1107

Mapping Between Layers 1107

Creating Your First Entity Data Model 1107

Working Through the EDM Wizard 1108

Using the ADO.NET Entity Designer 1109

Building an ASP.NET Page Using Your EDM 1110

Understanding Relationships 1113

One-to-One and One-to-Many Relationships 1113

Many-to-One and Many-to-Many Relationships 1116

Performing Inheritance Within the EDM 1119

Using Stored Procedures 1122

ftoc.indd xxxiiftoc.indd xxxii 2/3/10 9:02:09 PM2/3/10 9:02:09 PM

xxxiii

CONTENTS

Using the EntityDataSource Control 1125

Creating the Base Page 1125

Confi guring the Data Source Control 1126

Summary 1128

CHAPTER 30: ASP.NET DYNAMIC DATA 1129

Creating Your Base Application with Visual Studio 2010 1129

Looking at the Core Files Created in the Default Application 1130

The Dynamic Data Application 1131

Incorporating the Database 1137

Registering the Data Model Within the Global.asax File 1139

Styles and Layout 1141

Results of the Application 1141

Working with Dynamic Data Routes 1144

Controlling Display Aspects 1147

Adding Dynamic Data to Existing Pages 1149

Summary 1151

CHAPTER 31: WORKING WITH SERVICES 1153

Communication Between Disparate Systems 1153

Building a Simple XML Web Service 1155

The WebService Page Directive 1156

Looking at the Base Web Service Class File 1156

Exposing Custom Datasets as SOAP 1157

The XML Web Service Interface 1160

Consuming a Simple XML Web Service 1162

Adding a Web Reference 1163

Invoking the Web Service from the Client Application 1164

Overloading WebMethods 1166

Caching Web Service Responses 1169

Using SOAP Headers 1170

Building a Web Service with SOAP Headers 1170

Consuming a Web Service Using SOAP Headers 1172

Requesting Web Services Using SOAP 1.2 1174

Consuming Web Services Asynchronously 1175

Windows Communication Foundation 1178

The Larger Move to SOA 1178

WCF Overview 1179

Building a WCF Service 1179

Building the WCF Consumer 1186

ftoc.indd xxxiiiftoc.indd xxxiii 2/3/10 9:02:09 PM2/3/10 9:02:09 PM

xxxiv

CONTENTS

Adding a Service Reference 1187

Working with Data Contracts 1189

Defi ning Namespaces 1193

Using WCF Data Services 1194

Creating Your First Service 1194

Adding Your Entity Data Model 1195

Creating the Service 1196

Querying the Interface 1201

Reading a Table of Data 1202

Reading a Specifi c Item from the Table 1203

Working with Relationships 1205

Expanding on Associations 1207

Ordering in Result Sets 1210

Moving Around Result Sets 1211

Filtering Content 1211

Consuming WCF Data Services in ASP.NET 1213

Summary 1215

CHAPTER 32: BUILDING GLOBAL APPLICATIONS 1217

Cultures and Regions 1217

Understanding Culture Types 1218

The ASP.NET Threads 1219

Server-Side Culture Declarations 1221

Client-Side Culture Declarations 1222

Translating Values and Behaviors 1223

ASP.NET 4 Resource Files 1230

Making Use of Local Resources 1230

Making Use of Global Resources 1235

Looking at the Resource Editor 1237

Summary 1238

CHAPTER 33: CONFIGURATION 1239

Confi guration Overview 1239

Server Confi guration Files 1240

Application Confi guration File 1243

Applying Confi guration Settings 1243

Detecting Confi guration File Changes 1244

Confi guration File Format 1244

Common Confi guration Settings 1245

Connection Strings 1245

ftoc.indd xxxivftoc.indd xxxiv 2/3/10 9:02:10 PM2/3/10 9:02:10 PM

xxxv

CONTENTS

Confi guring Session State 1246

Compilation Confi guration 1250

Browser Capabilities 1251

Custom Errors 1253

Authentication 1254

Anonymous Identity 1257

Authorization 1258

Locking-Down Confi guration Settings 1260

ASP.NET Page Confi guration 1260

Include Files 1262

Confi guring ASP.NET Runtime Settings 1263

Confi guring the ASP.NET Worker Process 1265

Storing Application-Specifi c Settings 1268

Programming Confi guration Files 1268

Protecting Confi guration Settings 1274

Editing Confi guration Files 1278

Creating Custom Sections 1279

Using the NameValueFileSectionHandler Object 1280

Using the DictionarySectionHandler Object 1281

Using the SingleTagSectionHandler Object 1281

Using Your Own Custom Confi guration Handler 1282

Summary 1284

CHAPTER 34: INSTRUMENTATION 1285

Working with the Event Log 1285

Reading from the Event Log 1286

Writing to the Event Log 1288

Using Performance Counters 1290

Viewing Performance Counters Through an Administration Tool 1290

Building a Browser-Based Administrative Tool 1292

Application Tracing 1296

Understanding Health Monitoring 1297

The Health Monitoring Provider Model 1298

Health Monitoring Confi guration 1299

Writing Events via Confi guration: Running the Example 1305

Routing Events to SQL Server 1305

Buff ering Web Events 1308

E-mailing Web Events 1310

Summary 1314

ftoc.indd xxxvftoc.indd xxxv 2/3/10 9:02:10 PM2/3/10 9:02:10 PM

xxxvi

CONTENTS

CHAPTER 35: ADMINISTRATION AND MANAGEMENT 1315

The ASP.NET Web Site Administration Tool 1315

The Home Tab 1316

The Security Tab 1317

The Application Tab 1325

The Provider Tab 1328

Confi guring ASP.NET in IIS on Windows 7 1329

.NET Compilation 1330

.NET Globalization 1331

.NET Profi le 1331

.NET Roles 1331

.NET Trust Levels 1332

.NET Users 1332

Application Settings 1333

Connection Strings 1333

Pages and Controls 1334

Providers 1334

Session State 1335

SMTP E-mail 1336

Summary 1336

CHAPTER 36: PACKAGING AND DEPLOYING ASP.NET
APPLICATIONS 1337

Deployment Pieces 1338

Steps to Take before Deploying 1338

Methods of Deploying Web Applications 1339

Using XCopy 1339

Using the VS Copy Web Site Option 1341

Deploying a Precompiled Web Application 1344

Building an ASP.NET Web Package 1346

Building an Installer Program 1349

Looking More Closely at Installer Options 1357

Working with the Deployment Project Properties 1357

The File System Editor 1360

The Registry Editor 1363

The File Types Editor 1363

The User Interface Editor 1364

The Custom Actions Editor 1366

The Launch Conditions Editor 1366

Summary 1367

ftoc.indd xxxviftoc.indd xxxvi 2/3/10 9:02:10 PM2/3/10 9:02:10 PM

xxxvii

CONTENTS

APPENDIX A: MIGRATING OLDER ASP.NET PROJECTS 1369

APPENDIX B: ASP.NET ULTIMATE TOOLS 1381

APPENDIX C: SILVERLIGHT 3 AND ASP.NET 1399

APPENDIX D: DYNAMIC TYPES AND LANGUAGES 1419

APPENDIX E: ASP.NET ONLINE RESOURCES 1427

INDEX 1429

ftoc.indd xxxviiftoc.indd xxxvii 2/3/10 9:02:11 PM2/3/10 9:02:11 PM

flast.indd xxxviiiflast.indd xxxviii 2/3/10 11:57:46 AM2/3/10 11:57:46 AM

 INTRODUCTION

 SIMPLY PUT, ASP.NET 4 IS AN AMAZING TECHNOLOGY to use to build your Web solutions! When
ASP.NET 1.0 was introduced in 2000, many considered it a revolutionary leap forward in the area of Web
application development. ASP.NET 2.0 was just as exciting and revolutionary, and ASP.NET 4 is continuing
a forward march in providing the best framework today in building applications for the Web. ASP.NET 4
continues to build on the foundation laid by the release of ASP.NET 1.0/2.0/3.5 by focusing on the area of
developer productivity.

 This book covers the whole of ASP.NET. It not only introduces new topics, but it also shows you examples
of these new technologies in action. So sit back, pull up that keyboard, and enjoy!

 A LITTLE BIT OF HISTORY

 Before organizations were even thinking about developing applications for the Internet, much of the
application development focused on thick desktop applications. These thick - client applications were used for
everything from home computing and gaming to offi ce productivity and more. No end was in sight for the
popularity of this application model.

 During that time, Microsoft developers developed thick - client applications using mainly Visual Basic (VB).

 Visual Basic was not only a programming language — it was tied to an IDE that allowed for easy thick - client
application development. In the Visual Basic model, developers could drop controls onto a form, set properties
for these controls, and provide code behind them to manipulate the events of the control. For example, when
an end user clicked a button on one of the Visual Basic forms, the code behind the form handled the event.

 Then, in the mid - 1990s, the Internet arrived on the scene. Microsoft was unable to move the Visual Basic
model to the development of Internet - based applications. The Internet defi nitely had a lot of power, and
right away, the problems facing the thick - client application model were revealed. Internet - based applications
created a single instance of the application that everyone could access. Having one instance of an
application meant that when the application was upgraded or patched, the changes made to this single
instance were immediately available to each and every user visiting the application through a browser.

 To participate in the Web application world, Microsoft developed Active Server Pages (ASP). ASP was a
quick and easy way to develop Web pages. ASP pages consisted of a single page that contained a mix of
markup and languages. The power of ASP was that you could include VBScript or JScript code instructions
in the page executed on the Web server before the page was sent to the end user ’ s Web browser. This was an
easy way to create dynamic Web pages customized based on instructions dictated by the developer.

 ASP used script between brackets and percentage signs < % % > to control server - side behaviors. A developer
could then build an ASP page by starting with a set of static HTML. Any dynamic element needed by the
page was defi ned using a scripting language (such as VBScript or JScript). When a user requested the page
from the server by using a browser, the asp.dll (an ISAPI application that provided a bridge between
the scripting language and the Web server) would take hold of the page and defi ne all the dynamic
aspects of the page on - the - fl y based on the programming logic specifi ed in the script. After all the
dynamic aspects of the page were defi ned, the result was an HTML page output to the browser of the
requesting client.

flast.indd xxxixflast.indd xxxix 2/3/10 11:57:47 AM2/3/10 11:57:47 AM

xl

INTRODUCTION

 As the Web application model developed, more and more languages mixed in with the static HTML to
help manipulate the behavior and look of the output page. Over time, such a large number of languages,
scripts, and plain text could be placed in a typical ASP page that developers began to refer to pages that
used these features as spaghetti code . For example, having a page that used HTML, VBScript, JavaScript,
Cascading Style Sheets, T - SQL, and more was quite possible. In certain instances, these pages became a
manageability nightmare.

 ASP evolved and new versions were released. ASP 2.0 and 3.0 were popular because the technology made
creating Web pages relatively straightforward and easy. Their popularity was enhanced because they
appeared in the late 1990s, just as the dotcom era was born. During this time, a mountain of new Web
pages and portals were developed, and ASP was one of the leading technologies individuals and companies
used to build them. Even today, you can still fi nd a lot of .asp pages on the Internet — including some of
Microsoft ’ s own Web pages.

 However, even at the time of the fi nal release of Active Server Pages in late 1998, Microsoft employees
Marc Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (an
abbreviation with no meaning) — a new way of creating Web applications in an object - oriented manner
instead of in the procedural manner of ASP 3.0. They showed their idea to many different groups within
Microsoft, and they were well received. In the summer of 2000, the beta of what was then called ASP+
was released at Microsoft ’ s Professional Developers Conference. The attendees eagerly started working
with it. When the technology became available (with the fi nal release of the .NET Framework 1.0), it was
renamed ASP.NET — receiving the .NET moniker that most of Microsoft ’ s new products were receiving
at that time.

 Before the introduction of .NET, the model that classic ASP provided and what developed in Visual Basic
were so different that few VB developers also developed Web applications, and few Web application
developers also developed the thick - client applications of the VB world. There was a great divide. ASP.NET
bridged this gap. ASP.NET brought a Visual Basic – style eventing model to Web application development,
providing much - needed state management techniques over stateless HTTP. Its model is much like the
earlier Visual Basic model in that a developer can drag and drop a control onto a design surface or form,
manipulate the control ’ s properties, and even work with the code behind these controls to act on certain
events that occur during their lifecycles. What ASP.NET created is really the best of both models, as you
will see throughout this book.

 I know you will enjoy working with this latest release of ASP.NET 4. Nothing is better than getting your
hands on a new technology and seeing what is possible. The following section discusses the goals of
ASP.NET so that you can fi nd out what to expect from this new offering!

 THE GOALS OF ASP.NET

 ASP.NET 4 is another major release of the product and builds on the previous releases with additional
classes and capabilities. This release of the Framework and Visual Studio was code - named Hawaii internally
at Microsoft. ASP.NET 4 continues on a path to make ASP.NET developers the most productive developers
in the Web space. This book also focuses on the new additions to ASP.NET 4 and the .NET Framework 4
with the release of ASP.NET 4.

 Ever since the release of ASP.NET 2.0, the Microsoft team has focused its goals on developer productivity,
administration, and management, as well as performance and scalability.

 Developer Productivity

 Much of the focus of ASP.NET 4 is on productivity. Huge productivity gains were made with the release of
ASP.NET 1. x and 2.0; could it be possible to expand further on those gains?

flast.indd xlflast.indd xl 2/3/10 11:57:47 AM2/3/10 11:57:47 AM

xli

INTRODUCTION

 One goal the development team had for ASP.NET was to eliminate much of the tedious coding that
ASP.NET originally required and to make common ASP.NET tasks easier. The developer productivity
capabilities are presented throughout this book. Before venturing into these capabilities, this introduction
looks at the older ASP.NET 1.0 technology to make a comparison to ASP.NET 4. Listing I - 1 provides an
example of using ASP.NET 1.0 to build a table in a Web page that includes the capability to perform simple
paging of the data provided.

 LISTING I - 1: Showing data in a DataGrid server control with paging enabled (VB only)

 < %@ Page Language="VB" AutoEventWireup="True" % >
 < %@ Import Namespace="System.Data" % >
 < %@ Import Namespace="System.Data.SqlClient" % >

 < script runat="server" >

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 If Not Page.IsPostBack Then
 BindData()
 End If
 End Sub

 Private Sub BindData()
 Dim conn As SqlConnection = New _
 SqlConnection("server='localhost';
 trusted_connection=true; Database='Northwind'")
 Dim cmd As SqlCommand = _
 New SqlCommand("Select * From Customers", conn)
 conn.Open()

 Dim da As SqlDataAdapter = New SqlDataAdapter(cmd)
 Dim ds As New DataSet

 da.Fill(ds, "Customers")

 DataGrid1.DataSource = ds
 DataGrid1.DataBind()
 End Sub

 Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
 ByVal e As _
 System.Web.UI.WebControls.DataGridPageChangedEventArgs)
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 BindData()
 End Sub

 < /script >
 < html >
 < head >
 < /head >
 < body >
 < form runat="server" >
 < asp:DataGrid id="DataGrid1" runat="server"
 AllowPaging="True"
 OnPageIndexChanged="DataGrid1_PageIndexChanged" >
 < /asp:DataGrid >
 < /form >
 < /body >
 < /html >

flast.indd xliflast.indd xli 2/3/10 11:57:48 AM2/3/10 11:57:48 AM

xlii

INTRODUCTION

 Although quite a bit of code is used here, this is a dramatic improvement over the amount of code required
to accomplish this task using classic Active Server Pages 3.0. We will not go into the details of this older
code; it just demonstrates that to add any additional common functionality (such as paging) for the data
shown in a table, the developer had to create custom code.

 This is one area where the developer productivity gains are most evident. ASP.NET 4 provides a control
called the GridView server control. This control is much like the DataGrid server control, but the GridView
server control (besides offering many additional features) contains the built - in capability to apply paging,
sorting, and editing of data with relatively little work on your part. Listing I - 2 shows an example of the
GridView server control. This example builds a table of data from the Customers table in the Northwind
database that includes paging.

 LISTING I - 2: Viewing a paged dataset with the GridView server control

 < %@ Page Language="VB" % >

 < script runat="server" >

 < /script >

 < html xmlns=http://www.w3.org/1999/xhtml >
 < head runat="server" >
 < title > GridView Demo < /title >
 < /head >
 < body >
 < form runat="server" >
 < asp:GridView ID="GridView1" Runat="server"
 AllowPaging="True"
 DataSourceId="Sqldatasource1" / >
 < asp:SqlDataSource ID="SqlDataSource1" Runat="server"
 SelectCommand="Select * From Customers"
 ProviderName="System.Data.OleDb"
 ConnectionString="Provider=SQLOLEDB;Server=localhost;uid=sa;
 pwd=password;database=Northwind" / >
 < /form >
 < /body >
 < /html >

 That ’ s it! You can apply paging by using a couple of server controls. You turn on this capability using a
server control attribute, the AllowPaging attribute of the GridView control:

 < asp:GridView ID="GridView1" Runat="server" AllowPaging="True" DataSourceId="SqlDataSource1" / >

 The other interesting event occurs in the code section of the document:

 < script runat="server" > < /script >

 These two lines of code are not actually needed to run the fi le. They are included here to make a
point — you don ’ t need to write any server - side code to make this all work! You need to include only
some server controls: one control to get the data and one control to display the data. Then the controls
are wired together.

 Performance and Scalability

 One of the goals for ASP.NET that was set by the Microsoft team was to provide the world ’ s fastest Web
application server. This book also addresses a number of performance tactics available in ASP.NET 4.

 One of the most exciting performance capabilities is the caching capability aimed at exploiting Microsoft ’ s
SQL Server. ASP.NET 4 includes a feature called SQL cache invalidation . Before ASP.NET 2.0, caching
the results that came from SQL Server and updating the cache based on a time interval was possible — for

flast.indd xliiflast.indd xlii 2/3/10 11:57:48 AM2/3/10 11:57:48 AM

xliii

INTRODUCTION

example, every 15 seconds or so. This meant that the end user might see stale data if the result set changed
sometime during that 15 - second period.

 In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored in the
cache is destroyed if any underlying change occurs in the source from which the result set is retrieved — in
this case, SQL Server. With ASP.NET 4, you can make this happen with the use of SQL cache invalidation.
This means that when the result set from SQL Server changes, the output cache is triggered to change, and
the end user always sees the latest result set. The data presented is never stale.

 ASP.NET 4 provides 64 - bit support. This means that you can run your ASP.NET applications on 64 - bit
Intel or AMD processors.

 Because ASP.NET 4 is fully backward compatible with ASP.NET 1.0, 1.1, 2.0, and 3.5, you can now take
any former ASP.NET application, recompile the application on the .NET Framework 4, and run it on a
64 - bit processor.

 ADDITIONAL FEATURES OF ASP.NET 4

 You just learned some of the main goals of the ASP.NET team that built ASP.NET. To achieve these goals,
ASP.NET provides a mountain of features to make your development process easier. A few of these features
are described in the following sections.

 ASP.NET Developer Infrastructures

 An exciting aspect of ASP.NET is that infrastructures are in place for you to use in your applications.
The ASP.NET team selected some of the most common programming operations performed with Web
applications to be built directly into ASP.NET. This saves you considerable time and coding.

 Membership and Role Management

 Prior to ASP.NET 2.0, if you were developing a portal that required users to log in to the application to
gain privileged access, invariably you had to create it yourself. Creating applications with areas that are
accessible only to select individuals can be tricky.

 You will fi nd that with ASP.NET 4 this capability is built in. You can validate users as shown in Listing I - 3.

 LISTING I - 3: Validating a user in code

 If (Membership.ValidateUser (Username.Text, Password.Text)) Then
 ' Allow access code here
 End If

 if (Membership.ValidateUser (Username.Text, Password.Text)) {
 // Allow access code here
 }

 A series of APIs, controls, and providers in ASP.NET 4 enable you to control an application ’ s user
membership and role management. Using these APIs, you can easily manage users and their complex
roles — creating, deleting, and editing them. You get all this capability by using the APIs or a built - in
Web tool called the Web Site Administration Tool.

 As far as storing users and their roles, ASP.NET 4 uses an .mdf fi le (the fi le type for the SQL Server Express
Edition) for storing all users and roles. You are in no way limited to just this data store, however. You can
expand everything offered to you by ASP.NET and build your own providers using whatever you fancy as
a data store. For example, if you want to build your user store in LDAP or within an Oracle database, you
can do so quite easily.

VBVB

C#C#

flast.indd xliiiflast.indd xliii 2/3/10 11:57:49 AM2/3/10 11:57:49 AM

xliv

INTRODUCTION

 Personalization

 One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is completely built into the ASP.NET
Framework.

 Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options for storing the created personalization settings. The capability to store these settings
in either Microsoft Access or in SQL Server is built into ASP.NET 4. As with the capabilities of the
membership and role APIs, you can use the fl exible provider model, and then either change how the built - in
provider uses the available data store or build your own custom data provider to work with a completely
new data store. The personalization API also supports a union of data stores, meaning that you can use
more than one data store if you want.

 Because creating a site for customization using these APIs is so easy, this feature is quite a value - add for any
application you build.

 The ASP.NET Portal Framework

 During the days of ASP.NET 1.0, developers could go to the ASP.NET team ’ s site (found at asp.net) and
download some Web application demos such as IBuySpy. These demos are known as Developer Solution
Kits and are used as the basis for many of the Web sites on the Internet today. Some were even extended into
open source frameworks such as DotNetNuke.

 The nice thing about some of these frameworks was that you could use the code they provided as a basis
to build either a Web store or a portal. You simply took the base code as a starting point and extended it.
For example, you could change the look and feel of the presentation part of the code or introduce advanced
functionality into its modular architecture. Developer Solution Kits are quite popular because they make
performing these types of operations so easy.

 Because of the popularity of frameworks, ASP.NET 4 offers built - in capability for using Web Parts to easily
build portals. The possibilities for what you can build using the Portal Framework is astounding. The power
of building and using Web Parts is that it easily enables end users to completely customize the portal for
their own preferences.

 Site Navigation

 The ASP.NET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner are sometimes hard to code. The team solved the problem
in ASP.NET with a series of navigation - based server controls.

 For example, you can build a site map for your application in an XML fi le that specifi c controls can
inherently work from. Listing I - 4 shows a sample site map fi le.

 LISTING I - 4: An example of a site map fi le

 < ?xml version="1.0" encoding="utf - 8" ? >

 < siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap - File - 1.0" >
 < siteMapNode title="Home" description="Home Page"
 url="default.aspx" >
 < siteMapNode title="News" description="The Latest News"
 url="News.aspx" >
 < siteMapNode title="U.S." description="U.S. News"
 url="News.aspx?cat=us" / >

flast.indd xlivflast.indd xliv 2/3/10 11:57:49 AM2/3/10 11:57:49 AM

xlv

INTRODUCTION

 < siteMapNode title="World" description="World News"
 url="News.aspx?cat=world" / >
 < siteMapNode title="Technology"
 description="Technology News"
 url="News.aspx?cat=tech" / >
 < siteMapNode title="Sports" description="Sports News"
 url="News.aspx?cat=sport" / >
 < /siteMapNode >
 < siteMapNode title="Finance"
 description="The Latest Financial Information"
 url="Finance.aspx" >
 < siteMapNode title="Quotes"
 description="Get the Latest Quotes"
 url="Quotes.aspx" / >
 < siteMapNode title="Markets"
 description="The Latest Market Information"
 url="Markets.aspx" >
 < siteMapNode title="U.S. Market Report"
 description="Looking at the U.S. Market"
 url="MarketsUS.aspx" / >
 < siteMapNode title="NYSE"
 description="The New York Stock Exchange"
 url="NYSE.aspx" / >
 < /siteMapNode >
 < siteMapNode title="Funds" description="Mutual Funds"
 url="Funds.aspx" / >
 < /siteMapNode >
 < siteMapNode title="Weather" description="The Latest Weather"
 url="Weather.aspx" / >
 < /siteMapNode >
 < /siteMap >

 After you have a site map in place, you can use this fi le as the data source behind a
couple of site navigation server controls, such as the TreeView and the SiteMapPath
server controls. The TreeView server control enables you to place an expandable site
navigation system in your application. Figure I - 1 shows you an example of one of
the many looks you can give the TreeView server control.

 SiteMapPath is a control that provides the capability to place what some
call breadcrumb navigation in your application so that the end user can see
the path that he has taken in the application and can easily navigate to higher
levels in the tree. Figure I - 2 shows you an example of the SiteMapPath server
control at work.

 These site navigation capabilities provide a great way to get
programmatic access to the site layout and even to take into account
things like end - user roles to determine which parts of the site to show.

 The ADO.NET Entity Framework

 Most developers need to work with an underlying database of some kind. Whether that is a Microsoft SQL
Server database or an Oracle database, your applications are usually pulling content of some kind to work
with. The diffi culty in working with an underlying database is that a database and your object - oriented
code handle objects in such dramatically different ways.

 In the database world, your data structures are represented in tables, and collections within items (such
as a Customer object with associated Orders) are simply represented as two tables with a Join statement
required between them. In contrast, in your object - oriented code, these objects are represented so that the

FIGURE I-1

FIGURE I-2

flast.indd xlvflast.indd xlv 2/3/10 11:57:50 AM2/3/10 11:57:50 AM

xlvi

INTRODUCTION

 Orders item is simply a property within the Customers object. Bringing these two worlds together and
mapping these differences have always been a bit laborious.

 ASP.NET 4 includes the ability to work with the ADO.NET Entity Framework, which you will fi nd is
somewhat similar to working with LINQ to SQL. The purpose of the ADO.NET Entity Framework is to
allow you to create an Entity Data Model (EDM) that will make mapping the object - oriented objects that
you create along with how these objects are represented in the database easy.

 One advantage of the ADO.NET Entity Framework is that it works with many different types of databases,
so you will not be limited to working with a single database as you are with LINQ to SQL. Another
advantage is that the ADO.NET Entity Framework is the basis of some other exciting technologies that
ASP.NET 4 includes, such as ADO.NET Data Services.

 ASP.NET Dynamic Data

 Another great ASP.NET feature is called ASP.NET Dynamic Data. This capability enables you to easily
create a reporting and data entry application from a database in just a couple of minutes.

 Working with ASP.NET Dynamic Data is as simple as pointing to an Entity Data Model that you created
in your application and allowing the dynamic data engine to create the Web pages for you that provide you
with full create, edit, update, and delete capabilities over the database.

 ASP.NET Dynamic Data requires that you have an Entity Data Model in place for it to work. The nice thing
is that you are not limited to working with just the ADO.NET Entity Framework — you can also work with
any LINQ to SQL models that you have created.

 One great feature of the architecture of ASP.NET Dynamic Data is that it is based on working with
templates in the dynamic generation of the pages for the site. As a developer working with this system,
you are able to use the system “ as - is ” or even take pieces of it and incorporate its abilities in any of your
pre - existing ASP.NET applications.

 WCF Data Services

 ASP.NET 4 also includes another great feature called WCF Data Services. Formally known as ADO.NET
Data Services, WCF Data Services enables you to create a RESTful service interface against your database.

 Using WCF Data Services, you can provide the capability to use the URL of the request as a command - driven
URI along with HTTP verbs to direct the server on how you want to deal with the underlying data. You can
create, read, update, or delete underlying database data using this technology, but as the implementer of the
interface, you are also just as able to limit and restrict end user capability and access.

 The ASP.NET Compilation System

 Compilation in ASP.NET 1.0 was always a tricky scenario. With ASP.NET 1.0, you could build an
application ’ s code - behind fi les using ASP.NET and Visual Studio, deploy it, and then watch as the .aspx
fi les were compiled page by page as each page was requested. If you made any changes to the code - behind
fi le in ASP.NET 1.0, it was not refl ected in your application until the entire application was rebuilt. That
meant that the same page - by - page request had to be done again before the entire application was
recompiled.

 Everything about how ASP.NET 1.0 worked with classes and compilation is different from how it is in
ASP.NET today. The mechanics of the compilation system actually begin with how a page is structured
in ASP.NET 4. In ASP.NET 1.0, you constructed your pages either by using the code - behind model or by
placing all the server code inline between < script > tags on your .aspx page. Most pages were constructed

flast.indd xlviflast.indd xlvi 2/3/10 11:57:51 AM2/3/10 11:57:51 AM

xlvii

INTRODUCTION

using the code - behind model because this was the default when using Visual Studio .NET 2002 or 2003.
Creating your page using the inline style in these IDEs was quite diffi cult. If you did, you were deprived of
the use of IntelliSense, which can be quite the lifesaver when working with the tremendously large collection
of classes that the .NET Framework offers.

 ASP.NET 4 offers a different code - behind model from the 1.0/1.1 days because the .NET Framework 4
has the capability to work with partial classes (also called partial types). Upon compilation, the separate
fi les are combined into a single offering. This gives you much cleaner code - behind pages. The code that
was part of the Web Form Designer Generated section of your classes is separated from the code - behind
classes that you create yourself. Contrast this with the ASP.NET 1.0 .aspx fi le ’ s need to derive from its own
code - behind fi le to represent a single logical page.

 ASP.NET 4 applications can include a App_Code directory where you place your class ’ s source. Any class
placed here is dynamically compiled and refl ected in the application. You do not use a separate build
process when you make changes as you did with ASP.NET 1.0. This is a just save and hit deployment model
like the one in classic ASP 3.0. Visual Studio 2010 also automatically provides IntelliSense for any objects
that are placed in the App_Code directory, whether you are working with the code - behind model or are
coding inline.

 ASP.NET 4 also provides you with tools that enable you to pre - compile your ASP.NET applications — both
 .aspx pages and code behind — so that no page within your application has latency when it is retrieved
for the fi rst time. Doing this is also a great way to discover any errors in the pages without invoking every
page. Precompiling your ASP.NET 2.0 (as well as 3.5 or 4) applications is as simple as using aspnet_
compiler.exe and employing some of the available fl ags. As you pre - compile your entire application, you
also receive error notifi cations if any errors are found anywhere within it. Pre - compilation also enables
you to deliver only the created assembly to the deployment server, thereby protecting your code from
snooping, unwanted changes, and tampering after deployment. You will see examples of these scenarios
later in this book.

 Health Monitoring for Your ASP.NET Applications

 The built - in health monitoring capabilities are rather signifi cant features designed to make managing a
deployed ASP.NET application easier. Health monitoring provides what the term implies — the capability
to monitor the health and performance of your deployed ASP.NET applications.

 Using the health monitoring system enables you to perform event logging for health monitoring events,
which are called Web events , such as failed logins, application starts and stops, or any unhandled
exceptions. The event logging can occur in more than one place; therefore, you can log to the event log
or even back to a database. In addition to performing this disk - based logging, you can also use the system
to e - mail health monitoring information.

 Besides working with specifi c events in your application, you can also use the health monitoring system
to take health snapshots of a running application. As you can with most systems that are built into
ASP.NET 4, you can extend the health monitoring system and create your own events for recording
application information.

 Health monitoring is already enabled by default in the system .config fi les. The default setup for health
monitoring logs all errors and failure audits to the event log. For instance, throwing an error in your
application results in an error notifi cation in the Application log.

 You can change the default event logging behaviors simply by making some minor changes to your
application ’ s web.config fi le. For instance, suppose that you want to store this error event information
in a SQL Express fi le contained within the application. You can make this change by adding a
 < healthMonitoring > node to your web.config fi le as presented in Listing I - 5.

flast.indd xlviiflast.indd xlvii 2/3/10 11:57:52 AM2/3/10 11:57:52 AM

xlviii

INTRODUCTION

 LISTING I - 5: Defi ning health monitoring in the web.confi g fi le

 < healthMonitoring enabled="true" >
 < providers >
 < clear / >
 < add name="SqlWebEventProvider"
 connectionStringName="LocalSqlServer"
 maxEventDetailsLength="1073741823" buffer="false"
 bufferMode="Notification"
 type="System.Web.Management.SqlWebEventProvider,
 System.Web,Version=4.0.0.0,Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"/ >
 < /providers >
 < rules >
 < clear / >
 < add name="All Errors Default" eventName="All Errors"
 provider="SqlWebEventProvider"
 profile="Default" minInstances="1" maxLimit="Infinite"
 minInterval="00:01:00" custom="" / >
 < add name="Failure Audits Default" eventName="Failure Audits"
 provider="SqlWebEventProvider" profile="Default"
 minInstances="1"
 maxLimit="Infinite" minInterval="00:01:00" custom="" / >
 < /rules >
 < /healthMonitoring >

 After this change, events are logged in the ASPNETDB.MDF fi le that is automatically created on your behalf
if it does not already exist in your project.

 Opening this SQL Express fi le, you will fi nd an aspnet_WebEvent_Events table where all this information
is stored.

 You will learn much more about the health monitoring capabilities provided with ASP.NET 4 in Chapter 34.

 Reading and Writing Confi guration Settings

 Using the WebConfigurationManager class, you have the capability to read and write to the server or
application confi guration fi les. This means that you can write and read settings in the machine.config
or the web.config fi les that your application uses.

 The capability to read and write to confi guration fi les is not limited to working with the local machine in
which your application resides. You can also perform these operations on remote servers and applications.

 Of course, a GUI - based way exists in which you can perform these read or change operations on the
confi guration fi les at your disposal. The exciting thing, however, is that the built - in GUI tools that
provide this functionality (such as the ASP.NET MMC snap - in when using Windows XP or the latest IIS
interface if you are using Windows 7) use the WebConfigurationManager class, which is also available for
building custom administration tools.

 Listing I - 6 shows an example of reading a connection string from an application ’ s web.config fi le.

 LISTING I - 6: Reading a connection string from the application ’ s web.confi g fi le

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs)
 Try
 Dim connectionString As String =
 ConfigurationManager.ConnectionStrings("Northwind").
 ConnectionString.ToString()

VBVB

flast.indd xlviiiflast.indd xlviii 2/3/10 11:57:52 AM2/3/10 11:57:52 AM

xlix

INTRODUCTION

 Label1.Text = connectionString
 Catch ex As Exception
 Label1.Text = "No connection string found."
 End Try
 End Sub

 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings["Northwind"].
 ConnectionString.ToString();
 Label1.Text = connectionString;
 }
 catch (Exception)
 {
 Label1.Text = "No connection string found.";
 }
 }

 This little bit of code writes the Northwind connection string found in the web.config fi le to the screen
using a Label control. As you can see, grabbing items from the confi guration fi le is rather simple.

 Localization

 ASP.NET is making localizing applications easier than ever. In addition to using Visual Studio, you can
create resource fi les (.resx) that allow you to dynamically change the pages you create based on the culture
settings of the requestor.

 ASP.NET 4 provides the capability to provide resources application - wide or just to particular pages
in your application through the use of two application folders — App_GlobalResources and
 App_LocalResources .

 The items defi ned in any .resx fi les you create are then accessible directly in the ASP.NET server controls
or programmatically using expressions such as

 < %= Resources.Resource.Question % >

 This system is straightforward and simple to implement. Chapter 32 covers this topic in greater detail.

 Expanding on the Page Framework

 ASP.NET pages can be built based on visual inheritance. This was possible in the Windows Forms world,
but it is also possible with ASP.NET. You also gain the capability to easily apply a consistent look and feel
to the pages of your application by using themes. Many of the diffi culties in working with ADO.NET are
made easier through a series of data source controls that take care of accessing and retrieving data from a
large collection of data stores.

 Master Pages

 With the capability of master pages in ASP.NET, you can use visual inheritance within your ASP.NET
applications. Because many ASP.NET applications have a similar structure throughout their pages,
building a page template once and using that same template throughout the application is logical.

 In ASP.NET, you do this by creating a .master page, as shown in Figure I - 3.

C#C#

flast.indd xlixflast.indd xlix 2/3/10 11:57:53 AM2/3/10 11:57:53 AM

l

INTRODUCTION

 An example master page might include a header, footer, and any other elements that all the pages can share.
Besides these core elements, which you might want on every page that inherits and uses this template, you
can place < asp:ContentPlaceHolder > server controls within the master page itself for the subpages (or
content pages) to use to change specifi c regions of the master page template. The editing of the subpage is
shown in Figure I - 4.

 FIGURE I - 3

 FIGURE I - 4

flast.indd lflast.indd l 2/3/10 11:57:54 AM2/3/10 11:57:54 AM

li

INTRODUCTION

 When an end user invokes one of the subpages, she is actually looking at a single page compiled from both
the subpage and the master page that the particular subpage inherited from. This also means that the server
and client code from both pages are enabled on the new single page.

 The nice thing about master pages is that you have a single place to make any changes that affect the entire
site. This eliminates making changes to each and every page within an application.

 Themes

 The inclusion of themes in ASP.NET has made providing a consistent look and feel across your entire
site quite simple. Themes are simple text fi les where you defi ne the appearance of server controls that can be
applied across the site, to a single page, or to a specifi c server control. You can also easily incorporate
graphics and Cascading Style Sheets (CSS), in addition to server control defi nitions.

 Themes are stored in the App_Theme directory within the application root for use within that particular
application. One cool capability of themes is that you can dynamically apply them based on settings that use
the personalization service provided by ASP.NET. Each unique user of your portal or application can have
her own personalized look and feel that she has chosen from your offerings.

 Objects for Accessing Data

 One of the more code - intensive tasks in ASP.NET 1.0 was the retrieval of data. In many cases, this
meant working with a number of objects. If you have been working with ASP.NET for a while, then
you know that it was an involved process to display data from a Microsoft SQL Server table within a
DataGrid server control. For instance, you fi rst had to create a number of new objects. They included
a SqlConnection object followed by a SqlCommand object. When those objects were in place, you then
created a SqlDataReader to populate your DataGrid by binding the result to the DataGrid. In the end,
a table appeared containing the contents of the data you were retrieving (such as the Customers table from
the Northwind database).

 Today, ASP.NET eliminates this intensive procedure with the introduction of a set of objects that work
specifi cally with data access and retrieval. These data controls are so easy to use that you access and retrieve
data to populate your ASP.NET server controls without writing any code. You saw an example of this in
Listing I - 2, where an < asp:SqlDataSource > server control retrieved rows of data from the Customers table
in the Northwind database from SQL Server. This SqlDataSource server control was then bound to the
GridView server control via the use of simple attributes within the GridView control itself. It really could
not be any easier!

 The great news about this functionality is that it is not limited to just Microsoft ’ s SQL Server. In fact,
several data source server controls are at your disposal. You also have the capability to create your own. In
addition to the SqlDataSource server control, ASP.NET 4 includes the AccessDataSource, XmlDataSource,
ObjectDataSource, SiteMapDataSource, and LinqDataSource server controls. You will use all these data
controls later in this book.

 WHAT YOU NEED FOR ASP.NET 4

 You might fi nd that installing Visual Studio 2010 is best to work through the examples in this book; you
can, however, just use Microsoft ’ s Notepad and the command - line compilers that come with the .NET
Framework 4. To work through every example in this book, you need the following:

 Windows Server 2003, Windows Server 2008, Windows 2000, Windows XP, Windows Vista, or
Windows 7

 Visual Studio 2010 (this will install the .NET Framework 4)

 SQL Server 2000, 2005, or 2008

 Microsoft Access or SQL Server Express Edition

➤

➤

➤

➤

flast.indd liflast.indd li 2/3/10 11:57:55 AM2/3/10 11:57:55 AM

lii

INTRODUCTION

 The nice thing is that you are not required to have Microsoft Internet Information Services (IIS) to
work with ASP.NET 4 because ASP.NET includes a built - in Web server based on the previously released
Microsoft Cassini technology. Moreover, if you do not have a full - blown version of SQL Server, don ’ t be
alarmed. Many examples that use this database can be altered to work with Microsoft ’ s SQL Server Express
Edition, which you will fi nd free on the Internet.

 WHO SHOULD READ THIS BOOK?

 This book was written to introduce you to the features and capabilities that ASP.NET 4 offers, as well
as to give you an explanation of the foundation that ASP.NET provides. We assume you have a general
understanding of Web technologies, such as previous versions of ASP.NET, Active Server Pages 2.0/3.0,
or JavaServer Pages. If you understand the basics of Web programming, you should not have much trouble
following along with this book ’ s content.

 If you are brand new to ASP.NET, be sure to check out Beginning ASP.NET 4: In C# and VB by Imar
Spaanjaars (Wiley Publishing, Inc., 2010) to help you understand the basics.

 In addition to working with Web technologies, we also assume that you understand basic programming
constructs, such as variables, For Each loops, and object - oriented programming.

 You may also be wondering whether this book is for the Visual Basic developer or the C# developer. We are
happy to say that it is for both! When the code differs substantially, this book provides examples in both
VB and C#.

 WHAT THIS BOOK COVERS

 This book explores the release of ASP.NET 4. It covers each major new feature included in ASP.NET 4 in
detail. The following list tells you something about the content of each chapter.

 Chapter 1, “ Application and Page Frameworks. ” The fi rst chapter covers the frameworks of ASP.NET
applications as well as the structure and frameworks provided for single ASP.NET pages. This chapter
shows you how to build ASP.NET applications using IIS or the built - in Web server that comes with
Visual Studio 2010. This chapter also shows you the folders and fi les that are part of ASP.NET. It
discusses ways to compile code and shows you how to perform cross - page posting. This chapter ends
by showing you easy ways to deal with your classes from within Visual Studio 2010.

 Chapters 2, 3, and 4. These three chapters are grouped together because they all deal with server
controls. This batch of chapters starts by examining the idea of the server control and its pivotal role
in ASP.NET development. In addition to looking at the server control framework, these chapters
delve into the plethora of server controls that are at your disposal for ASP.NET development projects.
Chapter 2, “ ASP.NET Server Controls and Client - Side Scripts, ” looks at the basics of working with
server controls. Chapter 3, “ ASP.NET Web Server Controls, ” covers the controls that have been
part of the ASP.NET technology since its initial release and the controls that have been added in
each of the ASP.NET releases. Chapter 4, “ Validation Server Controls, ” describes a special group
of server controls: those for validation. You can use these controls to create beginning - to - advanced
form validations.

 Chapter 5, “ Working with Master Pages. ” Master pages are a great capability of ASP.NET. They
provide a means of creating templated pages that enable you to work with the entire application, as
opposed to single pages. This chapter examines the creation of these templates and how to apply them
to your content pages throughout an ASP.NET application.

 Chapter 6, “ Themes and Skins. ” The Cascading Style Sheet fi les you are allowed to use in ASP.NET
1.0/1.1 are simply not adequate in many regards, especially in the area of server controls. When using
these early versions, the developer can never be sure of the HTML output these fi les might generate.

➤

➤

➤

➤

flast.indd liiflast.indd lii 2/3/10 11:57:56 AM2/3/10 11:57:56 AM

liii

INTRODUCTION

This chapter looks at how to deal with the styles that your applications require and shows you how to
create a centrally managed look - and - feel for all the pages of your application by using themes and the
skin fi les that are part of a theme.

 Chapter 7, “ Data Binding. ” One of the more important tasks of ASP.NET is presenting data, and this
chapter shows you how to do that. ASP.NET provides a number of controls to which you can attach
data and present it to the end user. This chapter looks at the underlying capabilities that enable you to
work with the data programmatically before issuing the data to a control.

 Chapter 8, “ Data Management with ADO.NET. ” This chapter presents the ADO.NET data model
provided by ASP.NET, which allows you to handle the retrieval, updating, and deleting of data
quickly and logically. This data model enables you to use one or two lines of code to get at data stored
in everything from SQL Server to XML fi les.

 Chapter 9, “ Querying with LINQ. ” The .NET Framework 4 includes a nice access model language
called LINQ. LINQ is a set of extensions to the .NET Framework that encompass language - integrated
query, set, and transform operations. This chapter introduces you to LINQ and how to effectively use
this feature in your Web applications today.

 Chapter 10, “ Working with XML and LINQ to XML. ” Without a doubt, XML has become one of
the leading technologies used for data representation. For this reason, the .NET Framework and
ASP.NET 4 have many capabilities built into their frameworks that enable you to easily extract,
create, manipulate, and store XML. This chapter takes a close look at the XML technologies built
into ASP.NET and the underlying .NET Framework.

 Chapter 11, “ Introduction to the Provider Model. ” A number of systems are built into ASP.NET that
make the lives of developers so much easier and more productive than ever before. These systems are
built on an architecture called a provider model , which is rather extensible. This chapter gives an
overview of this provider model and how it is used throughout ASP.NET 4.

 Chapter 12, “ Extending the Provider Model. ” After an introduction of the provider model, this
chapter looks at some of the ways to extend the provider model found in ASP.NET 4. This chapter
also reviews a couple of sample extensions to the provider model.

 Chapter 13, “ Site Navigation. ” It is quite apparent that many developers do not simply develop
single pages — they build applications. Therefore, they need mechanics that deal with functionality
throughout the entire application, not just the pages. One of the application capabilities provided by
ASP.NET 4 is the site navigation system covered in this chapter. The underlying navigation system
enables you to defi ne your application ’ s navigation structure through an XML fi le, and it introduces a
whole series of navigation server controls that work with the data from these XML fi les.

 Chapter 14, “ Personalization. ” Developers are always looking for ways to store information pertinent
to the end user. After it is stored, this personalization data has to be persisted for future visits or for
grabbing other pages within the same application. The ASP.NET team developed a way to store this
information — the ASP.NET personalization system. The great thing about this system is that you
confi gure the entire behavior of the system from the web.config fi le.

 Chapter 15, “ Membership and Role Management. ” This chapter covers the membership and role
management system developed to simplify adding authentication and authorization to your ASP.
NET applications. These two systems are extensive; they make some of the more complicated
authentication and authorization implementations of the past a distant memory. This chapter focuses
on using the web.config fi le for controlling how these systems are applied, as well as on the server
controls that work with the underlying systems.

 Chapter 16, “ Portal Frameworks and Web Parts. ” This chapter explains Web Parts — a way of
encapsulating pages into smaller and more manageable objects. The great thing about Web Parts is
that they can be made of a larger Portal Framework, which can then enable end users to completely
modify how the Web Parts are constructed on the page — including their appearance and layout.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd liiiflast.indd liii 2/3/10 11:57:57 AM2/3/10 11:57:57 AM

liv

INTRODUCTION

 Chapter 17, “ HTML and CSS Design with ASP.NET. ” Visual Studio 2010 places a lot of focus on
building a CSS - based Web. This chapter takes a close look at how you can effectively work with
HTML and CSS design for your ASP.NET applications.

 Chapter 18, “ ASP.NET AJAX. ” AJAX is a hot buzzword in the Web application world these days.
AJAX is an acronym for Asynchronous JavaScript and XML . In Web application development, it
signifi es the capability to build applications that make use of the XMLHttpRequest object. Visual
Studio 2010 contains the ability to build AJAX - enabled ASP.NET applications from the default install
of the IDE. This chapter takes a look at this way to build your applications.

 Chapter 19, “ ASP.NET AJAX Control Toolkit. ” Along with the capabilities to build ASP.NET
applications that make use of the AJAX technology, a series of controls is available to make the task
rather simple. This chapter takes a good look at the ASP.NET AJAX Control Toolkit and how to use
this toolkit with your applications today.

 Chapter 20, “ Security. ” This chapter discusses security beyond the membership and role
management features provided by ASP.NET 4. This chapter provides an in - depth look at the
authentication and authorization mechanics inherent in the ASP.NET technology, as well as HTTP
access types and impersonations.

 Chapter 21, “ State Management. ” Because ASP.NET is a request - response – based technology, state
management and the performance of requests and responses take on signifi cant importance. This
chapter introduces these two separate but important areas of ASP.NET development.

 Chapter 22, “ Caching. ” Because of the request - response nature of ASP.NET, caching (storing
previously generated results, images, and pages) on the server becomes rather important to the
performance of your ASP.NET applications. This chapter looks at some of the advanced caching
capabilities provided by ASP.NET, including the SQL cache invalidation feature which is part of
ASP.NET 4. This chapter also takes a look at object caching and object caching extensibility.

 Chapter 23, “ Debugging and Error Handling. ” Being able to handle unanticipated errors in your
ASP.NET applications is vital for any application that you build. This chapter tells you how to
properly structure error handling within your applications. It also shows you how to use various
debugging techniques to fi nd errors that your applications might contain.

 Chapter 24, “ File I/O and Streams. ” More often than not, you want your ASP.NET applications
to work with items that are outside the base application. Examples include fi les and streams. This
chapter takes a close look at working with various fi le types and streams that might come into your
ASP.NET applications.

 Chapter 25, “ User and Server Controls. ” Not only can you use the plethora of server controls that
come with ASP.NET, but you can also use the same framework these controls use and build your
own. This chapter describes building your own server controls and how to use them within your
applications.

 Chapter 26, “ Modules and Handlers. ” Sometimes, just creating dynamic Web pages with the latest
languages and databases does not give you, the developer, enough control over an application.
At times, you need to be able to dig deeper and create applications that can interact with the Web
server itself. You want to be able to interact with the low - level processes, such as how the Web server
processes incoming and outgoing HTTP requests. This chapter looks at two methods of manipulating
the way ASP.NET processes HTTP requests: HttpModule and HttpHandler. Each method provides a
unique level of access to the underlying processing of ASP.NET, and each can be a powerful tool for
creating Web applications.

 Chapter 27, “ ASP.NET MVC. ” ASP.NET MVC is the latest major addition to ASP.NET and has
generated a lot of excitement from the development community. ASP.NET MVC supplies you with
the means to create ASP.NET using the Model - View - Controller models that many developers
expect. ASP.NET MVC provides developers with the testability, fl exibility, and maintainability in
the applications they build. It is important to remember that ASP.NET MVC is not meant to be

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd livflast.indd liv 2/3/10 11:57:57 AM2/3/10 11:57:57 AM

lv

INTRODUCTION

a replacement to the ASP.NET everyone knows and loves, but instead is simply a different way to
construct your applications.

 Chapter 28, “ Using Business Objects. ” Invariably, you are going to have components created with
previous technologies that you do not want to rebuild but that you do want to integrate into new
ASP.NET applications. If this is the case, the .NET Framework makes incorporating your previous
COM components into your applications fairly simple and straightforward. This chapter also shows
you how to build .NET components instead of turning to the previous COM component architecture.

 Chapter 29, “ ADO.NET Entity Framework. ” Mapping objects from the database to the objects
within your code is always a laborious and sometimes diffi cult process. The inclusion of the
ADO.NET Entity Framework in ASP.NET makes this task signifi cantly simpler. Using Visual Studio
2010, you are able to visually design your entity data models and then very easily access these models
from code allowing the ADO.NET Entity Framework to handle the connections and transactions to
the underlying database.

 Chapter 30, “ ASP.NET Dynamic Data. ” This feature in ASP.NET 4 allows you to quickly and easily
put together a reporting and data entry application from your database. You are also able to take
these same capabilities and incorporate them into a pre - existing application.

 Chapter 31, “ Working with Services. ” XML Web services have monopolized all the hype for the
past few years, and a major aspect of the Web services model within .NET is part of ASP.NET. This
chapter reveals the ease not only of building XML Web services, but consuming them in an ASP.NET
application. This chapter then ventures further by describing how to build XML Web services that
utilize SOAP headers and how to consume this particular type of service. Another feature in ASP.NET,
WCF Data Services, allows you to create a RESTful service layer using an Entity Data Model. Using this
capability, you can quickly set up a service layer that allows you to expose your content as AtomPub or
JSON, which will allow the consumer to completely interact with the underlying database.

 Chapter 32, “ Building Global Applications. ” Developers usually build Web applications in the English
language and then, as the audience for the application expands, they realize the need to globalize the
application. Of course, building the Web application to handle an international audience right from
the start is ideal, but, in many cases, this may not be possible because of the extra work it requires.
ASP.NET provides an outstanding way to address the internationalization of Web applications.
Changes to the API, the addition of capabilities to the server controls, and even Visual Studio itself
equip you to do the extra work required to more easily bring your application to an international
audience. This chapter looks at some of the important items to consider when building your Web
applications for the world.

 Chapter 33, “ Confi guration. ” Confi guration in ASP.NET can be a big topic because the ASP.NET
team is not into building black boxes; instead, it is building the underlying capabilities of ASP.NET in
a fashion that can easily be expanded on later. This chapter teaches you to modify the capabilities and
behaviors of ASP.NET using the various confi guration fi les at your disposal.

 Chapter 34, “ Instrumentation. ” ASP.NET gives you greater capability to apply instrumentation
techniques to your applications. The ASP.NET Framework includes performance counters, the
capability to work with the Windows Event Tracing system, possibilities for application tracing
(covered in Chapter 23 of this book), and the most exciting part of this discussion — a health
monitoring system that allows you to log a number of different events over an application ’ s lifetime.
This chapter takes an in - depth look at this health monitoring system.

 Chapter 35, “ Administration and Management. ” Besides making it easier for the developer to be more
productive in building ASP.NET applications, the ASP.NET team also put considerable effort into
making the managing of applications easier. In the past, using ASP.NET 1.0/1.1, you managed ASP.NET
applications by changing values in an XML confi guration fi le. This chapter provides an overview of the
GUI tools that come with ASP.NET today that enable you to manage your Web applications easily and
effectively.

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd lvflast.indd lv 2/3/10 11:57:58 AM2/3/10 11:57:58 AM

lvi

INTRODUCTION

 Chapter 36, “ Packaging and Deploying ASP.NET Applications. ” So you have built an ASP.NET
application — now what? This chapter takes the building process one step further and shows you how
to package your ASP.NET applications for easy deployment. Many options are available for working
with the installers and compilation model to change what you are actually giving your customers.

 Appendix A, “ Migrating Older ASP.NET Projects. ” In some cases, you build your ASP.NET 4
applications from scratch, starting everything new. In many instances, however, this is not an
option. You need to take an ASP.NET application that was previously built on the 1.0, 1.1, 2.0,
or 3.5 versions of the .NET Framework and migrate the application so that it can run on the
.NET Framework 4. This appendix focuses on migrating ASP.NET 1. x , 2.0, or 3.5 applications to
the 4 Framework.

 Appendix B, “ ASP.NET Ultimate Tools. ” This appendix takes a look at the tools available to you as
an ASP.NET developer. Many of the tools here will help you to expedite your development process
and, in many cases, make you a better developer.

 Appendix C, “ Silverlight 3 and ASP.NET. ” Silverlight is a means to build fl uid applications using
XAML. This technology enables developers with really rich vector - based applications.

 Appendix D, “ Dynamic Types and Languages. ” As of the release of ASP.NET 4, you can now build
your Web applications using IronRuby and IronPython. This appendix takes a quick look at using
dynamic languages in building your Web applications.

 Appendix E, “ ASP.NET Online Resources. ” This small appendix points you to some of the more
valuable online resources for enhancing your understanding of ASP.NET.

 CONVENTIONS

 This book uses a number of different styles of text and layout to help differentiate among various types of
information. Here are examples of the styles used and an explanation of what they mean:

 New words being defi ned are shown in italics .

 Keys that you press on the keyboard, such as Ctrl and Enter, are shown in initial caps and spelled as
they appear on the keyboard.

 File names, fi le extensions, URLs, and code that appears in regular paragraph text are shown in a
 monospaced typeface.

 A block of code that you can type as a program and run is shown on separate lines, like this:

 public static void Main()
 {
 AFunc(1,2,"abc");
 }

or like this:

 public static void Main() { AFunc(1,2,"abc"); }

 Sometimes you see code in a mixture of styles, like this:

 // If we haven't reached the end, return true, otherwise
 // set the position to invalid, and return false.
 pos++;
 if (pos < 4)
 return true;
 else {
 pos = - 1;
 return false;
 }

 When mixed code is shown like this, the bold code is what you should focus on in the current example.

➤

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd lviflast.indd lvi 2/3/10 11:57:59 AM2/3/10 11:57:59 AM

lvii

INTRODUCTION

 We demonstrate the syntactical usage of methods, properties, and so on using the following format:

SqlDependency=" database : table "

 Here, the italicized parts indicate placeholder text : object references, variables, or parameter values that
you need to insert.

 Most of the code examples throughout the book are presented as numbered listings that have descriptive
titles, like this:

 LISTING I - 7: Targeting WML devices in your ASP.NET pages

 Each listing is numbered (for example, Listing 1 - 3) where the fi rst number represents the chapter number
and the number following the hyphen represents a sequential number that indicates where that listing falls
within the chapter. Downloadable code from the Wrox Web site (www.wrox.com) also uses this numbering
system (for the most part) so that you can easily locate the examples you are looking for.

 All code is shown in both VB and C#, when warranted. The exception is for code in which the only
difference is, for example, the value given to the Language attribute in the Page directive. In such situations,
we don ’ t repeat the code for the C# version; the code is shown only once, as in the following example:

 < %@ Page Language="VB"% >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > DataSetDataSource < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < asp:DropDownList ID="Dropdownlist1" Runat="server" DataTextField="name"
 DataSourceID="XmlDataSource1" >
 < /asp:DropDownList >

 < asp:XmlDataSource ID="XmlDataSource1" Runat="server"
 DataFile=" < /Painters.xml" >
 < /asp:DataSetDataSource >
 < /form >
 < /body >
 < /html >

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code fi les that accompany the book. All the source code used in this book is available for
download at www.wrox.com . When you get to the site, simply locate the book ’ s title (either by using the
Search box or one of the topic lists) and click the Download Code link. You can then choose to download
all the code from the book in one large Zip fi le or download just the code you need for a particular chapter.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this
book ’ s ISBN is 978 - 0 - 470 - 50220 - 4.

 After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books. Remember that you can easily fi nd the code you
are looking for by referencing the listing number of the code example from the book, such as “ Listing 1 - 1. ”

flast.indd lviiflast.indd lvii 2/3/10 11:57:59 AM2/3/10 11:57:59 AM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

lviii

INTRODUCTION

We used these listing numbers when naming most of the downloadable code fi les. Those few listings that
are not named by their listing number are accompanied by the fi le name so you can easily fi nd them in the
downloadable code fi les.

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect,
and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake or faulty piece of
code, we would be very grateful if you would tell us about it. By sending in errata, you may spare another
reader hours of frustration; at the same time, you are helping us provide even higher - quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book ’ s errata is also available at www.wrox.com/misc-pages/booklist.shtml .

 If you do not spot “ your ” error already on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We will check the
information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in subsequent
editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based system
for you to post messages relating to Wrox books and technologies and to interact with other readers and
technology users. The forums offer a subscription feature that enables you to receive e - mail on topics of
interest when new posts are made to the forums. Wrox authors, editors, other industry experts, and your
fellow readers are represented in these forums.

 At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Supply the information required to join, as well as any optional information you want to provide,
and click Submit.

 You will receive an e - mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order
to post messages.

 After you join, you can post new messages and respond to other users ’ posts. You can read messages at
any time on the Web. If you want to have new messages from a particular forum e - mailed to you, click the
Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how the forum software works, as well as answers to many common questions
specifi c to P2P and Wrox books, be sure to read the P2P FAQs. Simply click the FAQ link on any P2P page.

flast.indd lviiiflast.indd lviii 2/3/10 11:58:09 AM2/3/10 11:58:09 AM

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com
http://www.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
www.wrox.com/misc-pages/booklist.shtml

1
 Application and Page
Frameworks

 WHAT ’ S IN THIS CHAPTER?

 Choosing application location and page structure options

 Working with page directives, page events, and application folders

 Choosing compilation options

 The evolution of ASP.NET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least. And now the revolution continues with the latest release of ASP.
NET — version 4. The original introduction of ASP.NET 1.0 fundamentally changed the Web
programming model. ASP.NET 4 is just as revolutionary in the way it will increase your productivity.
As of late, the primary goal of ASP.NET is to enable you to build powerful, secure, dynamic
applications using the least possible amount of code. Although this book covers the new features
provided by ASP.NET 4, it also covers all the offerings of ASP.NET technology.

 If you are new to ASP.NET and building your fi rst set of applications in ASP.NET 4, you may be
amazed by the vast amount of wonderful server controls it provides. You may marvel at how it
enables you to work with data more effectively using a series of data providers. You may be impressed
at how easily you can build in security and personalization.

 The outstanding capabilities of ASP.NET 4 do not end there, however. This chapter looks at many
exciting options that facilitate working with ASP.NET pages and applications. One of the fi rst steps
you, the developer, should take when starting a project is to become familiar with the foundation you
are building on and the options available for customizing that foundation.

 APPLICATION LOCATION OPTIONS

 With ASP.NET 4, you have the option — using Visual Studio 2010 — to create an application with
a virtual directory mapped to IIS or a standalone application outside the confi nes of IIS. Whereas,
the early Visual Studio .NET 2002/2003 IDEs forced developers to use IIS for all Web applications,
Visual Studio 2008/2010 (and Visual Web Developer 2008/2010 Express Edition, for that matter)
includes a built - in Web server that you can use for development, much like the one used in the past
with the ASP.NET Web Matrix.

➤

➤

➤

c01.indd 1c01.indd 1 2/2/10 4:36:43 PM2/2/10 4:36:43 PM

2 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

This built-in Web server was previously presented to developers as a code sample
called Cassini. In fact, the code for this mini Web server is freely downloadable from
the ASP.NET team Web site found at www.asp.net.

 The following section shows you how to use the built - in Web server that comes with Visual Studio 2010.

 Built - in Web Server

 By default, Visual Studio 2010 builds applications without the use of IIS. You can see this when you
select File ➪ New ➪ Web Site in the IDE. By default, the location provided for your application is in
 C:\Users\BillEvjen\Documents\Visual Studio 10\WebSites if you are using Windows 7 (shown
in Figure 1 - 1). It is not C:\Inetpub\wwwroot\ as it would have been in Visual Studio .NET 2002/2003.
By default, any site that you build and host inside C:\Users\BillEvjen\Documents\Visual Studio 10\
WebSites (or any other folder you create) uses the built - in Web server that is part of Visual Studio 2010. If
you use the built - in Web server from Visual Studio 2010, you are not locked into the WebSites folder; you
can create any folder you want in your system.

FIGURE 1-1

 To change from this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. The Choose Location dialog opens, shown in Figure 1 - 2.

c01.indd 2c01.indd 2 2/2/10 4:36:47 PM2/2/10 4:36:47 PM

 If you continue to use the built - in Web server
that Visual Studio 2010 provides, you can
choose a new location for your Web application
from this dialog. To choose a new location,
select a new folder and save your .aspx pages
and any other associated fi les to this directory.
When using Visual Studio 2010, you can run
your application completely from this location.
This way of working with the ASP.NET pages
you create is ideal if you do not have access to
a Web server because it enables you to build
applications that do not reside on a machine
with IIS. This means that you can even develop
ASP.NET applications on operating systems such
as Windows 7 Home Edition.

 IIS

 From the Choose Location dialog, you can also
change where your application is saved and which
type of Web server your application employs. To
use IIS (as you probably did when you used Visual
Studio .NET 2002/2003), select the Local IIS
button in the dialog. This changes the results in
the text area to show you a list of all the virtual
application roots on your machine. You are
required to run Visual Studio as an administrator
user if you want to see your local IIS instance.

 To create a new virtual root for your
application, highlight Default Web Site. Two
accessible buttons appear at the top of the dialog
box (see Figure 1 - 3). When you look from left to
right, the fi rst button in the upper - right corner
of the dialog box is for creating a new Web
application — or a virtual root. This button
is shown as a globe inside a box. The second
button enables you to create virtual directories
for any of the virtual roots you created. The
third button is a Delete button, which allows
you to delete any selected virtual directories or
virtual roots on the server.

 After you have created the virtual directory you want, click the Open button. Visual Studio 2010 then goes
through the standard process to create your application. Now, however, instead of depending on the built - in
Web server from ASP.NET 4, your application will use IIS. When you invoke your application, the URL now
consists of something like http://localhost/MyWeb/Default.aspx , which means it is using IIS.

 FTP

 Not only can you decide on the type of Web server for your Web application when you create it using
the Choose Location dialog, but you can also decide where your application is going to be located. With the
previous options, you built applications that resided on your local server. The FTP option enables you to

FIGURE 1-3

FIGURE 1-2

Application Location Options ❘ 3

c01.indd 3c01.indd 3 2/2/10 4:36:58 PM2/2/10 4:36:58 PM

4 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

actually store and even code your applications
while they reside on a server somewhere else in
your enterprise — or on the other side of the
planet. You can also use the FTP capabilities
to work on different locations within the same
server. Using this capability provides a wide
range of possible options. You can see this in
Figure 1 - 4.

 To create your application on a remote server
using FTP, simply provide the server name, the
port to use, and the directory — as well as any
required credentials. If the correct information is
provided, Visual Studio 2010 reaches out to the
remote server and creates the appropriate fi les
for the start of your application, just as if it were
doing the job locally. From this point on, you
can open your project and connect to the remote
server using FTP.

 Web Site Requiring FrontPage Extensions

 The last option in the Choose Location dialog is the Remote
Site option. Clicking this button provides a dialog that
enables you to connect to a remote or local server that utilizes
FrontPage Extensions. This option is displayed in Figure 1 - 5.

 THE ASP.NET PAGE STRUCTURE OPTIONS

 ASP.NET 4 provides two paths for structuring the code of
your ASP.NET pages. The fi rst path utilizes the code - inline
model. This model should be familiar to classic ASP 2.0/3.0
developers because all the code is contained within a single
 .aspx page. The second path uses ASP.NET ’ s code - behind
model, which allows for code separation of the page ’ s business logic from its presentation logic. In this model,
the presentation logic for the page is stored in an .aspx page, whereas the logic piece is stored in a separate
class fi le: .aspx.vb or .aspx.cs . Using the code - behind model is considered the best practice because it
provides a clean model in separation of pure UI elements from code that manipulates these elements. It is
also seen as a better means in maintaining code.

 One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forced you to use the code -
 behind model when developing your ASP.NET pages because it did not understand the code - inline model. The
code - behind model in ASP.NET was introduced as a new way to separate the presentation code and business
logic. Listing 1 - 1 shows a typical .aspx page generated using Visual Studio .NET 2002 or 2003.

 LISTING 1 - 1: A typical .aspx page from ASP.NET 1.0/1.1

 < %@ Page Language="vb" AutoEventWireup="false" Codebehind="WebForm1.aspx.vb"
 Inherits="WebApplication.WebForm1"% >
 < !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 < HTML >
 < HEAD >
 < title > WebForm1 < /title >
 < meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.1" >
 < meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1" >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-4

FIGURE 1-5

c01.indd 4c01.indd 4 2/2/10 4:36:59 PM2/2/10 4:36:59 PM

 < meta name="vs_defaultClientScript" content="JavaScript" >
 < meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5" >
 < /HEAD >
 < body >
 < form id="Form1" method="post" runat="server" >
 < P > What is your name? < br >
 < asp:TextBox id="TextBox1" runat="server" > < /asp:TextBox > < BR >
 < asp:Button id="Button1" runat="server" Text="Submit" > < /asp:Button > < /P >
 < P > < asp:Label id="Label1" runat="server" > < /asp:Label > < /P >
 < /form >
 < /body >
 < /HTML >

 The code - behind fi le created within Visual Studio .NET 2002/2003 for the .aspx page is shown in
Listing 1 - 2.

 LISTING 1 - 2: A typical .aspx.vb/.aspx.cs page from ASP.NET 1.0/1.1

Public Class WebForm1
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 < System.Diagnostics.DebuggerStepThrough() > Private Sub InitializeComponent()

 End Sub
 Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
 Protected WithEvents Button1 As System.Web.UI.WebControls.Button
 Protected WithEvents Label1 As System.Web.UI.WebControls.Label

 'NOTE: The following placeholder declaration is required by the Web Form
 Designer.
 'Do not delete or move it.
 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles Button1.Click
 Label1.Text = "Hello " & TextBox1.Text
 End Sub
End Class

 In this code - behind page from ASP.NET 1.0/1.1, you can see that a lot of the code that developers never
have to deal with is hidden in the #Region section of the page. Because ASP.NET 4 is built on top of
.NET 4, it can take advantage of the .NET Framework capability of partial classes. Partial classes enable
you to separate your classes into multiple class fi les, which are then combined into a single class when the
application is compiled. Because ASP.NET 4 combines all this page code for you behind the scenes when

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 The ASP.NET Page Structure Options ❘ 5

c01.indd 5c01.indd 5 2/2/10 4:37:00 PM2/2/10 4:37:00 PM

6 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

the application is compiled, the code - behind fi les you work with in ASP.NET 4 are simpler in appearance
and the model is easier to use. You are presented with only the pieces of the class that you need. Next, this
chapter presents a look at both the inline and code - behind models from ASP.NET 4.

 Inline Coding

 With the .NET Framework 1.0/1.1, developers went out of their way (and outside Visual Studio .NET)
to build their ASP.NET pages inline and avoid the code - behind model that was so heavily promoted by
Microsoft and others. Visual Studio 2010 (as well as Visual Web Developer 2010 Express Edition) allows
you to build your pages easily using this coding style. To build an ASP.NET page inline instead of using the
code - behind model, you simply select the page type from the Add New Item dialog and make sure that
the Place Code in Separate File check box is not selected. You can get at this dialog (see Figure 1 - 6) by right -
 clicking the project or the solution in the Solution Explorer and selecting Add New Item.

 From here, you can see the check box you need to unselect if you want to build your ASP.NET pages inline. In
fact, many page types have options for both inline and code - behind styles. Table 1 - 1 shows your inline
options when selecting fi les from this dialog.

FIGURE 1-6

TABLE 1-1

FILE OPTIONS USING INLINE CODING FILE CREATED

Web Form .aspx fi le

AJAX Web Form .aspx fi le

Master Page .master fi le

AJAX Master Page .master fi le

Web User Control .ascx fi le

Web Service .asmx fi le

c01.indd 6c01.indd 6 2/2/10 4:37:01 PM2/2/10 4:37:01 PM

 By using the Web Form option with a few controls, you get a page that encapsulates not only the
presentation logic, but the business logic as well. This is illustrated in Listing 1 - 3.

 LISTING 1 - 3: A simple page that uses the inline coding model

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Label1.Text = "Hello " & Textbox1.Text
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Simple Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 What is your name? < br / >
 < asp:Textbox ID="Textbox1" Runat="server" > < /asp:Textbox > < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit"
 OnClick="Button1_Click" / >
 < p > < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Button1_Click(object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + Textbox1.Text;
 }
 < /script >

 From this example, you can see that all the business logic is encapsulated in between < script > tags.
The nice feature of the inline model is that the business logic and the presentation logic are contained
within the same fi le. Some developers fi nd that having everything in a single viewable instance makes
working with the ASP.NET page easier. Another great thing is that Visual Studio 2010 provides
IntelliSense when working with the inline coding model and ASP.NET 4. Before Visual Studio 2005,
this capability did not exist. Visual Studio .NET 2002/2003 forced you to use the code - behind
model and, even if you rigged it so your pages were using the inline model, you lost all IntelliSense
capabilities.

 Code - Behind Model

 The other option for constructing your ASP.NET 4 pages is to build your fi les using the code -
 behind model.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 The ASP.NET Page Structure Options ❘ 7

c01.indd 7c01.indd 7 2/2/10 4:37:01 PM2/2/10 4:37:01 PM

8 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

It is important to note that the more preferred method is the code-behind model rather
than the inline model. This method employs the proper segmentation between
presentation and business logic in many cases. You will fi nd that many of the
examples in this book use an inline coding model because it works well in showing an
example in one listing. Even though the example is using an inline coding style, it is
my recommendation that you move the code to employ the code-behind model.

 To create a new page in your ASP.NET solution that uses the code - behind model, select the page type you
want from the New File dialog. To build a page that uses the code - behind model, you fi rst select the page
in the Add New Item dialog and make sure the Place Code in Separate File check box is selected. Table 1 - 2
shows you the options for pages that use the code - behind model.

TABLE 1-2

FILE OPTIONS USING CODE-BEHIND FILE CREATED

Web Form .aspx fi le; .aspx.vb or .aspx.cs fi le

AJAX Web Form .aspx fi le; .aspx.vb or .aspx.cs fi le

Master Page .master fi le; .master.vb or .master.cs fi le

AJAX Master Page .master.vb or .master.cs fi le

Web User Control .ascx fi le; .ascx.vb or .ascx.cs fi le

Web Service .asmx fi le; .vb or .cs fi le

 The idea of using the code - behind model is to separate the business logic and presentation logic into
separate fi les. Doing this makes working with your pages easier, especially if you are working in a team
environment where visual designers work on the UI of the page and coders work on the business logic that
sits behind the presentation pieces. Earlier in Listings 1 - 1 and 1 - 2, you saw how pages using the code - behind
model in ASP.NET 1.0/1.1 were constructed. To see the difference in ASP.NET 4, look at how its code -
 behind pages are constructed. These differences are illustrated in Listing 1 - 4 for the presentation piece and
Listing 1 - 5 for the code - behind piece.

L ISTING 1 - 4: An .aspx page that uses the ASP.NET 4 code - behind model

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Simple Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 What is your name? < br / >
 < asp:Textbox ID="Textbox1" Runat="server" > < /asp:Textbox > < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit"
 OnClick="Button1_Click" / >
 < p > < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" CodeFile="Default.aspx.cs" Inherits="_Default" % >

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

c01.indd 8c01.indd 8 2/2/10 4:37:02 PM2/2/10 4:37:02 PM

 LISTING 1 - 5: A code - behind page

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Label1.Text = "Hello " & TextBox1.Text
 End Sub
End Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = "Hello " + Textbox1.Text;
 }
}

 The .aspx page using this ASP.NET 4 code - behind model has some attributes in the Page directive that
you should pay attention to when working in this mode. The fi rst is the CodeFile attribute. This attribute
in the Page directive is meant to point to the code - behind page that is used with this presentation page. In
this case, the value assigned is Default.aspx.vb or Default.aspx.cs . The second attribute needed is
the Inherits attribute. This attribute was available in previous versions of ASP.NET, but was little used
before ASP.NET 2.0. This attribute specifi es the name of the class that is bound to the page when the page is
compiled. The directives are simple enough in ASP.NET 4. Look at the code - behind page from Listing 1 - 5.

 The code - behind page is rather simple in appearance because of the partial class capabilities that .NET 4
provides. You can see that the class created in the code - behind fi le uses partial classes, employing the Partial
keyword in Visual Basic 2010 and the partial keyword from C# 2010. This enables you to simply place the
methods that you need in your page class. In this case, you have a button - click event and nothing else.

 Later in this chapter, you look at the compilation process for both of these models.

 ASP.NET 4 PAGE DIRECTIVES

 ASP.NET directives are something that is a part of every ASP.NET page. You can control the behavior of
your ASP.NET pages by using these directives. Here is an example of the Page directive:

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

 Eleven directives are at your disposal in your ASP.NET pages or user controls. You use these directives in
your applications whether the page uses the code - behind model or the inline coding model.

 Basically, these directives are commands that the compiler uses when the page is compiled. Directives are
simple to incorporate into your pages. A directive is written in the following format:

 < %@ [Directive] [Attribute=Value] % >

 From this, you can see that a directive is opened with a < %@ and closed with a % > . Putting these directives
at the top of your pages or controls is best because this is traditionally where developers expect to see them

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET 4 Page Directives ❘ 9

c01.indd 9c01.indd 9 2/2/10 4:37:08 PM2/2/10 4:37:08 PM

10 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

(although the page still compiles if the directives are located at a different place). Of course, you can also
add more than a single attribute to your directive statements, as shown in the following:

 < %@ [Directive] [Attribute=Value] [Attribute=Value] % >

 Table 1 - 3 describes the directives at your disposal in ASP.NET 4.

TABLE 1-3

DIRECTIVE DESCRIPTION

Assembly Links an assembly to the page or user control for which it is associated.

Control Page directive meant for use with user controls (.ascx).

Implements Implements a specifi ed .NET Framework interface.

Import Imports specifi ed namespaces into the page or user control.

Master Enables you to specify master page–specifi c attributes and values to use when

the page parses or compiles. This directive can be used only with master pages

(.master).

MasterType Associates a class name to a page to get at strongly typed references or members

contained within the specifi ed master page.

OutputCache Controls the output caching policies of a page or user control.

Page Enables you to specify page-specifi c attributes and values to use when the page

parses or compiles. This directive can be used only with ASP.NET pages (.aspx).

PreviousPageType Enables an ASP.NET page to work with a postback from another page in the

application.

Reference Links a page or user control to the current page or user control.

Register Associates aliases with namespaces and class names for notation in custom server

control syntax.

TABLE 1-4

ATTRIBUTE DESCRIPTION

AspCompat Permits the page to be executed on a single-threaded apartment thread

when given a value of True. The default setting for this attribute is False.

Async Specifi es whether the ASP.NET page is processed synchronously or

asynchronously.

AsyncTimeout Specifi es the amount of time in seconds to wait for the asynchronous task

to complete. The default setting is 45 seconds.

AutoEventWireup Specifi es whether the page events are autowired when set to True. The

default setting for this attribute is True.

Buffer Enables HTTP response buff ering when set to True. The default setting for

this attribute is True.

ClassName Specifi es the name of the class that is bound to the page when the page is

compiled.

 The following sections provide a quick review of each of these directives.

 @Page

 The @Page directive enables you to specify attributes and values for an ASP.NET page (.aspx) to be used
when the page is parsed or compiled. This is the most frequently used directive of the bunch. Because the
ASP.NET page is such an important part of ASP.NET, you have quite a few attributes at your disposal.
Table 1 - 4 summarizes the attributes available through the @Page directive.

c01.indd 10c01.indd 10 2/2/10 4:37:10 PM2/2/10 4:37:10 PM

 ASP.NET 4 Page Directives ❘ 11

ATTRIBUTE DESCRIPTION

ClientIDMode Specifi es the algorithm that the page should use when generating ClientID

values for server controls that are on the page. The default value is AutoID

(the mode that was used for ASP.NET pages prior to ASP.NET 4). This is a

new attribute of ASP.NET 4.

ClientTarget Specifi es the target user agent a control should render content for. This

attribute needs to be tied to an alias defi ned in the <clientTarget>

section of the web.config fi le.

CodeFile References the code-behind fi le with which the page is associated.

CodeFileBaseClass Specifi es the type name of the base class to use with the code-behind

class, which is used by the CodeFile attribute.

CodePage Indicates the code page value for the response.

CompilationMode Specifi es whether ASP.NET should compile the page or not. The available

options include Always (the default), Auto, or Never. A setting of Auto

means that if possible, ASP.NET will not compile the page.

CompilerOptions Compiler string that indicates compilation options for the page.

CompileWith Takes a String value that points to the code-behind fi le used.

ContentType Defi nes the HTTP content type of the response as a standard MIME type.

Culture Specifi es the culture setting of the page. ASP.NET 3.5 and 4 include

the capability to give the Culture attribute a value of Auto to enable

automatic detection of the culture required.

Debug Compiles the page with debug symbols in place when set to True.

Description Provides a text description of the page. The ASP.NET parser ignores this

attribute and its assigned value.

EnableEventValidation Specifi es whether to enable validation of events in postback and callback

scenarios. The default setting of True means that events will be validated.

EnableSessionState Session state for the page is enabled when set to True. The default

setting is True.

EnableTheming Page is enabled to use theming when set to True. The default setting for

this attribute is True.

EnableViewState View state is maintained across the page when set to True. The default

value is True.

EnableViewStateMac Page runs a machine-authentication check on the page’s view state when

the page is posted back from the user when set to True. The default value

is False.

ErrorPage Specifi es a URL to post to for all unhandled page exceptions.

Explicit Visual Basic Explicit option is enabled when set to True. The default

setting is False.

Language Defi nes the language being used for any inline rendering and script blocks.

LCID Defi nes the locale identifi er for the Web Form’s page.

LinePragmas Boolean value that specifi es whether line pragmas are used with the

resulting assembly.

MasterPageFile Takes a String value that points to the location of the master page used

with the page. This attribute is used with content pages.

MaintainScrollPositionOn
Postback

Takes a Boolean value, which indicates whether the page should be

positioned exactly in the same scroll position or whether the page should be

regenerated in the uppermost position for when the page is posted back to

itself.

continues

c01.indd 11c01.indd 11 2/2/10 4:37:10 PM2/2/10 4:37:10 PM

12 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Here is an example of how to use the @Page directive:

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

ATTRIBUTE DESCRIPTION

MetaDescription Allows you to specify a page’s description in a meta tag for SEO purposes.

This is a new attribute in ASP.NET 4.

MetaKeywords Allows you to specify a page’s keywords in a meta tag for SEO purposes.

This is a new attribute in ASP.NET 4.

ResponseEncoding Specifi es the response encoding of the page content.

SmartNavigation Specifi es whether to activate the ASP.NET Smart Navigation feature for

richer browsers. This returns the postback to the current position on the

page. The default value is False. Since ASP.NET 2.0, SmartNavigation

has been deprecated. Use the SetFocus() method and the

MaintainScrollPositionOnPostback property instead.

Src Points to the source fi le of the class used for the code behind of the page

being rendered.

Strict Compiles the page using the Visual Basic Strict mode when set to True.

The default setting is False.

StylesheetTheme Applies the specifi ed theme to the page using the ASP.NET themes feature.

The diff erence between the StylesheetTheme and Theme attributes is

that StylesheetTheme will not override preexisting style settings in the

controls, whereas Theme will remove these settings.

Theme Applies the specifi ed theme to the page using the ASP.NET themes feature.

Title Applies a page’s title. This is an attribute mainly meant for content pages

that must apply a page title other than what is specifi ed in the master page.

Trace Page tracing is enabled when set to True. The default setting is False.

TraceMode Specifi es how the trace messages are displayed when tracing is enabled.

The settings for this attribute include SortByTime or SortByCategory.

The default setting is SortByTime.

Transaction Specifi es whether transactions are supported on the page. The settings for

this attribute are Disabled, NotSupported, Supported, Required, and

RequiresNew. The default setting is Disabled.

UICulture The value of the UICulture attribute specifi es what UI Culture to use for

the ASP.NET page. ASP.NET 3.5 and 4 include the capability to give the

UICulture attribute a value of Auto to enable automatic detection of the

UICulture.

ValidateRequest When this attribute is set to True, the form input values are checked

against a list of potentially dangerous values. This helps protect your Web

application from harmful attacks such as JavaScript attacks. The default

value is True.

ViewStateEncryptionMode Specifi es how the ViewState is encrypted on the page. The options include

Auto, Always, and Never. The default is Auto.

WarningLevel Specifi es the compiler warning level at which to stop compilation of the

page. Possible values are 0 through 4.

TABLE 1-4 (continued)

c01.indd 12c01.indd 12 2/2/10 4:37:11 PM2/2/10 4:37:11 PM

TABLE 1-5

ATTRIBUTE DESCRIPTION

AutoEventWireup Specifi es whether the master page’s events are autowired when set to True.

Default setting is True.

ClassName Specifi es the name of the class that is bound to the master page when compiled.

CodeFile References the code-behind fi le with which the page is associated.

CompilationMode Specifi es whether ASP.NET should compile the page. The available options

include Always (the default), Auto, or Never. A setting of Auto means that if

possible, ASP.NET will not compile the page.

CompilerOptions Compiler string that indicates compilation options for the master page.

CompileWith Takes a String value that points to the code-behind fi le used for the master page.

Debug Compiles the master page with debug symbols in place when set to True.

Description Provides a text description of the master page. The ASP.NET parser ignores this

attribute and its assigned value.

EnableTheming Indicates the master page is enabled to use theming when set to True. The default

setting for this attribute is True.

EnableViewState Maintains view state for the master page when set to True. The default value

is True.

Explicit Indicates that the Visual Basic Explicit option is enabled when set to True. The

default setting is False.

Inherits Specifi es the CodeBehind class for the master page to inherit.

Language Defi nes the language that is being used for any inline rendering and script blocks.

LinePragmas Boolean value that specifi es whether line pragmas are used with the resulting

assembly.

MasterPageFile Takes a String value that points to the location of the master page used with the

master page. It is possible to have a master page use another master page, which

creates a nested master page.

Src Points to the source fi le of the class used for the code behind of the master page

being rendered.

Strict Compiles the master page using the Visual Basic Strict mode when set to True.

The default setting is False.

WarningLevel Specifi es the compiler warning level at which you want to abort compilation of the

page. Possible values are from 0 to 4.

 ASP.NET 4 Page Directives ❘ 13

 @Master

 The @Master directive is quite similar to the @Page directive except that the @Master directive is meant
for master pages (.master). In using the @Master directive, you specify properties of the templated page
that you will be using in conjunction with any number of content pages on your site. Any content pages
(built using the @Page directive) can then inherit from the master page all the master content (defi ned in
the master page using the @Master directive). Although they are similar, the @Master directive has fewer
attributes available to it than does the @Page directive. The available attributes for the @Master directive are
shown in Table 1 - 5.

 Here is an example of how to use the @Master directive:

 < %@ Master Language="VB" CodeFile="MasterPage1.master.vb"
 AutoEventWireup="false" Inherits="MasterPage" % >

c01.indd 13c01.indd 13 2/2/10 4:37:12 PM2/2/10 4:37:12 PM

14 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 @Control

 The @Control directive is similar to the @Page directive except that @Control is used when you build an
ASP.NET user control. The @Control directive allows you to defi ne the properties to be inherited by the
user control. These values are assigned to the user control as the page is parsed and compiled. The available
attributes are fewer than those of the @Page directive, but quite a few of them allow for the modifi cations
you need when building user controls. Table 1 - 6 details the available attributes.

TABLE 1-6

ATTRIBUTE DESCRIPTION

AutoEventWireup Specifi es whether the user control’s events are autowired when set to True. Default

setting is True.

ClassName Specifi es the name of the class that is bound to the user control when the page is

compiled.

ClientIDMode Specifi es the algorithm that the page should use when generating ClientID values

for server controls that are on the page. The default value is AutoID (the mode

that was used for ASP.NET pages prior to ASP.NET 4). This is a new attribute of

ASP.NET 4.

CodeFileBaseClass Specifi es the type name of the base class to use with the code-behind class, which

is used by the CodeFile attribute.

CodeFile References the code-behind fi le with which the user control is associated.

CompilerOptions Compiler string that indicates compilation options for the user control.

CompileWith Takes a String value that points to the code-behind fi le used for the user control.

Debug Compiles the user control with debug symbols in place when set to True.

Description Provides a text description of the user control. The ASP.NET parser ignores this

attribute and its assigned value.

EnableTheming User control is enabled to use theming when set to True. The default setting for this

attribute is True.

EnableViewState View state is maintained for the user control when set to True. The default value

is True.

Explicit Visual Basic Explicit option is enabled when set to True. The default setting

is False.

Inherits Specifi es the CodeBehind class for the user control to inherit.

Language Defi nes the language used for any inline rendering and script blocks.

LinePragmas Boolean value that specifi es whether line pragmas are used with the resulting

assembly.

Src Points to the source fi le of the class used for the code behind of the user control

being rendered.

Strict Compiles the user control using the Visual Basic Strict mode when set to True.

The default setting is False.

WarningLevel Specifi es the compiler warning level at which to stop compilation of the user control.

Possible values are 0 through 4.

 The @Control directive is meant to be used with an ASP.NET user control. The following is an example of
how to use the directive:

 < %@ Control Language="VB" Explicit="True"
 CodeFile="WebUserControl.ascx.vb" Inherits="WebUserControl"
 Description="This is the registration user control." % >

c01.indd 14c01.indd 14 2/2/10 4:37:13 PM2/2/10 4:37:13 PM

 @Import

 The @Import directive allows you to specify a namespace to be imported into the ASP.NET page or
user control. By importing, all the classes and interfaces of the namespace are made available to the page
or user control. This directive supports only a single attribute: Namespace .

 The Namespace attribute takes a String value that specifi es the namespace to be imported. The @Import
directive cannot contain more than one attribute/value pair. Because of this, you must place multiple
namespace imports in multiple lines as shown in the following example:

 < %@ Import Namespace="System.Data" % >
 < %@ Import Namespace="System.Data.SqlClient" % >

 Several assemblies are already being referenced by your application. You can fi nd a list of these imported
namespaces by looking in the root web.config fi le found at C:\Windows\Microsoft.NET\Framework\
v4.0. xxxxx \Config . You can fi nd this list of assemblies being referenced from the < assemblies > child
element of the < compilation > element. The settings in the root web.config fi le are as follows:

 < assemblies >
 < add assembly="mscorlib" / >
 < add assembly="Microsoft.CSharp, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Configuration, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Services, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Xml, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Drawing, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.EnterpriseServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Web.Mobile, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.IdentityModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Runtime.Serialization, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Xaml, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ServiceModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ServiceModel.Activation, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Channels, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Activities, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Activities, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.WorkflowServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Xaml.Hosting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Core, Version=4.0.0.0, Culture=neutral,

 ASP.NET 4 Page Directives ❘ 15

c01.indd 15c01.indd 15 2/2/10 4:37:14 PM2/2/10 4:37:14 PM

16 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add assembly="System.Data.DataSetExtensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Xml.Linq, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ComponentModel.DataAnnotations, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Web.DynamicData, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Data.Entity, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Entity, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/ >
 < add assembly="System.Data.Linq, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Data.Entity.Design, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.ApplicationServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add assembly="*" / >
 < /assemblies >

 Because of this reference in the root web.config fi le, these assemblies need not be referenced in a
 References folder, as you would have done in ASP.NET 1.0/1.1. You can actually add or delete assemblies
that are referenced from this list. For example, if you have a custom assembly referenced continuously by
each and every application on the server, you can simply add a similar reference to your custom assembly
next to these others. Note that you can perform this same task through the application - specifi c web.config
fi le of your application as well.

 Even though assemblies might be referenced, you must still import the namespaces of these assemblies
into your pages. The same root web.config fi le contains a list of namespaces automatically imported into
each and every page of your application. This is specifi ed through the < namespaces > child element of the
 < pages > element.

 < namespaces >
 < add namespace="System" / >
 < add namespace="System.Collections" / >
 < add namespace="System.Collections.Generic" / >
 < add namespace="System.Collections.Specialized" / >
 < add namespace="System.ComponentModel" / >
 < add namespace="System.ComponentModel.DataAnnotations" / >
 < add namespace="System.Configuration" / >
 < add namespace="System.Data.Entity.Design" / >
 < add namespace="System.Data.Linq" / >
 < add namespace="System.Linq" / >
 < add namespace="System.Text" / >
 < add namespace="System.Text.RegularExpressions" / >
 < add namespace="System.Web" / >
 < add namespace="System.Web.Caching" / >
 < add namespace="System.DynamicData" / >
 < add namespace="System.Web.SessionState" / >
 < add namespace="System.Web.Security" / >
 < add namespace="System.Web.Profile" / >
 < add namespace="System.Web.UI" / >
 < add namespace="System.Web.UI.WebControls" / >
 < add namespace="System.Web.UI.WebControls.WebParts" / >
 < add namespace="System.Web.UI.HtmlControls" / >
 < add namespace="System.Xml.Linq" / >
 < /namespaces >

c01.indd 16c01.indd 16 2/2/10 4:37:15 PM2/2/10 4:37:15 PM

 From this XML list, you can see that quite a number of namespaces are imported into each and every one of
your ASP.NET pages. Again, you can feel free to modify this selection in the root web.config fi le or even
make a similar selection of namespaces from within your application ’ s web.config fi le.

 For instance, you can import your own namespace in the web.config fi le of your application to make the
namespace available on every page where it is utilized.

 < ?xml version="1.0"? >
 < configuration >
 < system.web >
 < pages >
 < namespaces >
 < add namespace="MyCompany.Utilities" / >
 < /namespaces >
 < /pages >
 < /system.web >
 < /configuration >

 Remember that importing a namespace into your ASP.NET page or user control gives you the opportunity
to use the classes without fully identifying the class name. For example, by importing the namespace
 System.Data.OleDb into the ASP.NET page, you can refer to classes within this namespace by using the
singular class name (OleDbConnection instead of System.Data.OleDb.OleDbConnection).

 @Implements

 The @Implements directive gets the ASP.NET page to implement a specifi ed .NET Framework interface.
This directive supports only a single attribute: Interface .

 The Interface attribute directly specifi es the .NET Framework interface. When the ASP.NET page or user
control implements an interface, it has direct access to all its events, methods, and properties.

 Here is an example of the @Implements directive:

 < %@ Implements Interface="System.Web.UI.IValidator" % >

 @Register

 The @Register directive associates aliases with namespaces and class names for notation in custom server
control syntax. You can see the use of the @Register directive when you drag and drop a user control onto
any of your .aspx pages. Dragging a user control onto the .aspx page causes Visual Studio 2010 to create
a @Register directive at the top of the page. This registers your user control on the page so that the control
can then be accessed on the .aspx page by a specifi c name.

 The @Register directive supports fi ve attributes, as described in Table 1 - 7.

 ASP.NET 4 Page Directives ❘ 17

TABLE 1-7

ATTRIBUTE DESCRIPTION

Assembly The assembly you are associating with the TagPrefix.

Namespace The namespace to relate with TagPrefix.

Src The location of the user control.

TagName The alias to relate to the class name.

TagPrefix The alias to relate to the namespace.

 Here is an example of how to use the @Register directive to import a user control to an ASP.NET page:

 < %@ Register TagPrefix="MyTag" Namespace="MyName.MyNamespace"
 Assembly="MyAssembly" % >

c01.indd 17c01.indd 17 2/2/10 4:37:16 PM2/2/10 4:37:16 PM

18 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 @Assembly

 The @Assembly directive attaches assemblies, the building blocks of .NET applications, to an ASP.NET
page or user control as it compiles, thereby making all the assembly ’ s classes and interfaces available to
the page. This directive supports two attributes: Name and Src .

 Name : Enables you to specify the name of an assembly used to attach to the page fi les. The name
of the assembly should include the fi lename only, not the fi le ’ s extension. For instance, if the fi le is
 MyAssembly.vb , the value of the name attribute should be MyAssembly .

 Src : Enables you to specify the source of the assembly fi le to use in compilation.

 The following provides some examples of how to use the @Assembly directive:

 < %@ Assembly Name="MyAssembly" % >
 < %@ Assembly Src="MyAssembly.vb" % >

 @PreviousPageType

 This directive is used to specify the page from which any cross - page postings originate. Cross - page posting
between ASP.NET pages is explained later in the section “ Cross - Page Posting .”

 The @PreviousPageType directive is a directive that works with the cross - page posting capability that ASP.
NET 4 provides. This simple directive contains only two possible attributes: TypeName and VirtualPath :

 TypeName : Sets the name of the derived class from which the postback will occur.

 VirtualPath : Sets the location of the posting page from which the postback will occur.

 @MasterType

 The @MasterType directive associates a class name to an ASP.NET page to get at strongly typed references
or members contained within the specifi ed master page. This directive supports two attributes:

 TypeName : Sets the name of the derived class from which to get strongly typed references or members.

 VirtualPath : Sets the location of the page from which these strongly typed references and members
will be retrieved.

 Details of how to use the @MasterType directive are shown in Chapter 5. Here is an example of its use:

 < %@ MasterType VirtualPath="~/Wrox.master" % >

 @OutputCache

 The @OutputCache directive controls the output caching policies of an ASP.NET page or user control. This
directive supports the ten attributes described in Table 1 - 8.

➤

➤

➤

➤

➤

➤

TABLE 1-8

ATTRIBUTE DESCRIPTION

CacheProfile Allows for a central way to manage an application’s cache profi le. Use the

CacheProfile attribute to specify the name of the cache profi le detailed in the

web.config fi le.

Duration The duration of time in seconds that the ASP.NET page or user control is cached.

Location Location enumeration value. The default is Any. This is valid for .aspx pages only

and does not work with user controls (.ascx). Other possible values include Client,

Downstream, None, Server, and ServerAndClient.

NoStore Specifi es whether to send a no-store header with the page.

Shared Specifi es whether a user control’s output can be shared across multiple pages. This

attribute takes a Boolean value and the default setting is false.

c01.indd 18c01.indd 18 2/2/10 4:37:16 PM2/2/10 4:37:16 PM

 Here is an example of how to use the @OutputCache directive:

 < %@ OutputCache Duration="180" VaryByParam="None" % >

 Remember that the Duration attribute specifi es the amount of time in seconds during which this page is to
be stored in the system cache.

 @Reference

 The @Reference directive declares that another ASP.NET page or user control should be compiled along
with the active page or control. This directive supports just a single attribute:

 VirtualPath : Sets the location of the page or user control from which the active page will be
referenced.

 Here is an example of how to use the @Reference directive:

 < %@ Reference VirtualPath="~/MyControl.ascx" % >

 ASP.NET PAGE EVENTS

 ASP.NET developers consistently work with various events in their server - side code. Many of the events that
they work with pertain to specifi c server controls. For instance, if you want to initiate some action when
the end user clicks a button on your Web page, you create a button - click event in your server - side code, as
shown in Listing 1 - 6.

 LISTING 1 - 6: A sample button - click event shown in VB

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Label1.Text = TextBox1.Text
End Sub

 In addition to the server controls, developers also want to initiate actions at specifi c moments when the ASP.
NET page is being either created or destroyed. The ASP.NET page itself has always had a number of events
for these instances. The following list shows you all the page events you could use in ASP.NET 1.0/1.1:

 AbortTransaction

 CommitTransaction

 DataBinding

 Disposed

 Error

 Init

 Load

 PreRender

 Unload

 One of the more popular page events from this list is the Load event, which is used in VB as shown in
Listing 1 - 7.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 ASP.NET Page Events ❘ 19

ATTRIBUTE DESCRIPTION

SqlDependency Enables a particular page to use SQL Server cache invalidation.

VaryByControl Semicolon-separated list of strings used to vary the output cache of a user control.

VaryByCustom String specifying the custom output caching requirements.

VaryByHeader Semicolon-separated list of HTTP headers used to vary the output cache.

VaryByParam Semicolon-separated list of strings used to vary the output cache.

c01.indd 19c01.indd 19 2/2/10 4:37:17 PM2/2/10 4:37:17 PM

20 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 LISTING 1 - 7: Using the Page_Load event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load

 Response.Write("This is the Page_Load event")
End Sub

 Besides the page events just shown, ASP.NET 4 has the following events:

 InitComplete : Indicates the initialization of the page is completed.

 LoadComplete : Indicates the page has been completely loaded into memory.

 PreInit : Indicates the moment immediately before a page is initialized.

 PreLoad : Indicates the moment before a page has been loaded into memory.

 PreRenderComplete : Indicates the moment directly before a page has been rendered in the browser.

 An example of using any of these events, such as the PreInit event, is shown in Listing 1 - 8.

 LISTING 1 - 8: Using page events

 < script runat="server" language="vb" >
 Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
 Page.Theme = Request.QueryString("ThemeChange")
 End Sub
 < /script >

 < script runat="server" >
 protected void Page_PreInit(object sender, System.EventArgs e)
 {
 Page.Theme = Request.QueryString["ThemeChange"];
 }
 < /script >

 If you create an ASP.NET 4 page and turn on tracing, you can see the order in which the main page events
are initiated. They are fi red in the following order:

 1. PreInit

 2. Init

 3. InitComplete

 4. PreLoad

 5. Load

 6. LoadComplete

 7. PreRender

 8. PreRenderComplete

 9. Unload

 With the addition of these choices, you can now work with the page and the controls on the page at
many different points in the page - compilation process. You see these useful page events in code examples
throughout the book.

 DEALING WITH POSTBACKS

 When you are working with ASP.NET pages, be sure you understand the page events just listed.
They are important because you place a lot of your page behavior inside these events at specifi c points
in a page lifecycle.

➤

➤

➤

➤

➤

VBVB

C#C#

c01.indd 20c01.indd 20 2/2/10 4:37:18 PM2/2/10 4:37:18 PM

 In Active Server Pages 3.0, developers had their pages post to other pages within the application. ASP.NET
pages typically post back to themselves to process events (such as a button - click event).

 For this reason, you must differentiate between posts for the fi rst time a page is loaded by the end user and
 postbacks . A postback is just that — a posting back to the same page. The postback contains all the form
information collected on the initial page for processing if required.

 Because of all the postbacks that can occur with an ASP.NET page, you want to know whether a request
is the fi rst instance for a particular page or is a postback from the same page. You can make this check by
using the IsPostBack property of the Page class, as shown in the following example:

If Page.IsPostBack = True Then
 ' Do processing
End If

if (Page.IsPostBack == true) {
 // Do processing
}

 In addition to checking against a True or False value, you can also fi nd out whether the request is not a
postback in the following manner:

If Not Page.IsPostBack Then
 ' Do processing
End If

if (!Page.IsPostBack) {
 // Do processing
}

 CROSS - PAGE POSTING

 One common feature in ASP 3.0 that is diffi cult to achieve in ASP.NET 1.0/1.1 is the capability to do cross -
 page posting. Cross - page posting enables you to submit a form (say, Page1.aspx) and have this form and all
the control values post themselves to another page (Page2.aspx).

 Traditionally, any page created in ASP.NET 1.0/1.1 simply posted to itself, and you handled the control
values within this page instance. You could differentiate between the page ’ s fi rst request and any postbacks
by using the Page.IsPostBack property, as shown here:

If Page.IsPostBack Then
 ' deal with control values
End If

 Even with this capability, many developers still wanted to be able to post to another page and deal with the
fi rst page ’ s control values on that page. This is something that is possible in ASP.NET today, and it is quite a
simple process.

 For an example, create a page called Page1.aspx that contains a simple form. Listing 1 - 9 shows this page.

 LISTING 1 - 9: Page1.aspx

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Label1.Text = "Hello " & TextBox1.Text & " < br / > " &

continues

VBVB

C#C#

VBVB

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

 Cross - Page Posting ❘ 21

c01.indd 21c01.indd 21 2/2/10 4:37:19 PM2/2/10 4:37:19 PM

22 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-9 (continued)

 "Date Selected: " & Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > First Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 Enter your name: < br / >
 < asp:Textbox ID="TextBox1" Runat="server" >
 < /asp:Textbox >
 < p >
 When do you want to fly? < br / >
 < asp:Calendar ID="Calendar1" Runat="server" > < /asp:Calendar > < /p >
 < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit page to itself"
 OnClick="Button1_Click" / >
 < asp:Button ID="Button2" Runat="server" Text="Submit page to Page2.aspx"
 PostBackUrl=" < /Page2.aspx" / >
 < p >
 < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Button1_Click (object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + TextBox1.Text + " < br / > " +
 "Date Selected: " + Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 The code from Page1.aspx , as shown in Listing 1 - 9, is quite interesting. Two buttons are shown on the
page. Both buttons submit the form, but each submits the form to a different location. The fi rst button
submits the form to itself. This is the behavior that has been the default for ASP.NET 1.0/1.1. In fact,
nothing is different about Button1 . It submits to Page1.aspx as a postback because of the use of the
 OnClick property in the button control. A Button1_Click method on Page1.aspx handles the values that
are contained within the server controls on the page.

 The second button, Button2 , works quite differently. This button does not contain an OnClick method
as the fi rst button did. Instead, it uses the PostBackUrl property. This property takes a string value that
points to the location of the fi le to which this page should post. In this case, it is Page2.aspx . This means
that Page2.aspx now receives the postback and all the values contained in the Page1.aspx controls. Look
at the code for Page2.aspx , shown in Listing 1 - 10.

 LISTING 1 - 10: Page2.aspx

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 22c01.indd 22 2/2/10 4:37:21 PM2/2/10 4:37:21 PM

 Dim pp_Textbox1 As TextBox
 Dim pp_Calendar1 As Calendar

 pp_Textbox1 = CType(PreviousPage.FindControl("Textbox1"), TextBox)
 pp_Calendar1 = CType(PreviousPage.FindControl("Calendar1"), Calendar)

 Label1.Text = "Hello " & pp_Textbox1.Text & " < br / > " &
 "Date Selected: " & pp_Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Second Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < asp:Label ID="Label1" Runat="server" > < /asp:Label >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 TextBox pp_Textbox1;
 Calendar pp_Calendar1;

 pp_Textbox1 = (TextBox)PreviousPage.FindControl("Textbox1");
 pp_Calendar1 = (Calendar)PreviousPage.FindControl("Calendar1");

 Label1.Text = "Hello " + pp_Textbox1.Text + " < br / > " + "Date Selected: " +
 pp_Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 You have a couple of ways of getting at the values of the controls that are exposed from Page1.aspx from
the second page. The fi rst option is displayed in Listing 1 - 10. To get at a particular control ’ s value that is
carried over from the previous page, you simply create an instance of that control type and populate this
instance using the FindControl() method from the PreviousPage property. The String value assigned
to the FindControl() method is the Id value, which is used for the server control from the previous page.
After this is assigned, you can work with the server control and its carried - over values just as if it had
originally resided on the current page. You can see from the example that you can extract the Text and
 SelectedDate properties from the controls without any problem.

 Another way of exposing the control values from the fi rst page (Page1.aspx) is to create a Property for the
control, as shown in Listing 1 - 11.

 LISTING 1 - 11: Exposing the values of the control from a property

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >

continues

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

Cross - Page Posting ❘ 23

c01.indd 23c01.indd 23 2/2/10 4:37:22 PM2/2/10 4:37:22 PM

24 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-11 (continued)

 Public ReadOnly Property pp_TextBox1() As TextBox
 Get
 Return TextBox1
 End Get
 End Property

 Public ReadOnly Property pp_Calendar1() As Calendar
 Get
 Return Calendar1
 End Get
 End Property

 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = "Hello " & TextBox1.Text & " < br / > " &
 "Date Selected: " & Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 public TextBox pp_TextBox1
 {
 get
 {
 return TextBox1;
 }
 }

 public Calendar pp_Calendar1
 {
 get
 {
 return Calendar1;
 }
 }

 protected void Button1_Click (object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + TextBox1.Text + " < br / > " +
 "Date Selected: " + Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 Filename Page1b.aspx

 Now that these properties are exposed on the posting page, the second page (Page2.aspx) can more easily
work with the server control properties that are exposed from the fi rst page. Listing 1 - 12 shows you how
 Page2.aspx works with these exposed properties.

 LISTING 1 - 12: Consuming the exposed properties from the fi rst page

 < %@ Page Language="VB" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 24c01.indd 24 2/2/10 4:37:23 PM2/2/10 4:37:23 PM

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = "Hello " & PreviousPage.pp_Textbox1.Text & " < br / > " &
 "Date Selected: " &
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < %@ Page Language="C#" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + PreviousPage.pp_TextBox1.Text + " < br / > " +
 "Date Selected: " +
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 Filename Page2b.aspx

 To be able to work with the properties that Page1.aspx exposes, you have to strongly type the
 PreviousPage property to Page1.aspx . To do this, you use the PreviousPageType directive. This
directive allows you to specifi cally point to Page1.aspx with the use of the VirtualPath attribute. When
that is in place, notice that you can see the properties that Page1.aspx exposes through IntelliSense from
the PreviousPage property. This is illustrated in Figure 1 - 7.

C#C#

Cross - Page Posting ❘ 25

FIGURE 1-7

c01.indd 25c01.indd 25 2/2/10 4:37:24 PM2/2/10 4:37:24 PM

26 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 As you can see, working with cross - page posting is straightforward. Notice that when you are cross posting
from one page to another, you are not restricted to working only with the postback on the second page.
In fact, you can still create methods on Page1.aspx that work with the postback before moving onto
Page2.aspx . To do this, you simply add an OnClick event for the button in Page1.aspx and a method.
You also assign a value for the PostBackUrl property. You can then work with the postback on Page1.aspx
and then again on Page2.aspx .

 What happens if someone requests Page2.aspx before she works her way through Page1.aspx ? Determining
whether the request is coming from Page1.aspx or whether someone just hit Page2.aspx directly is actually
quite easy. You can work with the request through the use of the IsCrossPagePostBack property that is quite
similar to the IsPostBack property from ASP.NET 1.0/1.1. The IsCrossPagePostBack property enables you
to check whether the request is from Page1.aspx . Listing 1 - 13 shows an example of this.

 LISTING 1 - 13: Using the IsCrossPagePostBack property

 < %@ Page Language="VB" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 If Not PreviousPage Is Nothing AndAlso PreviousPage.IsCrossPagePostBack Then
 Label1.Text = "Hello " & PreviousPage.pp_Textbox1.Text & " < br / > " &
 "Date Selected: " &
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()
 Else
 Response.Redirect("Page1.aspx")
 End If
 End Sub
 < /script >

 < %@ Page Language="C#" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 if (PreviousPage != null & & PreviousPage.IsCrossPagePostBack) {
 Label1.Text = "Hello " + PreviousPage.pp_TextBox1.Text + " < br / > " +
 "Date Selected: " +
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();
 }
 else
 {
 Response.Redirect("Page1.aspx");
 }
 }
 < /script >

 Filename Page2c.aspx

 ASP.NET APPLICATION FOLDERS

 When you create ASP.NET applications, notice that ASP.NET 4 uses a fi le - based approach. When working
with ASP.NET, you can add as many fi les and folders as you want within your application without
recompiling each and every time a new fi le is added to the overall solution. ASP.NET 4 includes the
capability to automatically precompile your ASP.NET applications dynamically.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

c01.indd 26c01.indd 26 2/2/10 4:37:25 PM2/2/10 4:37:25 PM

 ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary because ASP.
NET applications now have a defi ned folder structure. By using the ASP.NET-defi ned folders, you can have
your code automatically compiled for you, your application themes accessible throughout your application,
and your globalization resources available whenever you need them. Look at each of these defi ned folders to
see how they work. The fi rst folder reviewed is the App_Code folder.

 App_Code Folder

 The App_Code folder is meant to store your classes, .wsdl fi les, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the App_Code folder is that when you place something inside this
folder, Visual Studio 2010 automatically detects this and compiles it if
it is a class (.vb or .cs), automatically creates your XML Web service
proxy class (from the .wsdl fi le), or automatically creates a typed
dataset for you from your .xsd fi les. After the fi les are automatically
compiled, these items are then instantaneously available to any of your
ASP.NET pages that are in the same solution. Look at how to employ a
simple class in your solution using the App_Code folder.

 The fi rst step is to create an App_Code folder. To do this, simply
right - click the solution and choose Add ASP.NET Folder ➪ App_Code.
Right away, you will notice that Visual Studio 2010 treats this folder
differently than the other folders in your solution. The App_Code
folder is shown in a different color (gray) with a document pictured
next to the folder icon. See Figure 1 - 8.

 After the App_Code folder is in place, right - click the folder and select
Add New Item. The Add New Item dialog that appears gives you a few options for the types of fi les that you
can place within this folder. The available options include an AJAX - enabled WCF Service, a Class fi le, a
LINQ to SQL Class, an ADO.NET Entity Data Model, an ADO.NET EntityObject Generator, a Sequence
Diagram, a Text Template, a Text fi le, a DataSet, a Report, and a Class Diagram if you are using Visual
Studio 2010. Visual Web Developer 2010 Express Edition offers only a subset of these fi les. For the fi rst
example, select the fi le of type Class and name the class Calculator.vb or Calculator.cs . Listing 1 - 14
shows how the Calculator class should appear.

 LISTING 1 - 14: The Calculator class

Imports Microsoft.VisualBasic

Public Class Calculator
 Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a + b)
 End Function
End Class

using System;

public class Calculator
{
 public int Add(int a, int b)
 {
 return (a + b);
 }
}

 Filenames Calculator.vb and Calculator.cs

 What ’ s next? Just save this fi le, and it is now available to use in any pages that are in your solution. To see
this in action, create a simple .aspx page that has just a single Label server control. Listing 1 - 15 shows you
the code to place within the Page_Load event to make this new class available to the page.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET Application Folders ❘ 27

FIGURE 1-8

c01.indd 27c01.indd 27 2/2/10 4:37:26 PM2/2/10 4:37:26 PM

28 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 LISTING 1 - 15: An .aspx page that uses the Calculator class

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Dim myCalc As New Calculator
 Label1.Text = myCalc.Add(12, 12)
 End Sub
 < /script >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 Calculator myCalc = new Calculator();
 Label1.Text = myCalc.Add(12, 12).ToString();
 }
 < /script >

 Filename Calculator.aspx

 When you run this .aspx page, notice that it utilizes the Calculator class without any problem, with no
need to compile the class before use. In fact, right after saving the Calculator class in your solution or
moving the class to the App_Code folder, you also instantaneously receive IntelliSense capability on the
methods that the class exposes (as illustrated in Figure 1 - 9).

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

FIGURE 1-9

c01.indd 28c01.indd 28 2/2/10 4:37:28 PM2/2/10 4:37:28 PM

 To see how Visual Studio 2010 works with the App_Code folder, open the Calculator class again in the
IDE and add a Subtract method. Your class should now appear as shown in Listing 1 - 16.

 LISTING 1 - 16: Adding a Subtract method to the Calculator class

Imports Microsoft.VisualBasic

Public Class Calculator
 Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a + b)
 End Function

 Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a - b)
 End Function
End Class

using System;

public class Calculator
{
 public int Add(int a, int b)
 {
 return (a + b);
 }

 public int Subtract(int a, int b)
 {
 return (a - b);
 }
}

 Filenames Calculator.vb and Calculator.cs

 After you have added the Subtract method to the Calculator class, save the fi le and go back to your
 .aspx page. Notice that the class has been recompiled by the IDE, and the new method is now available to
your page. You see this directly in IntelliSense. Figure 1 - 10 shows this in action.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET Application Folders ❘ 29

FIGURE 1-10

c01.indd 29c01.indd 29 2/2/10 4:37:29 PM2/2/10 4:37:29 PM

30 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Everything placed in the App_Code folder is compiled into a single assembly. The class fi les placed within
the App_Code folder are not required to use a specifi c language. This means that even if all the pages of the
solution are written in Visual Basic 2010, the Calculator class in the App_Code folder of the solution can
be built in C# (Calculator.cs).

 Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root App_Code folder, as in the following example:

\App_Code
 Calculator.cs
 AdvancedMath.vb

 Having two classes made up of different languages in the App_Code folder (as shown here) causes an
error to be thrown. It is impossible for the assigned compiler to work with two different languages.
Therefore, to be able to work with multiple languages in your App_Code folder, you must make some
changes to the folder structure and to the web.config fi le.

 The fi rst step is to add two new subfolders to the App_Code folder — a VB folder and a CS folder. This
gives you the following folder structure:

\App_Code
 \VB
 Add.vb
 \CS
 Subtract.cs

 This still will not correctly compile these class fi les into separate assemblies, at least not until you make
some additions to the web.config fi le. Most likely, you do not have a web.config fi le in your solution at
this moment, so add one through the Solution Explorer. After it is added, change the < compilation > node
so that it is structured as shown in Listing 1 - 17.

 LISTING 1 - 17: Structuring the web.confi g fi le so that classes in the App_Code folder can

use diff erent languages

 < compilation >
 < codeSubDirectories >
 < add directoryName="VB" > < /add >
 < add directoryName="CS" > < /add >
 < /codeSubDirectories >
 < /compilation >

 Now that this is in place in your web.config fi le, you can work with each of the classes in your ASP.NET
pages. In addition, any C# class placed in the CS folder is now automatically compiled just like any of the
classes placed in the VB folder. Because you can add these directories in the web.config fi le, you are not
required to name them VB and CS as we did; you can use whatever name tickles your fancy.

 App_Data Folder

 The App_Data folder holds the data stores utilized by the application. It is a good spot to centrally store
all the data stores your application might use. The App_Data folder can contain Microsoft SQL Express
fi les (.mdf fi les), Microsoft Access fi les (.mdb fi les), XML fi les, and more.

 The user account utilized by your application will have read and write access to any of the fi les contained
within the App_Data folder. By default, this is the ASPNET account. Another reason for storing all your
data fi les in this folder is that much of the ASP.NET system — from the membership and role management
systems to the GUI tools, such as the ASP.NET MMC snap - in and ASP.NET Web Site Administration
Tool — is built to work with the App_Data folder.

c01.indd 30c01.indd 30 2/2/10 4:37:30 PM2/2/10 4:37:30 PM

 App_Themes Folder

 Themes are a way of providing a common look - and - feel to your site across every page. You implement
a theme by using a .skin fi le, CSS fi les, and images used by the server controls of your site. All these
elements can make a theme , which is then stored in the App_Themes folder of your solution. By storing
these elements within the App_Themes folder, you ensure that all the pages within the solution can
take advantage of the theme and easily apply its elements to the controls and markup of the page. Themes
are discussed in great detail in Chapter 6 of this book.

 App_GlobalResources Folder

 Resource fi les are string tables that can serve as data dictionaries for your applications when these applications
require changes to content based on things such as changes in culture. You can add Assembly Resource Files
(.resx) to the App_GlobalResources folder, and they are dynamically compiled and made part of the solution
for use by all your .aspx pages in the application. When using ASP.NET 1.0/1.1, you had to use the resgen.
exe tool and had to compile your resource fi les to a .dll or .exe for use within your solution. Dealing with
resource fi les in ASP.NET 4 is considerably easier. Simply placing your application - wide resources in this
folder makes them instantly accessible. Localization is covered in detail in Chapter 32.

 App_LocalResources Folder

 Even if you are not interested in constructing application - wide resources using the App_GlobalResources
folder, you may want resources that can be used for a single .aspx page. You can do this very simply by
using the App_LocalResources folder.

 You can add resource fi les that are page - specifi c to the App_LocalResources folder by constructing the
name of the .resx fi le in the following manner:

 Default.aspx.resx

 Default.aspx.fi.resx

 Default.aspx.ja.resx

 Default.aspx.en - gb.resx

 Now, the resource declarations used on the Default.aspx page are retrieved from the appropriate fi le in
the App_LocalResources folder. By default, the Default.aspx.resx resource fi le is used if another match
is not found. If the client is using a culture specifi cation of fi - FI (Finnish), however, the Default.aspx.
fi.resx fi le is used instead. Localization of local resources is covered in detail in Chapter 32.

 App_WebReferences Folder

 The App_WebReferences folder is a new name for the previous Web References folder that was used in
versions of ASP.NET prior to ASP.NET 3.5. Now you can use the App_WebReferences folder and have
automatic access to the remote Web services referenced from your application. Chapter 31 covers Web
services in ASP.NET.

 App_Browsers Folder

 The App_Browsers folder holds .browser fi les, which are XML fi les used to identity the browsers making
requests to the application and understanding the capabilities these browsers have. You can fi nd a list of
globally accessible .browser fi les at C:\Windows\Microsoft.NET\Framework\v4.0. xxxxx \Config\
Browsers . In addition, if you want to change any part of these default browser defi nition fi les, just copy
the appropriate .browser fi le from the Browsers folder to your application ’ s App_Browsers folder and
change the defi nition.

➤

➤

➤

➤

 ASP.NET Application Folders ❘ 31

c01.indd 31c01.indd 31 2/2/10 4:37:31 PM2/2/10 4:37:31 PM

32 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 COMPILATION

 You already saw how Visual Studio 2010 compiles pieces of your application as you work with them (for
instance, by placing a class in the App_Code folder). The other parts of the application, such as the .aspx
pages, can be compiled just as they were in earlier versions of ASP.NET by referencing the pages in the browser.

 When an ASP.NET page is referenced in the browser for the fi rst time, the request is passed to the ASP.NET
parser that creates the class fi le in the language of the page. It is passed to the ASP.NET parser based on the
fi le ’ s extension (.aspx) because ASP.NET realizes that this fi le extension type is meant for its handling and
processing. After the class fi le has been created, the class fi le is compiled into a DLL and then written to the
disk of the Web server. At this point, the DLL is instantiated and processed, and an output is generated for
the initial requester of the ASP.NET page. This is detailed in Figure 1 - 11.

 On the next request, great things happen. Instead of going through the entire process again for the second
and respective requests, the request simply causes an instantiation of the already - created DLL, which sends
out a response to the requester. This is illustrated in Figure 1 - 12.

Request

Response

Parse Generate

Compile

Instantiate,

process, and

render

ASP.NET

Engine

Page

Class

Code-

Behind

Class

Generated

Page

Class

.aspx

File

FIGURE 1-11

Request

Response

Parse Generate

Compile

Instantiate,

process, and

render

ASP.NET

Engine

Page

Class

Code-

Behind

Class

Generated

Page

Class

.aspx

File

2nd Request

Instantiation

2nd Request

FIGURE 1-12

c01.indd 32c01.indd 32 2/2/10 4:37:32 PM2/2/10 4:37:32 PM

 Because of the mechanics of this process, if you made changes to your .aspx code - behind pages, you found it
necessary to recompile your application. This was quite a pain if you had a larger site and did not want your
end users to experience the extreme lag that occurs when an .aspx page is referenced for the fi rst time after
compilation. Many developers, consequently, began to develop their own tools that automatically go out and hit
every single page within their application to remove this fi rst - time lag hit from the end user ’ s browsing experience.

 ASP.NET provides a few ways to precompile your entire application with a single command that you
can issue through a command line. One type of compilation is referred to as in - place precompilation . To
precompile your entire ASP.NET application, you must use the aspnet_compiler.exe tool that comes with
ASP.NET. You navigate to the tool using the Command window. Open the Command window and navigate
to C:\Windows\Microsoft.NET\Framework\v4.0. xxxxx \ . When you are there, you can work with
the aspnet_compiler tool. You can also get to this tool directly from the Visual Studio 2010 Command
Prompt. Choose Start ➪ All Programs ➪ Microsoft Visual Studio 2010 ➪ Visual Studio Tools ➪ Visual
Studio Command Prompt (2010).

 After you get the command prompt, you use the aspnet_compiler.exe tool to perform an in - place
precompilation using the following command:

aspnet_compiler -p "C:\Inetpub\wwwroot\WROX" -v none

 You then get a message stating that the precompilation is successful. The other great thing about this
precompilation capability is that you can also use it to fi nd errors on any of the ASP.NET pages in your
application. Because it hits each and every page, if one of the pages contains an error that won ’ t be triggered
until runtime, you get notifi cation of the error immediately as you employ this precompilation method.

 The next precompilation option is commonly referred to as precompilation for deployment . This
outstanding capability of ASP.NET enables you to compile your application down to some DLLs, which can
then be deployed to customers, partners, or elsewhere for your own use. Not only are minimal steps required
to do this, but also after your application is compiled, you simply have to move around the DLL and some
placeholder fi les for the site to work. This means that your Web site code is completely removed and placed
in the DLL when deployed.

 However, before you take these precompilation steps, create a folder in your root drive called, for example,
 Wrox . This folder is the one to which you will direct the compiler output. When it is in place, you can
return to the compiler tool and give the following command:

aspnet_compiler -v [Application Name] -p [Physical Location] [Target]

 Therefore, if you have an application called ThomsonReuters located at C:\Websites\ThomsonReuters ,
you use the following commands:

aspnet_compiler -v /ThomsonReuters -p C:\Websites\ThomsonReuters C:\Wrox

 Press the Enter key, and the compiler either tells you that it has a problem with one of the command parameters
or that it was successful (shown in Figure 1 - 13). If it was successful, you can see the output placed in the
target directory.

 Compilation ❘ 33

FIGURE 1-13

 In the example just shown, - v is a command for the virtual path of the application, which is provided by
using /ThomsonReuters . The next command is – p , which is pointing to the physical path of the application.

c01.indd 33c01.indd 33 2/2/10 4:37:32 PM2/2/10 4:37:32 PM

34 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

In this case, it is C:\Websites\ThomsonReuters . Finally, the last bit, C:\Wrox , is the location of the
compiler output. Table 1 - 9 describes some of the possible commands for the aspnet_compiler.exe tool.

FIGURE 1-14

TABLE 1-9

COMMAND DESCRIPTION

-m Specifi es the full IIS metabase path of the application. If you use the -m command, you

cannot use the -v or -p command.

-v Specifi es the virtual path of the application to be compiled. If you also use the -p

command, the physical path is used to fi nd the location of the application.

-p Specifi es the physical path of the application to be compiled. If this is not specifi ed, the IIS

metabase is used to fi nd the application.

-u If this command is utilized, it specifi es that the application is updatable.

-f Specifi es to overwrite the target directory if it already exists.

-d Specifi es that the debug information should be excluded from the compilation process.

[targetDir] Specifi es the target directory where the compiled fi les should be placed. If this is not

specifi ed, the output fi les are placed in the application directory.

 After compiling the application, you can go to C:\Wrox to see the output. Here you see all the fi les and the
fi le structures that were in the original application. However, if you look at the content of one of the fi les,
notice that the fi le is simply a placeholder. In the actual fi le, you fi nd the following comment:

This is a marker file generated by the precompilation tool
and should not be deleted!

 In fact, you fi nd a Code.dll fi le in the bin folder where all the page code is located. Because it is in a DLL fi le,
it provides great code obfuscation as well. From here on, all you do is move these fi les to another server using
FTP or Windows Explorer, and you can run the entire Web application from these fi les. When you have an
update to the application, you simply provide a new set of compiled fi les. Figure 1 - 14 shows a sample output.

 Note that this compilation process does not compile every type of Web fi le. In fact, it compiles only the ASP.
NET - specifi c fi le types and leaves out of the compilation process the following types of fi les:

 HTML fi les

 XML fi les

 XSD fi les

➤

➤

➤

c01.indd 34c01.indd 34 2/2/10 4:37:33 PM2/2/10 4:37:33 PM

 web.config fi les

 Text fi les

 You cannot do much to get around this, except in the case of the HTML fi les and the text fi les. For these fi le
types, just change the fi le extensions of these fi le types to .aspx ; they are then compiled into the Code.dll
like all the other ASP.NET fi les.

 BUILD PROVIDERS

 As you review the various ASP.NET folders, note that one of the more interesting folders is the App_Code
folder. You can simply drop code fi les, XSD fi les, and even WSDL fi les directly into the folder for automatic
compilation. When you drop a class fi le into the App_Code folder, the class can automatically be utilized by
a running application. In the early days of ASP.NET, if you wanted to deploy a custom component, you had
to precompile the component before being able to utilize it within your application. Now ASP.NET simply
takes care of all the work that you once had to do. You do not need to perform any compilation routine.

 Which fi le types are compiled in the App_Code folder? As with most things in ASP.NET, this is determined
through settings applied in a confi guration fi le. Listing 1 - 18 shows a snippet of confi guration code taken
from the master web.config fi le found in ASP.NET 4.

 LISTING 1 - 18: Reviewing the list of build providers

 < compilation >
 < buildProviders >
 < add extension=".aspx" type="System.Web.Compilation.PageBuildProvider" / >
 < add extension=".ascx"
 type="System.Web.Compilation.UserControlBuildProvider" / >
 < add extension=".master"
 type="System.Web.Compilation.MasterPageBuildProvider" / >
 < add extension=".asmx"
 type="System.Web.Compilation.WebServiceBuildProvider" / >
 < add extension=".ashx"
 type="System.Web.Compilation.WebHandlerBuildProvider" / >
 < add extension=".soap"
 type="System.Web.Compilation.WebServiceBuildProvider" / >
 < add extension=".resx" type="System.Web.Compilation.ResXBuildProvider" / >
 < add extension=".resources"
 type="System.Web.Compilation.ResourcesBuildProvider" / >
 < add extension=".wsdl" type="System.Web.Compilation.WsdlBuildProvider" / >
 < add extension=".xsd" type="System.Web.Compilation.XsdBuildProvider" / >
 < add extension=".js" type="System.Web.Compilation.ForceCopyBuildProvider" / >
 < add extension=".lic"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".licx"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".exclude"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".refresh"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".edmx"
 type="System.Data.Entity.Design.AspNet.
 EntityDesignerBuildProvider" / >
 < add extension=".xoml" type="System.ServiceModel.Activation.
 WorkflowServiceBuildProvider, System.WorkflowServices,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add extension=".svc"
 type="System.ServiceModel.Activation.ServiceBuildProvider,
 System.ServiceModel.Activation, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" / >

continues

➤

➤

 Build Providers ❘ 35

c01.indd 35c01.indd 35 2/2/10 4:37:34 PM2/2/10 4:37:34 PM

36 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-18 (continued)

 < add extension=".xamlx"
 type="System.Xaml.Hosting.XamlBuildProvider,
 System.Xaml.Hosting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < /buildProviders >
 < /compilation >

 This section contains a list of build providers that can be used by two entities in your development cycle. The
build provider is fi rst used is during development when you are building your solution in Visual Studio 2010.
For instance, placing a .wsdl fi le in the App_Code folder during development in Visual Studio causes the
IDE to give you automatic access to the dynamically compiled proxy class that comes from this .wsdl fi le.
The other entity that uses the build providers is ASP.NET itself. As stated, simply dragging and dropping
a .wsdl fi le in the App_Code folder of a deployed application automatically gives the ASP.NET application
access to the created proxy class.

 A build provider is simply a class that inherits from System.Web.Compilation.BuildProvider. The
 < buildProviders > section in the web.config fi le allows you to list the build provider classes that will
be utilized. The capability to dynamically compile any WSDL fi le is defi ned by the following line in the
confi guration fi le.

 < add extension=".wsdl" type="System.Web.Compilation.WsdlBuildProvider" / >

 This means that any fi le utilizing the .wsdl fi le extension is compiled using the WsdlBuildProvider , a
class that inherits from BuildProvider . Microsoft provides a set number of build providers out of the box
for you to use. As you can see from the set in Listing 1 - 18, a number of providers are available in addition
to the WsdlBuildProvider , including providers such as the XsdBuildProvider , PageBuildProvider ,
 UserControlBuildProvider , MasterPageBuildProvider , and more. Just by looking at the names of
some of these providers you can pretty much understand what they are about. The next section, however,
reviews some other providers whose names might not ring a bell right away.

 Using the Built - in Build Providers

 Two of the providers that this section covers are the ForceCopyBuildProvider and the
 IgnoreFileBuildProvider , both of which are included in the default list of providers.

 The ForceCopyBuildProvider is basically a provider that copies only those fi les for deployment that
use the defi ned extension. (These fi les are not included in the compilation process.) An extension that
utilizes the ForceCopyBuildProvider is shown in the predefi ned list in Listing 1 - 18. This is the .js fi le
type (a JavaScript fi le extension). Any .js fi les are simply copied and not included in the compilation process
(which makes sense for JavaScript fi les). You can add other fi le types that you want to be a part of this copy
process with the command shown here:

 < add extension=".chm" type="System.Web.Compilation.ForceCopyBuildProvider" / >

 In addition to the ForceCopyBuildProvider , you should also be aware of the IgnoreFileBuildProvider
class. This provider causes the defi ned fi le type to be ignored in the deployment or compilation process. This
means that any fi le type defi ned with IgnoreFileBuildProvider is simply ignored. Visual Studio will not
copy, compile, or deploy any fi le of that type. So, if you are including Visio diagrams in your project, you can
simply add the following < add > element to the web.config fi le to have this fi le type ignored. An example is
presented here:

 < add extension=".vsd" type="System.Web.Compilation.IgnoreFileBuildProvider" / >

 With this in place, all .vsd fi les are ignored.

 Using Your Own Build Providers

 In addition to using the predefi ned build providers out of the box, you can also take this build provider stuff
one step further and construct your own custom build providers to use within your applications.

c01.indd 36c01.indd 36 2/2/10 4:37:35 PM2/2/10 4:37:35 PM

 For example, suppose you wanted to construct a Car class dynamically based upon settings applied in a
custom .car fi le that you have defi ned. You might do this because you are using this .car defi nition fi le
in multiple projects or many times within the same project. Using a build provider makes defi ning these
multiple instances of the Car class simpler.

 Listing 1 - 19 presents an example of the .car fi le type.

 LISTING 1 - 19: An example of a .car fi le

 < ?xml version="1.0" encoding="utf-8" ? >
 < car name="EvjenCar" >
 < color > Blue < /color >
 < door > 4 < /door >
 < speed > 150 < /speed >
 < /car >

 Filename Evjen.car

 In the end, this XML declaration specifi es the name of the class to compile as well as some values for
various properties and a method. These elements make up the class. Now that you understand the
structure of the .car fi le type, the next step is to construct the build provider. To accomplish this
task, create a new Class Library project in the language of your choice within Visual Studio. Name the
project CarBuildProvider . The CarBuildProvider contains a single class — Car.vb or Car.cs . This
class inherits from the base class BuildProvider and overrides the GenerateCode() method of the
 BuildProvider class. Listing 1 - 20 presents this class.

 LISTING 1 - 20: The CarBuildProvider

Imports System.IO
Imports System.Web.Compilation
Imports System.Xml
Imports System.CodeDom

Public Class Car
 Inherits BuildProvider

 Public Overrides Sub GenerateCode(ByVal myAb As AssemblyBuilder)
 Dim carXmlDoc As XmlDocument = New XmlDocument()

 Using passedFile As Stream = Me.OpenStream()
 carXmlDoc.Load(passedFile)
 End Using

 Dim mainNode As XmlNode = carXmlDoc.SelectSingleNode("/car")
 Dim selectionMainNode As String = mainNode.Attributes("name").Value

 Dim colorNode As XmlNode = carXmlDoc.SelectSingleNode("/car/color")
 Dim selectionColorNode As String = colorNode.InnerText

 Dim doorNode As XmlNode = carXmlDoc.SelectSingleNode("/car/door")
 Dim selectionDoorNode As String = doorNode.InnerText

 Dim speedNode As XmlNode = carXmlDoc.SelectSingleNode("/car/speed")
 Dim selectionSpeedNode As String = speedNode.InnerText

 Dim ccu As CodeCompileUnit = New CodeCompileUnit()
 Dim cn As CodeNamespace = New CodeNamespace()
 Dim cmp1 As CodeMemberProperty = New CodeMemberProperty()
 Dim cmp2 As CodeMemberProperty = New CodeMemberProperty()
 Dim cmm1 As CodeMemberMethod = New CodeMemberMethod()

continues

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

 Build Providers ❘ 37

c01.indd 37c01.indd 37 2/2/10 4:37:35 PM2/2/10 4:37:35 PM

38 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-20 (continued)

 cn.Imports.Add(New CodeNamespaceImport("System"))

 cmp1.Name = "Color"
 cmp1.Type = New CodeTypeReference(GetType(System.String))
 cmp1.Attributes = MemberAttributes.Public
 cmp1.GetStatements.Add(New CodeSnippetExpression("return """ &
 selectionColorNode & """"))

 cmp2.Name = "Doors"
 cmp2.Type = New CodeTypeReference(GetType(System.Int32))
 cmp2.Attributes = MemberAttributes.Public
 cmp2.GetStatements.Add(New CodeSnippetExpression("return " &
 selectionDoorNode))

 cmm1.Name = "Go"
 cmm1.ReturnType = New CodeTypeReference(GetType(System.Int32))
 cmm1.Attributes = MemberAttributes.Public
 cmm1.Statements.Add(New CodeSnippetExpression("return " &
 selectionSpeedNode))

 Dim ctd As CodeTypeDeclaration = New CodeTypeDeclaration(selectionMainNode)
 ctd.Members.Add(cmp1)
 ctd.Members.Add(cmp2)
 ctd.Members.Add(cmm1)

 cn.Types.Add(ctd)
 ccu.Namespaces.Add(cn)

 myAb.AddCodeCompileUnit(Me, ccu)
 End Sub

End Class

using System.IO;
using System.Web.Compilation;
using System.Xml;
using System.CodeDom;

namespace CarBuildProvider
{
 class Car : BuildProvider
 {
 public override void GenerateCode(AssemblyBuilder myAb)
 {
 XmlDocument carXmlDoc = new XmlDocument();

 using (Stream passedFile = OpenStream())
 {
 carXmlDoc.Load(passedFile);
 }
 XmlNode mainNode = carXmlDoc.SelectSingleNode("/car");
 string selectionMainNode = mainNode.Attributes["name"].Value;

 XmlNode colorNode = carXmlDoc.SelectSingleNode("/car/color");
 string selectionColorNode = colorNode.InnerText;

 XmlNode doorNode = carXmlDoc.SelectSingleNode("/car/door");
 string selectionDoorNode = doorNode.InnerText;

 XmlNode speedNode = carXmlDoc.SelectSingleNode("/car/speed");
 string selectionSpeedNode = speedNode.InnerText;

C#C#

c01.indd 38c01.indd 38 2/2/10 4:37:36 PM2/2/10 4:37:36 PM

 CodeCompileUnit ccu = new CodeCompileUnit();
 CodeNamespace cn = new CodeNamespace();
 CodeMemberProperty cmp1 = new CodeMemberProperty();
 CodeMemberProperty cmp2 = new CodeMemberProperty();
 CodeMemberMethod cmm1 = new CodeMemberMethod();

 cn.Imports.Add(new CodeNamespaceImport("System"));

 cmp1.Name = "Color";
 cmp1.Type = new CodeTypeReference(typeof(string));
 cmp1.Attributes = MemberAttributes.Public;
 cmp1.GetStatements.Add(new CodeSnippetExpression("return \"" +
 selectionColorNode + "\""));

 cmp2.Name = "Doors";
 cmp2.Type = new CodeTypeReference(typeof(int));
 cmp2.Attributes = MemberAttributes.Public;
 cmp2.GetStatements.Add(new CodeSnippetExpression("return " +
 selectionDoorNode));

 cmm1.Name = "Go";
 cmm1.ReturnType = new CodeTypeReference(typeof(int));
 cmm1.Attributes = MemberAttributes.Public;
 cmm1.Statements.Add(new CodeSnippetExpression("return " +
 selectionSpeedNode));

 CodeTypeDeclaration ctd = new CodeTypeDeclaration(selectionMainNode);
 ctd.Members.Add(cmp1);
 ctd.Members.Add(cmp2);
 ctd.Members.Add(cmm1);

 cn.Types.Add(ctd);
 ccu.Namespaces.Add(cn);

 myAb.AddCodeCompileUnit(this, ccu);
 }
 }
}

Filenames Car.vb and Car.cs

 As you look over the GenerateCode() method, you can see that it takes an instance of AssemblyBuilder .
This AssemblyBuilder object is from the System.Web.Compilation namespace and, because of this, your
Class Library project must have a reference to the System.Web assembly. With all the various objects used
in this Car class, you also have to import in the following namespaces:

Imports System.IO
Imports System.Web.Compilation
Imports System.Xml
Imports System.CodeDom

 When you have done this, one of the tasks remaining in the GenerateCode() method is loading the
 .car fi le. Because the .car fi le is using XML for its form, you are able to load the document easily using
the XmlDocument object. From there, by using the CodeDom, you can create a class that contains two
properties and a single method dynamically. The class that is generated is an abstract representation of what
is defi ned in the provided .car fi le. On top of that, the name of the class is also dynamically driven from the
value provided via the name attribute used in the main < Car > node of the .car fi le.

 The AssemblyBuilder instance that is used as the input object then compiles the generated code along with
everything else into an assembly.

 What does it mean that your ASP.NET project has a reference to the CarBuildProvider assembly in
its project? It means that you can create a .car fi le of your own defi nition and drop this fi le into the

 Build Providers ❘ 39

c01.indd 39c01.indd 39 2/2/10 4:37:37 PM2/2/10 4:37:37 PM

40 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 App_Code folder. The second you drop the fi le into the App_Code folder, you have instant programmatic
access to the defi nition specifi ed in the fi le.

 To see this in action, you need a reference to the build provider in either the server ’ s machine.config or
your application ’ s web.config fi le. A reference is shown in Listing 1 - 21.

 LISTING 1 - 21: Making a reference to the build provider in the web.confi g fi le

 < configuration >
 < system.web >
 < compilation debug="false" >
 < buildProviders >
 < add extension=".car" type="CarBuildProvider.Car"/ >
 < /buildProviders >
 < /compilation >
 < /system.web >
 < /configuration >

 The < buildProviders > element is a child element of the < compilation > element. The < buildProviders >
element takes a couple of child elements to add or remove providers. In this case, because you want to add a
reference to the custom CarBuildProvider object, you use the < add > element. The < add > element can take
two possible attributes — extension and type . You must use both of these attributes. In the extension
attribute, you defi ne the fi le extension that this build provider will be associated with. In this case, you use
the .car fi le extension. This means that any fi le using this fi le extension is associated with the class defi ned
in the type attribute. The type attribute then takes a reference to the CarBuildProvider class that you
built — CarBuildProvider.Car .

 With this reference in place, you can create the .car fi le that was shown earlier in Listing 1 - 19. Place the
created .car fi le in the App_Code folder. You instantly have access to a dynamically generated class that
comes from the defi nition provided via the fi le. For example, because I used EvjenCar as the value of
the name attribute in the < Car > element, this will be the name of the class generated, and I will fi nd this
exact name in IntelliSense as I type in Visual Studio.

 If you create an instance of the EvjenCar class, you also fi nd that you have access to the properties and the
method that this class exposes. This is shown in Figure 1 - 15.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-15

c01.indd 40c01.indd 40 2/2/10 4:37:37 PM2/2/10 4:37:37 PM

 In addition to getting access to the properties and methods of the class, you also gain access to the values
that are defi ned in the .car fi le. This is shown in Figure 1 - 16. The simple code example shown in Figure 1 - 15
is used for this browser output.

 Global.asax ❘ 41

FIGURE 1-16

 Although a Car class is not the most useful thing in the world, this example shows you how to take the build
provider mechanics into your own hands to extend your application ’ s capabilities.

 GLOBAL.ASAX

 If you add a new item to your ASP.NET application, you get the Add New Item dialog. From here, you can
see that you can add a Global Application Class to your applications. This adds a Global.asax fi le. This
fi le is used by the application to hold application - level events, objects, and variables — all of which are
accessible application - wide. Active Server Pages developers had something similar with the Global.asa fi le.

 Your ASP.NET applications can have only a single Global.asax fi le. This fi le supports a number of items.
When it is created, you are given the following template:

 < %@ Application Language="VB" % >

 < script runat="server" >

 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs on application startup
 End Sub

 Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs on application shutdown
 End Sub

 Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when an unhandled error occurs
 End Sub

 Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when a new session is started
 End Sub

 Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when a session ends.
 ' Note: The Session_End event is raised only when the sessionstate mode
 ' is set to InProc in the Web.config file. If session mode is
 ' set to StateServer
 ' or SQLServer, the event is not raised.
 End Sub

 < /script >

c01.indd 41c01.indd 41 2/2/10 4:37:38 PM2/2/10 4:37:38 PM

42 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Just as you can work with page - level events in your .aspx pages, you can work with overall application
events from the Global.asax fi le. In addition to the events listed in this code example, the following list
details some of the events you can structure inside this fi le:

 Application_Start : Called when the application receives its very fi rst request. It is an ideal spot in
your application to assign any application - level variables or state that must be maintained across all users.

 Session_Start : Similar to the Application_Start event except that this event is fi red when an
individual user accesses the application for the fi rst time. For instance, the Application_Start event
fi res once when the fi rst request comes in, which gets the application going, but the Session_Start is
invoked for each end user who requests something from the application for the fi rst time.

 Application_BeginRequest : Although it is not listed in the preceding template provided by Visual
Studio 2010, the Application_BeginRequest event is triggered before each and every request that
comes its way. This means that when a request comes into the server, before this request is processed, the
 Application_BeginRequest is triggered and dealt with before any processing of the request occurs.

 Application_AuthenticateRequest : Triggered for each request and enables you to set up custom
authentications for a request.

 Application_Error : Triggered when an error is thrown anywhere in the application by any user of
the application. This is an ideal spot to provide application - wide error handling or an event recording
the errors to the server ’ s event logs.

 Session_End : When running in InProc mode, this event is triggered when an end user leaves the
application.

 Application_End : Triggered when the application comes to an end. This is an event that most ASP.
NET developers won ’ t use that often because ASP.NET does such a good job of closing and cleaning
up any objects that are left around.

 In addition to the global application events that the Global.asax fi le provides access to, you can also use
directives in this fi le as you can with other ASP.NET pages. The Global.asax fi le allows for the following
directives:

 @Application

 @Assembly

 @Import

 These directives perform in the same way when they are used with other ASP.NET page types.

 An example of using the Global.asax fi le is shown in Listing 1 - 22. It demonstrates how to log when
the ASP.NET application domain shuts down. When the ASP.NET application domain shuts down,
the ASP.NET application abruptly comes to an end. Therefore, you should place any logging code in the
 Application_End method of the Global.asax fi le.

 LISTING 1 - 22: Using the Application_End event in the Global.asax fi le

 < %@ Application Language="VB" % >
 < %@ Import Namespace="System.Reflection" % >
 < %@ Import Namespace="System.Diagnostics" % >

 < script runat="server" >

 Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 Dim MyRuntime As HttpRuntime =
 GetType(System.Web.HttpRuntime).InvokeMember("_theRuntime",
 BindingFlags.NonPublic Or BindingFlags.Static Or _
 BindingFlags.GetField,
 Nothing, Nothing, Nothing)

 If (MyRuntime Is Nothing) Then
 Return

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 42c01.indd 42 2/2/10 4:37:39 PM2/2/10 4:37:39 PM

 End If

 Dim shutDownMessage As String =
 CType(MyRuntime.GetType().InvokeMember("_shutDownMessage",
 BindingFlags.NonPublic Or BindingFlags.Instance Or
 BindingFlags.GetField,
 Nothing, MyRuntime, Nothing), System.String)

 Dim shutDownStack As String =
 CType(MyRuntime.GetType().InvokeMember("_shutDownStack",
 BindingFlags.NonPublic Or BindingFlags.Instance Or
 BindingFlags.GetField,
 Nothing, MyRuntime, Nothing), System.String)

 If (Not EventLog.SourceExists(".NET Runtime")) Then
 EventLog.CreateEventSource(".NET Runtime", "Application")
 End If

 Dim logEntry As EventLog = New EventLog()
 logEntry.Source = ".NET Runtime"
 logEntry.WriteEntry(String.Format(
 "shutDownMessage={0}\r\n\r\n_shutDownStack={1}",
 shutDownMessage, shutDownStack), EventLogEntryType.Error)
 End Sub

 < /script >

 < %@ Application Language="C#" % >
 < %@ Import Namespace="System.Reflection" % >
 < %@ Import Namespace="System.Diagnostics" % >

 < script runat="server" >

 void Application_End(object sender, EventArgs e)
 {
 HttpRuntime runtime =

(HttpRuntime)typeof(System.Web.HttpRuntime).InvokeMember("_theRuntime",
 BindingFlags.NonPublic | BindingFlags.Static |
BindingFlags.GetField,
 null, null, null);

 if (runtime == null)
 {
 return;
 }

 string shutDownMessage =
 (string)runtime.GetType().InvokeMember("_shutDownMessage",
 BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,
 null, runtime, null);

 string shutDownStack =
 (string)runtime.GetType().InvokeMember("_shutDownStack",
 BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,
 null, runtime, null);

 if (!EventLog.SourceExists(".NET Runtime"))
 {
 EventLog.CreateEventSource(".NET Runtime", "Application");
 }

C#C#

 Global.asax ❘ 43

continues

c01.indd 43c01.indd 43 2/2/10 4:37:40 PM2/2/10 4:37:40 PM

44 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-22 (continued)

 EventLog logEntry = new EventLog();
 logEntry.Source = ".NET Runtime";
 logEntry.WriteEntry(String.Format("\r\n\r\n_" +
 "shutDownMessage={0}\r\n\r\n_shutDownStack={1}",
 shutDownMessage, shutDownStack), EventLogEntryType.Error);
 }

 < /script >

 With this code in place in your Global.asax fi le, start your ASP.NET application. Next, do something to
cause the application to restart. You could, for example, make a change to the web.config fi le while the
application is running. This triggers the Application_End event, and you see the following addition (shown
in Figure 1 - 17) to the event log.

FIGURE 1-17

 WORKING WITH CLASSES THROUGH VISUAL STUDIO 2010

 So far, this chapter has shown you how to work with classes within your ASP.NET projects. In constructing
and working with classes, you will fi nd that Visual Studio 2010 is quite helpful. One particularly useful item
is the class designer fi le. The class designer fi le has an extension of .cd and gives you a visual way to view
your class, as well as all the available methods, properties, and other class items it contains.

 To see this designer in action, create a new Class Library project in the language of your choice. This project
has a single class fi le, Class1.vb or .cs . Delete this fi le and create a new class fi le called Calculator.vb or
 .cs , depending on the language you are using. From here, complete the class by creating a simple Add() and
 Subtract() method. Each of these methods takes in two parameters (of type Integer) and returns a single
 Integer with the appropriate calculation performed.

c01.indd 44c01.indd 44 2/2/10 4:37:41 PM2/2/10 4:37:41 PM

 After you have the Calculator class in place, the easiest way to create your class designer fi le for this
particular class is to right - click on the Calculator.vb fi le directly in the Solution Explorer and select View
Class Diagram from the menu. This creates a ClassDiagram1.cd fi le in your solution.

 Figure 1 - 18 presents the visual fi le, ClassDiagram1.cd .

 Working with Classes Through VS2010 ❘ 45

FIGURE 1-18

 The new class designer fi le gives you a design view of your class. In the document window of Visual Studio,
you see a visual representation of the Calculator class. The class is represented in a box and provides the
name of the class, as well as two available methods that are
exposed by the class. Because of the simplicity of this class,
the details provided in the visual view are limited.

 You can add additional classes to this diagram simply
by dragging and dropping class fi les onto the design
surface. You can then arrange the class fi les on the
design surface as you want. A connection is in place
for classes that are inherited from other class fi les or
classes that derive from an interface or abstract class.
In fact, you can extract an interface from the class you
just created directly in the class designer by right - clicking
on the Calculator class box and selecting Refactor ➪
Extract Interface from the provided menu (if you are
working with C#). This launches the Extract Interface
dialog (shown in Figure 1 - 19) that enables you to
customize the interface creation. FIGURE 1-19

c01.indd 45c01.indd 45 2/2/10 4:37:42 PM2/2/10 4:37:42 PM

46 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 After you click OK, the ICalculator interface is created and is then visually represented in the class
diagram fi le, as illustrated in Figure 1 - 20.

FIGURE 1-21

FIGURE 1-20

FIGURE 1-22

 In addition to creating items such as interfaces on - the - fl y, you can also modify your Calculator class by
adding additional methods, properties, events, and more through the Class Details pane found in Visual
Studio (see Figure 1 - 21).

 From this view of the class, you can directly add any additional methods, properties, fi elds, or events
without directly typing code in your class fi le. When you enter these items in the Class Details view, Visual
Studio generates the code for you on your behalf. For an example of this, add the additional Multiply()
and Divide() methods that the Calculator class needs. Expanding the plus sign next to these methods
shows the parameters needed in the signature. This is where you add the required a and b parameters. When
you have fi nished, your Class Details screen should appear as shown in Figure 1 - 22.

c01.indd 46c01.indd 46 2/2/10 4:37:42 PM2/2/10 4:37:42 PM

 After you have added new Multiply() and Divide() methods and the required parameters, you see that the
code in the Calculator class has changed to indicate these new methods are present. When the framework
of the method is in place, you also see that the class has not been implemented in any fashion. The C#
version of the Multiply() and Divide() methods created by Visual Studio is presented in Listing 1 - 23.

 LISTING 1 - 23: The framework provided by Visual Studio ’ s class designer

public int Multiply(int a, int b)
{
 throw new System.NotImplementedException();
}

public int Divide(int a, int b)
{
 throw new System.NotImplementedException();
}

 The new class designer fi les give you a powerful way to view and understand your classes better — sometimes
a picture really is worth a thousand words. One interesting last point on the .cd fi le is that Visual Studio
is really doing all the work with this fi le. If you open the ClassDesigner1.cd fi le in Notepad, you see the
results presented in Listing 1 - 24.

 LISTING 1 - 24: The real ClassDesigner1.cd fi le as it appears in Notepad

 < ?xml version="1.0" encoding="utf-8"? >
 < ClassDiagram MajorVersion="1" MinorVersion="1" >
 < Class Name="ClassDiagramEx.Calculator" >
 < Position X="1.25" Y="0.75" Width="1.5" / >
 < TypeIdentifier >
 < HashCode > AAIAAAAAAQAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAAA= < /HashCode >
 < FileName > Calculator.cs < /FileName >
 < /TypeIdentifier >
 < Lollipop Position="0.2" / >
 < /Class >
 < Font Name="Segoe UI" Size="8.25" / >
 < /ClassDiagram >

 As you can see, it is a rather simple XML fi le that defi nes the locations of the class and the items connected
to the class.

 SUMMARY

 This chapter covered a lot of ground. It discussed some of the issues concerning ASP.NET applications as
a whole and the choices you have when building and deploying these new applications. With the help of
Visual Studio 2010, you have options about which Web server to use when building your application and
whether to work locally or remotely through the built - in FTP capabilities.

 ASP.NET 4 and Visual Studio 2010 make it easy to build your pages using an inline coding model or to
select a code - behind model that is simpler to use and easier to deploy than in the past. You also learned
about the cross - posting capabilities and the fi xed folders that ASP.NET 4 has incorporated to make your
life easier. These folders make their resources available dynamically with no work on your part. You saw
some of the outstanding compilation options that are at your disposal. Finally, you looked at ways in which
Visual Studio 2010 makes it easy to work with the classes of your project.

 As you worked through some of the examples, you may have been thinking, “ WOW! ” But wait . . . there ’ s
plenty more to come!

 Summary ❘ 47

c01.indd 47c01.indd 47 2/2/10 4:37:43 PM2/2/10 4:37:43 PM

c01.indd 48c01.indd 48 2/2/10 4:37:44 PM2/2/10 4:37:44 PM

2
 ASP.NET Server Controls
and Client - Side Scripts

 WHAT ’ S IN THIS CHAPTER?

 Building ASP.NET pages with server controls

 Working with HTML server controls

 Identifying server controls

 Modifying server controls with JavaScript

 As discussed in the previous chapter, ASP.NET evolved from Microsoft ’ s earlier Web technology
called Active Server Pages (referred to as ASP then and classic ASP today). This model was completely
different from today ’ s ASP.NET. Classic ASP used interpreted languages to accomplish the construction
of the fi nal HTML document before it was sent to the browser. ASP.NET, on the other hand, uses true
compiled languages to accomplish the same task. The idea of building Web pages based on objects in
a compiled environment is one of the main focuses of this chapter.

 This chapter looks at how to use a particular type of object in ASP.NET pages called a server control
and how you can profi t from using this control. We also introduce a particular type of server
control — the HTML server control. The chapter also demonstrates how you can use JavaScript in
ASP.NET pages to modify the behavior of server controls.

 The rest of this chapter shows you how to use and manipulate server controls, both visually and
programmatically, to help with the creation of your ASP.NET pages.

 ASP.NET SERVER CONTROLS

 In the past, one of the diffi culties of working with classic ASP was that you were completely in charge
of the entire HTML output from the browser by virtue of the server - side code you wrote. Although
this might seem ideal, it created a problem because each browser interpreted the HTML given to it in
a slightly different manner.

 The two main browsers out there at the time were Microsoft ’ s Internet Explorer and Netscape
Navigator. This meant that not only did developers have to be cognizant of the browser type to
which they were outputting HTML, but they also had to take into account which versions of those
particular browsers might be making a request to their application. Some developers resolved the issue
by creating two separate applications. When an end user made an initial request to the application,

➤

➤

➤

➤

c02.indd 49c02.indd 49 2/3/10 12:16:03 PM2/3/10 12:16:03 PM

50 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

the code made a browser check to see what browser type was making the request. Then, the ASP page
would redirect the request down one path for an IE user or down another path for a Netscape user.

 Because requests came from so many different versions of the same browser, the developer often designed
for the lowest possible version that might be used to visit the site. Essentially, everyone lost out by using
the lowest common denominator as the target. This technique ensured that the page was rendered properly
in most browsers making a request, but it also forced the developer to dumb - down his application. If
applications were always built for the lowest common denominator, the developer could never take
advantage of some of the more advanced features offered by newer browser versions.

 ASP.NET server controls overcome these obstacles. When using the server controls provided by ASP.NET, you
are not specifying the HTML to be output from your server - side code. Rather, you are specifying the functionality
you want to see in the browser and letting ASP.NET decide on the output to be sent to the browser.

 When a request comes in, ASP.NET examines the request to see which browser type is making the request,
as well as the version of the browser, and then it produces HTML output specifi c to that browser. This
process is accomplished by processing a User Agent header retrieved from the HTTP Request to sniff
the browser. This means that you can now build for the best browsers out there without worrying about
whether features will work in the browsers making requests to your applications. Because of the previously
described capabilities, you will often hear these controls referred to as smart controls .

 Types of Server Controls

 ASP.NET provides two distinct types of server controls — HTML server controls and Web server controls.
Each type of control is quite different and, as you work with ASP.NET, you will see that much of the focus
is on the Web server controls. This does not mean that HTML server controls have no value. They do
provide you with many capabilities — some that Web server controls do not give you.

 You might be asking yourself which is the better control type to use. The answer is that it really depends on
what you are trying to achieve. HTML server controls map to specifi c HTML elements. You can place an
 HtmlTable server control on your ASP.NET page that works dynamically with a < table > element. On the
other hand, Web server controls map to specifi c functionality that you want on your ASP.NET pages. This
means an < asp:Panel > control might use a < table > or another element altogether — it really depends on
the capability of the browser making the request.

 Table 2 - 1 provides a summary of information on when to use HTML server controls and when to use Web
server controls.

TABLE 2-1

CONTROL TYPE WHEN TO USE THIS CONTROL TYPE

HTML Server When converting traditional ASP 3.0 Web pages to ASP.NET Web pages and speed of

completion is a concern. It is a lot easier to change your HTML elements to HTML server

controls than it is to change them to Web server controls.

When you prefer a more HTML-type programming model.

When you want to explicitly control the code that is generated for the browser. Though,

simply using ASP.NET MVC for this (covered in Chapter 27) might be a better answer.

Web Server When you require a richer set of functionality to perform complicated page requirements.

When you are developing Web pages that will be viewed by a multitude of browser types

and that require diff erent code based upon these types.

When you prefer a more Visual Basic–type programming model that is based on the use of

controls and control properties.

 Of course, some developers like to separate certain controls from the rest and place them in their own
categories. For instance, you may see references to the following types of controls:

 List controls: These control types allow data to be bound to them for display purposes of some kind.

 Rich controls: Controls, such as the Calendar control, that display richer content and capabilities than
other controls.

➤

➤

c02.indd 50c02.indd 50 2/3/10 12:16:11 PM2/3/10 12:16:11 PM

 Validation controls: Controls that interact with other form controls to validate the data that
they contain.

 User controls: These are not really controls, but page templates that you can work with as you would
a server control on your ASP.NET page.

 Custom controls: Controls that you build yourself and use in the same manner as the supplied
ASP.NET server controls that come with the default install of ASP.NET 4.

 When you are deciding between HTML server controls and Web server controls, remember that no hard
and fast rules exist about which type to use. You might fi nd yourself working with one control type more
than another, but certain features are available in one control type that might not be available in the other.
If you are trying to accomplish a specifi c task and you do not see a solution with the control type you are
using, look at the other control type because it may very well hold the answer. Also, realize that you can
mix and match these control types. Nothing says that you cannot use both HTML server controls and Web
server controls on the same page or within the same application.

 Building with Server Controls

 You have a couple of ways to use server controls to construct your ASP.NET pages. You can actually
use tools that are specifi cally designed to work with ASP.NET 4 that enable you to visually drag and
drop controls onto a design surface and manipulate the behavior of the control. You can also work with
server controls directly through code input.

 Working with Server Controls on a Design Surface

 Visual Studio 2010 enables you to visually create an ASP.NET page by dragging and dropping visual
controls onto a design surface. You can get to this visual design option by clicking the Design tab at the
bottom of the IDE when viewing your ASP.NET page. You can also show the Design view and the Source
code view in the same document window. This is a feature available in Visual Studio 2008 and Visual
Studio 2010. When the Design view is present, you can place the cursor on the page in the location where
you want the control to appear and then double - click the control you want in the Toolbox window of Visual
Studio. Unlike the 2002 and 2003 versions of Visual Studio, Visual Studio 2010 does a really good job of
not touching your code when switching between the Design and Source tabs.

 In the Design view of your page, you can highlight a control and the properties for the control appear in
the Properties window. For example, Figure 2 - 1 shows a Button control selected in the design panel and its
properties are displayed in the Properties window on the lower right.

 Changing the properties in the window changes the appearance or behavior of the highlighted control.
Because all controls inherit from a specifi c base class (WebControl), you can also highlight multiple controls
at the same time and change the base properties of all the controls at once. You do this by holding down the
Ctrl key as you make your control selections.

 Coding Server Controls

 You also can work from the code page directly. Because many developers prefer this, it is the default
when you fi rst create your ASP.NET page. Hand - coding your own ASP.NET pages may seem to be a slower
approach than simply dragging and dropping controls onto a design surface, but it isn ’ t as slow as you might
think. You get plenty of assistance in coding your applications from Visual Studio 2010. As you start typing
in Visual Studio, the IntelliSense features kick in and help you with code auto - completion. Figure 2 - 2, for
example, shows an IntelliSense drop - down list of possible code completion statements that appeared as the
code was typed.

 The IntelliSense focus is on the most commonly used attribute or statement for the control or piece of
code that you are working with. Using IntelliSense effectively as you work is a great way to code with
great speed.

➤

➤

➤

ASP.NET Server Controls ❘ 51

c02.indd 51c02.indd 51 2/3/10 12:16:12 PM2/3/10 12:16:12 PM

52 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

FIGURE 2-2

 FIGURE 2 - 1

 As with Design view, the Source view of your page lets you drag and drop controls from the Toolbox onto
the code page itself. For example, dragging and dropping a TextBox control onto the code page produces the
same results as dropping it on the design page:

 < asp:TextBox ID="TextBox1" Runat="server" > < /asp:TextBox >

c02.indd 52c02.indd 52 2/3/10 12:16:13 PM2/3/10 12:16:13 PM

 You can also highlight a control in Source view or simply place your cursor in the code statement of the control,
and the Properties window displays the properties of the control. Now, you can apply properties directly in the
Properties window of Visual Studio, and these properties are dynamically added to the code of your control.

 Working with Server Control Events

 As discussed in Chapter 1, ASP.NET uses more of a traditional Visual Basic event model than classic ASP.
Instead of working with interpreted code, you are actually coding an event - based structure for your pages.
Classic ASP used an interpreted model — when the server processed the Web page, the code of the page was
interpreted line - by - line in a linear fashion where the only “ event ” implied was the page loading. This meant
that occurrences you wanted to be initiated early in the process were placed at the top of the page.

 Today, ASP.NET uses an event - driven model. Items or coding tasks are initiated only when a particular event
occurs. A common event in the ASP.NET programming model is Page_Load , which is illustrated in Listing 2 - 1.

 LISTING 2 - 1: Working with specifi c page events

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 ' Code actions here
End Sub

protected void Page_Load(object sender, EventArgs e)
{
 // Code actions here
}

 Not only can you work with the overall page — as well as its properties and methods at particular moments
in time through page events — but you can also work with the server controls contained on the page
through particular control events. For example, one common event for a button on a form is Button_Click ,
which is illustrated in Listing 2 - 2.

 LISTING 2 - 2: Working with a Button Click event

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 ' Code actions here
End Sub

protected void Button1_Click(object sender, EventArgs e)
{
 // Code actions here
}

 The event shown in Listing 2 - 2 is fi red only when the end user actually clicks the button on the form that
has an OnClick attribute value of Button1_Click . Therefore, not only does the event handler exist in
the server - side code of the ASP.NET page, but that handler is also hooked up using the OnClick property
of the server control in the associated ASP.NET page markup, as illustrated in the following code:

 < asp:Button ID="Button1" Runat="server" Text="Button" OnClick="Button1_Click" / >

 How do you fi re these events for server controls? You have a couple of ways to go about it. The fi rst way
is to pull up your ASP.NET page in the Design view and double - click the control for which you want to
create a server - side event. For instance, double - clicking a Button server control in Design view creates the
structure of the Button1_Click event within your server - side code, whether the code is in a code - behind
fi le or inline. This creates a stub handler for that server control ’ s most popular event.

 With that said, be aware that a considerable number of additional events are available to the Button control
that you cannot get at by double - clicking the control. To access them, from any of the views within the IDE,
choose the control from the Properties dialog. Then you fi nd a lightning bolt icon that provides you a list of
all the control ’ s events. From here, you simply can double - click the event you are interested in, and Visual
Studio creates the stub of the function you need. Figure 2 - 3 shows the event list displayed. You might, for

VBVB

C#C#

VBVB

C#C#

ASP.NET Server Controls ❘ 53

c02.indd 53c02.indd 53 2/3/10 12:16:17 PM2/3/10 12:16:17 PM

54 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

example, want to work with the Button control ’ s PreRender event rather than its Click event. The handler
for the event you choose is placed in your server - side code.

FIGURE 2-3

 After you have an event structure in place, you can program specifi c actions that you want to occur when
the event is fi red.

 APPLYING STYLES TO SERVER CONTROLS

 More often than not, you want to change the default style (which is basically no style) to the server controls
you implement in your applications. You most likely want to build your Web applications so that they refl ect
your own look - and - feel. One way to customize the appearance of the controls in your pages is to change the
controls ’ properties.

 As stated earlier in this chapter, to get at the properties of a particular control you simply highlight the
control in the Design view of the page from Visual Studio. If you are working from the Source view, place
the cursor in the code of the control. The properties presented in the Properties window allow you to
control the appearance and behavior of the selected control.

 Examining the Controls ’ Common Properties

 Many of the default server controls that come with ASP.NET 4 are derived from the WebControl class and
share similar properties that enable you to alter their appearance and behavior. Not all the derived controls
use all the available properties (although many are implemented). Another important point is that not all
server controls are implemented from the WebControl class. For instance, the Literal, PlaceHolder, Repeater,
and XML server controls do not derive from the WebControl base class, but instead the Control class.

 HTML server controls also do not derive from the WebControl base class because they are more focused on the
set attributes of particular HTML elements. Table 2 - 2 lists the common properties the server controls share.

c02.indd 54c02.indd 54 2/3/10 12:16:20 PM2/3/10 12:16:20 PM

TABLE 2-2

PROPERTY DESCRIPTION

AccessKey Enables you to assign a character to be associated with the Alt key so that the end

user can activate the control using quick-keys on the keyboard. For instance, you can

assign a Button control an AccessKey property value of K. Now, instead of clicking

the button on the ASP.NET page (using a pointer controlled by the mouse), the end

user can simply press Alt + K.

Attributes Enables you to defi ne additional attributes for a Web server control that are not

defi ned by a public property.

BackColor Controls the color shown behind the control’s layout on the ASP.NET page.

BorderColor Assigns a color that is shown around the physical edge of the server control.

BorderWidth Assigns a value to the width of the line that makes up the border of the control.

Placing a number as the value assigns the number as a pixel-width of the border. The

default border color is black if the BorderColor property is not used in conjunction

with the BorderWidth property setting.

BorderStyle Enables you to assign the design of the border that is placed around the server control.

By default, the border is created as a straight line, but a number of diff erent styles can

be used for your borders. Other possible values for the BorderStyle property include

Dotted, Dashed, Solid, Double, Groove, Ridge, Inset, and Outset.

ClientIDMode Allows you to get or set the algorithm that is used to create the value of the ClientID

property.

CssClass Assigns a custom CSS (Cascading Style Sheet) class to the control.

Enabled Enables you to turn off the functionality of the control by setting the value of this

property to False. By default, the Enabled property is set to True.

EnableTheming Enables you to turn on theming capabilities for the selected server control. The default

value is True.

EnableViewState Enables you to specify whether view state should be persisted for this control.

Font Sets the font for all the text that appears anywhere in the control.

ForeColor Sets the color of all the text that appears anywhere in the control.

Height Sets the height of the control.

SkinID Sets the skin to use when theming the control.

Style Enables you to apply CSS styles to the control.

TabIndex Sets the control’s tab position in the ASP.NET page. This property works in

conjunction with other controls on the page.

ToolTip Assigns text that appears in a yellow box in the browser when a mouse pointer is held

over the control for a short length of time. This can be used to add more instructions

for the end user.

Width Sets the width of the control.

 You can see these common properties in many of the server controls you work with. Some of the properties
of the WebControl class presented here work directly with the theming system built into ASP.NET such
as the EnableTheming and SkinID properties. These properties are covered in more detail in Chapter 6.
You also see additional properties that are specifi c to the control you are viewing. Learning about the
properties from the preceding table enables you to quickly work with Web server controls and to modify
them to your needs.

 Next, look at some additional methods of customizing the look - and - feel of your server controls.

 Applying Styles to Server Controls ❘ 55

c02.indd 55c02.indd 55 2/3/10 12:16:21 PM2/3/10 12:16:21 PM

56 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 Changing Styles Using Cascading Style Sheets

 One method of changing the look - and - feel of specifi c elements on your ASP.NET page is to apply a style to
the element. The most rudimentary method of applying a defi ned look - and - feel to your page elements is
to use various style - changing HTML elements such as < font > , < b > , and < i > directly.

 All ASP.NET developers should have a good understanding of HTML. For more
information on HTML, please read Wrox ’ s Beginning Web Programming with HTML,
XHTML, and CSS (Wiley Publishing, Inc.; ISBN 978 - 0470 - 25931 - 3). You can also
learn more about HTML and CSS design in ASP.NET by looking at Chapter 17 of this
book.

 Using various HTML elements, you can change the appearance of many items contained on your pages. For
instance, you can change a string ’ s style as follows:

 < font face="verdana" > Pork chops and applesauce < /font >

 You can go through an entire application and change the style of page elements using any of the appropriate
HTML elements. You will quickly fi nd that this method works, but it is tough to maintain. To make
any global style changes to your application, this method requires that you go through your application
line - by - line to change each item individually. This can get cumbersome very fast!

 Besides applying HTML elements to items to change their style, you can use another method known as
 Cascading Style Sheets (CSS). This alternative, but greatly preferred, styling technique allows you to assign
formatting properties to HTML tags throughout your document in a couple of different ways. One way is to
apply these styles directly to the HTML elements in your pages using inline styles . The other way involves placing
these styles in an external stylesheet that either can be placed directly in an ASP.NET page or kept in a separate
document that is simply referenced in the ASP.NET page. You explore these methods in the following sections.

 Applying Styles Directly to HTML Elements

 The fi rst method of using CSS is to apply the styles directly to the tags contained in your ASP.NET pages.
For instance, you apply a style to a string, as shown in Listing 2 - 3.

 LISTING 2 - 3: Applying CSS styles directly to HTML elements

 < p style="color:blue; font-weight:bold" >
 Pork chops and applesauce
 < /p >

 This text string is changed by the CSS included in the < p > element so that the string appears bold and
blue. Using the style attribute of the < p > element, you can change everything that appears between the
opening and closing < p > elements. When the page is generated, the fi rst style change applied is to the text
between the < p > elements. In this example, the text has changed to the color blue because of the color:
blue declaration, and then the font - weight:bold declaration is applied. You can separate the styling
declarations using semicolons, and you can apply as many styles as you want to your elements.

 Applying CSS styles in this manner presents the same problem as simply applying various HTML style
elements — this is a tough structure to maintain. If styles are scattered throughout your pages, making
global style changes can be rather time consuming. Putting all the styles together in a stylesheet is the best
approach. A couple of methods can be used to build your stylesheets.

 Working with the Visual Studio Style Builder

 Visual Studio 2010 includes Style Builder, a tool that makes the building of CSS styles fairly simple. It can
be quite a time saver because so many possible CSS defi nitions are available to you. If you are new to CSS,
this tool can make all the difference.

c02.indd 56c02.indd 56 2/3/10 12:16:22 PM2/3/10 12:16:22 PM

 The Visual Studio Style Builder enables you to
apply CSS styles to individual elements or to
construct your own stylesheets. To access the
New Style tool when applying a style to a single
page element, highlight the page element and
then while in the Design view of the IDE, select
Format ➪ New Style from the VS 2010 menu.
The Style Builder is shown in Figure 2 - 4.

 You can use the Visual Studio Style Builder to
change quite a bit about your selected item. After
making all the changes you want and clicking
OK, you see the styles you chose applied to the
selected element.

 Creating External StyleSheets

 You can use a couple of different methods to
create stylesheets. The most common method
is to create an external stylesheet — a separate
stylesheet fi le that is referenced in the pages that
employ the defi ned styles. To begin the creation
of your external stylesheet, add a new item to
your project. From the Add New Item dialog box, create a stylesheet called StyleSheet.css . Add the fi le
to your project by pressing the Add button. Figure 2 - 5 shows the result.

FIGURE 2-4

FIGURE 2-5

 Using an external stylesheet within your application enables you to make global changes to the look - and - feel
of your application quickly. Simply making a change at this central point cascades the change as defi ned by
the stylesheet to your entire application.

 Creating Internal Stylesheets

 The second method for applying a stylesheet to a particular ASP.NET page is to bring the defi ned stylesheet
into the actual document by creating an internal stylesheet. Instead of making a reference to an external
stylesheet fi le, you bring the style defi nitions into the document. Note, however, that it is considered best
practice to use external, rather than internal, stylesheets.

 Consider using an internal stylesheet only if you are applying certain styles to a small number of pages
within your application. Listing 2 - 4 shows the use of an internal stylesheet.

 LISTING 2 - 4: Using an internal stylesheet

 < %@ Page Language="VB" % >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >

continues

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Applying Styles to Server Controls ❘ 57

c02.indd 57c02.indd 57 2/3/10 12:16:37 PM2/3/10 12:16:37 PM

58 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

LISTING 2-4 (continued)

 < title > My ASP.NET Page < /title >

 < style type="text/css" >
 < !--
 body {
 font-family: Verdana;
 }

 a:link {
 text-decoration: none;
 color: blue;
 }

 a:visited {
 text-decoration: none;
 color: blue;
 }

 a:hover {
 text-decoration: underline;
 color: red;
 }

 -- >
 < /style >

 < /head >
 < body >
 < form id="form1" runat="server" >
 < div >
 < a href="Default.aspx" > Home < /a >
 < /div >
 < /form >
 < /body >
 < /html >

 Filename InternalStyleSheet.aspx

 In this document, the internal stylesheet is set inside the opening and closing < head > elements. Although
this is not a requirement, it is considered best practice. The stylesheet itself is placed between < style > tags
with a type attribute defi ned as text/css .

 HTML comment tags are included because not all browsers support internal stylesheets (it is generally
the older browsers that do not accept them). Putting HTML comments around the style defi nitions
hides these defi nitions from very old browsers. Except for the comment tags, the style defi nitions are handled
in the same way they are done in an external stylesheet.

 CSS Changes in ASP.NET 4

 Prior to this release of ASP.NET, the rendered HTML from the ASP.NET server controls that you used
weren ’ t always compliant with the latest HTML standards that were out there.

 An example of this is that when disabling a server control prior to ASP.NET 4, you would only need to set
the Enabled property of the server control to false . This would render the control on the page but with a
disabled attribute as illustrated here:

 < span id="Label1" disabled="disabled" > Hello there! < /span >

 The latest HTML standards doesn ’ t allow for this construct. You are only allowed to use the disabled
attribute on < input > elements. When working with ASP.NET 4, you will now have a property in the

c02.indd 58c02.indd 58 2/3/10 12:16:39 PM2/3/10 12:16:39 PM

 < pages > element within the web.config fi le that will instruct ASP.NET what
version style to use when rendering controls.

 < pages controlRenderingCompatibilityVersion="4.0" / >

 If you have this set to 4.0 , as shown in the preceding code line, ASP.NET will now
disable the control using CSS correctly as shown here:

 < span id="Label1" class="aspNetDisabled" > Hello there! < /span >

 As you can see, this time ASP.NET sets the class attribute rather
than the disabled attribute. However, it is always possible to set the
 controlRenderingCompatibilityVersion value to 3.5 to revert to the old way
of control rendering if you wish.

 HTML SERVER CONTROLS

 ASP.NET enables you to take HTML elements and, with relatively little work on
your part, turn them into server - side controls. Afterward, you can use them to
control the behavior and actions of elements implemented in your ASP.NET pages.

 Of course, you can place any HTML you want in your pages. You have the option of
using the HTML placed in the page as a server - side control. You can also fi nd a list
of HTML elements contained in the Toolbox of Visual Studio (shown in Figure 2 - 6).

 Dragging and dropping any of these HTML elements from the Toolbox to the Design or Source view of your
ASP.NET page in the Document window simply produces the appropriate HTML element. For instance,
placing an HTML Button control on your page produces the following results in your code:

 < input id="Button1" type="button" value="button" / >

 In this state, the Button control is not a server - side control. It is simply an HTML element and nothing
more. You can turn this into an HTML server control very easily. In Source view, you simply change the
HTML element by adding a runat= “ server ” to the control:

 < input id="Button1" type="button" value="button" runat="server" / >

 After the element is converted to a server control (through the addition of the runat= “ server ” attribute
and value), you can work with the selected element on the server side as you would work with any of the
Web server controls. Listing 2 - 5 shows an example of some HTML server controls.

 LISTING 2 - 5: Working with HTML server controls

 < %@ Page Language="VB" % >

 < script runat="server" >
 Protected Sub Button1_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Response.Write("Hello " & Text1.Value)
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Using HTML Server Controls < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < div >
 What is your name? < br / >
 < input id="Text1" type="text" runat="server" / >
 < input id="Button1" type="button" value="Submit" runat="server"

continues

VB

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

FIGURE 2-6

 HTML Server Controls ❘ 59

c02.indd 59c02.indd 59 2/3/10 12:16:39 PM2/3/10 12:16:39 PM

60 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

LISTING 2-5 (continued)

 onserverclick="Button1_ServerClick" / >
 < /div >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Button1_ServerClick(object sender, EventArgs e)
 {
 Response.Write("Hello " + Text1.Value);
 }
 < /script >

 Filename HTMLServerControls.aspx

 In this example, you can see two HTML server controls on the page. Both are simply typical HTML elements
with the additional runat= “ server ” attribute added. If you are working with HTML elements as server
controls, you must include an id attribute so that the server control can be identifi ed in the server - side code.

 The Button control includes a reference to a server - side event using the OnServerClick attribute. This
attribute points to the server - side event that is triggered when an end user clicks the button — in this case,
 Button1_ServerClick . Within the Button1_ServerClick event, the value placed in the text box is output
by using the Value property.

 Looking at the HtmlControl Base Class

 All the HTML server controls use a class that is derived from the HtmlControl base class (fully qualifi ed as
 System.Web.UI.HtmlControls.HtmlControl). These classes expose many properties from the control ’ s
derived class. Table 2 - 3 details some of the properties available from this base class. Some of these items are
themselves derived from the base Control class.

C#C#

TABLE 2-3

METHOD OR PROPERTY DESCRIPTION

Attributes Provides a collection of name/value of all the available attributes specifi ed in the

control, including custom attributes.

Disabled Allows you to get or set whether the control is disabled using a Boolean value.

EnableTheming Enables you, using a Boolean value, to get or set whether the control takes part in

the page theming capabilities.

EnableViewState Allows you to get or set a Boolean value that indicates whether the control

participates in the page’s view state capabilities.

ID Allows you to get or set the unique identifi er for the control.

Page Allows you to get a reference to the Page object that contains the specifi ed server control.

Parent Gets a reference to the parent control in the page control hierarchy.

Site Provides information about the container for which the server control belongs.

SkinID When the EnableTheming property is set to True, the SkinID property specifi es

the named skin that should be used in setting a theme.

Style Makes references to the CSS style collection that applies to the specifi ed control.

TagName Provides the name of the element that is generated from the specifi ed control.

Visible Specifi es whether the control is visible (rendered) on the generated page.

c02.indd 60c02.indd 60 2/3/10 12:16:42 PM2/3/10 12:16:42 PM

 You can fi nd a more comprehensive list in the SDK.

 Looking at the HtmlContainerControl Class

 The HtmlControl base class is used for those HTML classes that are focused on HTML elements that
can be contained within a single node. For instance, the < img > , < input > , and < link > elements work from
classes derived from the HtmlControl class.

 Other HTML elements such as < a > , < form > , and < select > , require an opening and closing set of tags.
These elements use classes that are derived from the HtmlContainerControl class — a class specifi cally
designed to work with HTML elements that require a closing tag.

 Because the HtmlContainerControl class is derived from the HtmlControl class, you have all the
 HtmlControl class ’ s properties and methods available to you as well as some new items that have been
declared in the HtmlContainerControl class itself. The most important of these are the InnerText and
 InnerHtml properties:

 InnerHtml : Enables you to specify content that can include HTML elements to be placed between the
opening and closing tags of the specifi ed control.

 InnerText : Enables you to specify raw text to be placed between the opening and closing tags of the
specifi ed control.

 Looking at All the HTML Classes

 It is quite possible to work with every HTML element because a corresponding class is available for each
one of them. The .NET Framework documentation shows the following classes for working with your
HTML server controls:

 HtmlAnchor controls the < a > element.

 HtmlButton controls the < button > element.

 HtmlForm controls the < form > element.

 HtmlHead controls the < head > element.

 HtmlImage controls the < img > element.

 HtmlInputButton controls the < input type= “ button ” > element.

 HtmlInputCheckBox controls the < input type= “ checkbox ” > element.

 HtmlInputFile controls the < input type= “ file ” > element.

 HtmlInputHidden controls the < input type= “ hidden ” > element.

 HtmlInputImage controls the < input type= “ image ” > element.

 HtmlInputPassword controls the < input type= “ password ” > element.

 HtmlInputRadioButton controls the < input type= “ radio ” > element.

 HtmlInputReset controls the < input type= “ reset ” > element.

 HtmlInputSubmit controls the < input type= “ submit ” > element.

 HtmlInputText controls the < input type= “ text ” > element.

 HtmlLink controls the < link > element.

 HtmlMeta controls the < meta > element.

 HtmlSelect controls the < select > element.

 HtmlTable controls the < table > element.

 HtmlTableCell controls the < td > element.

 HtmlTableRow controls the < tr > element.

 HtmlTextArea controls the < textarea > element.

 HtmlTitle controls the < title > element.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

HTML Server Controls ❘ 61

c02.indd 61c02.indd 61 2/3/10 12:16:43 PM2/3/10 12:16:43 PM

62 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 You gain access to one of these classes when you convert an HTML element to an HTML server control.
For example, convert the < title > element to a server control this way:

 < title id="Title1" runat="Server"/ >

 That gives you access to the HtmlTitle class for this particular HTML element. Using this class instance,
you can perform a number of tasks including providing a text value for the page title dynamically:

Title1.Text = DateTime.Now.ToString()

Title1.Text = DateTime.Now.ToString();

 You can get most of the HTML elements you need by using these classes, but a considerable number of
other HTML elements are at your disposal that are not explicitly covered by one of these HTML classes.
For example, the HtmlGenericControl class provides server - side access to any HTML element you want.

 Using the HtmlGenericControl Class

 You should be aware of the importance of the HtmlGenericControl class; it gives you some capabilities
that you do not get from any other server control offered by ASP.NET. For instance, using the
 HtmlGenericControl class, you can get server - side access to the < meta > , < p > , < span > , or other elements
that would otherwise be unreachable.

 Listing 2 - 6 shows you how to change the < meta > element in your page using the HtmlGenericControl class.

 LISTING 2 - 6: Changing the < meta > element using the HtmlGenericControl class

 < %@ Page Language="VB" % >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Meta1.Attributes("Name") = "description"
 Meta1.Attributes("CONTENT") = "Generated on: " & DateTime.Now.ToString()
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Using the HtmlGenericControl class < /title >
 < meta id="Meta1" runat="server" / >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < div >
 The rain in Spain stays mainly in the plains.
 < /div >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Page_Load(object sender, EventArgs e)
 {
 Meta1.Attributes["Name"] = "description";
 Meta1.Attributes["CONTENT"] = "Generated on: " + DateTime.Now.ToString();
 }
 < /script >

 Filename HTMLGenericControl.aspx

VBVB

C#C#

VB

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

C#C#

c02.indd 62c02.indd 62 2/3/10 12:16:44 PM2/3/10 12:16:44 PM

 In this example, the page ’ s < meta > element is turned into an HTML server control with the addition of
the id and runat attributes. Because the HtmlGenericControl class (which inherits from HtmlControl)
can work with a wide range of HTML elements, you cannot assign values to HTML attributes in the same
manner as you do when working with the other HTML classes (such as HtmlInputButton). You assign
values to the attributes of an HTML element using the HtmlGenericControl class ’ s Attributes property,
specifying the attribute you are working with as a string value.

 The following is a partial result of running the example page:

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head >
 < meta id="Meta1" Name="description"
 CONTENT="Generated on: 2/5/2010 2:42:52 PM" > < /meta >
 < title > Using the HtmlGenericControl class < /title >
 < /head >

 By using the HtmlGenericControl class, along with the other HTML classes, you can manipulate every
element of your ASP.NET pages from your server - side code.

 IDENTIFYING ASP.NET SERVER CONTROLS

 When you create your ASP.NET pages with a series of controls, many of the controls are nested and many
are even dynamically laid out by ASP.NET itself. For instance, when you are working with user controls,
the GridView, ListView, Repeater, and more, ASP.NET is constructing a complicated control tree that is
rendered to the page.

 What happens when this occurs is that ASP.NET needs to provide these dynamic controls with IDs. When it
does this, you end up with IDs such as GridView1$ctl02$ctl00 . These sorts of control IDs are not a good
thing because they are unpredictable and make it diffi cult to work with the control from client - side code.

 To help this situation, ASP.NET 4 is the fi rst release that includes the ability to control the IDs that are used
for your controls. To demonstrate the issue, Listing 2 - 7 shows some code that results in some unpredictable
client IDs for the controls. To start, fi rst create a user control.

 LISTING 2 - 7: A user control with some simple controls

 < %@ Control Language="C#" AutoEventWireup="true"
 CodeFile="WebUserControl.ascx.cs" Inherits="WebUserControl" % >

 < asp:TextBox ID="TextBox1" runat="server" > < /asp:TextBox >
 < br / >
 < asp:Button ID="Button1" runat="server" Text="Button" / >

 Then the next step is to use this user control within one of your ASP.NET pages. This is illustrated here in
Listing 2 - 8.

 LISTING 2 - 8: Making use of the user control within a simple ASP.NET page

 < %@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default" Trace="true" % >

 < %@ Register src="WebUserControl.ascx" tagname="WebUserControl" tagprefix="uc1" % >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Working with Control IDs < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >

continues

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 Identifying ASP.NET Server Controls ❘ 63

c02.indd 63c02.indd 63 2/3/10 12:16:45 PM2/3/10 12:16:45 PM

64 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

LISTING 2-8 (continued)

 < div >
 < uc1:WebUserControl ID="WebUserControl1" runat="server" / >

 < /div >
 < /form >
 < /body >
 < /html >

 So this user control on the page contains only
two simple server controls that are then rendered
onto the page. If you look back at Listing 2 - 7, you
can see that they have pretty simple control IDs
assigned to them. There is a TextBox server control
with the ID value of TextBox1 and a Button server
control with the ID value of Button1 .

 Looking at the page code from Listing 2 - 8, you
can see in the @Page directive that the Trace
attribute is set to true . This gives you the ability
to see the ClientID that is produced in the
control tree of the page. Running this page, you
see the following results in the page, as shown in
Figure 2 - 7.

 If you look at the source code for the page, you see the following snippet of code:

 < div >
 < input name="WebUserControl1$TextBox1" type="text" id="WebUserControl1_TextBox1" / >
 < br / >
 < input type="submit" name="WebUserControl1$Button1" value="Button"
 id="WebUserControl1_Button1" / >
 < /div >

 From this, you can see the ASP.NET assigned control IDs are lengthy and something you probably wouldn ’ t
choose yourself. The TextBox server control was output with a name value of WebUserControl1$TextBox1
and an id value of WebUserControl1_TextBox1 . A lot of this is done to make sure that the controls end up
with a unique ID.

 ASP.NET 4 includes the ability to control these assignments through the use of the ClientIDMode attribute.
The possible values of this attribute include AutoID , Inherit , Predictable , and Static . An example of
setting this value is provided here:

 < uc1:WebUserControl ID="WebUserControl1" runat="server" ClientIDMode="AutoID" / >

 This example uses AutoID , forcing the naming to abide by how it was done in the .NET Framework 3.5 and
earlier. Using this gives you the following results:

 name: WebUserControl1$TextBox1
 WebUserControl1$Button1

 id: WebUserControl1_TextBox1
 WebUserControl1_Button1

 If you use Inherit , it simply copies how it is done by the containing control, the page, or the application.
Therefore, for this example, you would end up with the same values as if you used AutoID . The Inherit
value is the default value for all controls.

 Predictable is generally used for databound controls that have a nesting of other controls (for example,
the Repeater control). When used with a ClientIDRowSuffix property value, it appends this value rather
than increments with a number (for example, ctrl1 , ctrl2).

➤

➤

FIGURE 2-7

c02.indd 64c02.indd 64 2/3/10 12:16:47 PM2/3/10 12:16:47 PM

 A value of Static gives you the name of the control you have assigned. It is up to you to ensure the
uniqueness of the identifi ers. Setting the ClientIDMode to Static for the user control in our example gives
you the following values:

 name: WebUserControl1$TextBox1
 WebUserControl1$Button1

 id: TextBox1
 Button1

 You can set the ClientID property at the control, container control, user control, page, or even application
level via the < pages > element in the machine.config or web.config fi le.

 Now with this new capability, you will fi nd that working with your server controls using technologies like
JavaScript on the client is far easier than before. The next section takes a look at using JavaScript within
your ASP.NET pages.

 MANIPULATING PAGES AND SERVER CONTROLS WITH JAVASCRIPT

 Developers generally like to include some of their own custom JavaScript functions in their ASP.NET pages.
You have a couple of ways to do this. The fi rst is to apply JavaScript directly to the controls on your ASP.
NET pages. For example, look at a simple TextBox server control, shown in Listing 2 - 9, which displays the
current date and time.

 LISTING 2 - 9: Showing the current date and time

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 TextBox1.Text = DateTime.Now.ToString()
End Sub

protected void Page_Load(object sender, EventArgs e) {
 TextBox1.Text = DateTime.Now.ToString();
}

 This little bit of code displays the current date and time on the page of the end user. The problem is that
the date and time displayed are correct for the Web server that generated the page. If someone sits in the
Pacifi c time zone (PST), and the Web server is in the Eastern time zone (EST), the page won ’ t be correct
for that viewer. If you want the time to be correct for anyone visiting the site, regardless of where they
reside in the world, you can employ JavaScript to work with the TextBox control, as illustrated in
Listing 2 - 10.

 LISTING 2 - 10: Using JavaScript to show the current time for the end user

 < %@ Page Language="VB" % >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Using JavaScript < /title >
 < /head >
 < body onload="javascript:document.forms[0]['TextBox1'].value=Date();" >
 < form id="form1" runat="server" >
 < div >
 < asp:TextBox ID="TextBox1" Runat="server" Width="300" > < /asp:TextBox >
 < /div >
 < /form >
 < /body >
 < /html >

 Filename CurrentTimeJS.aspx

➤

➤

VBVB

C#C#

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 Manipulating Pages and Server Controls with JavaScript ❘ 65

c02.indd 65c02.indd 65 2/3/10 12:16:48 PM2/3/10 12:16:48 PM

66 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 In this example, even though you are using a standard TextBox server control from the Web server control
family, you can get at this control using JavaScript that is planted in the onload attribute of the < body > element.
The value of the onload attribute actually points to the specifi c server control via an anonymous function by
using the value of the ID attribute from the server control: TextBox1 . You can get at other server controls on
your page by employing the same methods. This bit of code produces the result illustrated in Figure 2 - 8.

FIGURE 2-8

 ASP.NET uses the Page.ClientScript property to register and place JavaScript functions on
your ASP.NET pages. Three of these methods are reviewed here. More methods and properties than
just these three are available through the ClientScript object (which references an instance of System
.Web.UI.ClientScriptManager), but these are the more useful ones. You can fi nd the rest in the SDK
documentation.

 The Page.RegisterStartupScript and the Page.RegisterClientScriptBlock
methods from the .NET Framework 1.0/1.1 are now considered obsolete. Both of these
possibilities for registering scripts required a key/script set of parameters. Because two
separate methods were involved, there was an extreme possibility that some key name
collisions would occur. The Page.ClientScript property is meant to bring all the
script registrations under one umbrella, making your code less error prone.

 Using Page.ClientScript.RegisterClientScriptBlock

 The RegisterClientScriptBlock method allows you to place a JavaScript function at the top of the
page. This means that the script is in place for the startup of the page in the browser. Its use is illustrated in
Listing 2 - 11.

 LISTING 2 - 11: Using the RegisterClientScriptBlock method

 < %@ Page Language="VB" % >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Dim myScript As String = "function AlertHello() { alert('Hello ASP.NET'); }"
 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "MyScript",
 myScript, True)
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Adding JavaScript < /title >
 < /head >

VB

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

c02.indd 66c02.indd 66 2/3/10 12:16:49 PM2/3/10 12:16:49 PM

 < body >
 < form id="form1" runat="server" >
 < div >
 < asp:Button ID="Button1" Runat="server" Text="Button"
 OnClientClick="AlertHello()" / >
 < /div >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Page_Load(object sender, EventArgs e)
 {
 string myScript = @"function AlertHello() { alert('Hello ASP.NET'); }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "MyScript", myScript, true);
 }
 < /script >

 Filename RegisterClientScriptBlock.aspx

 From this example, you can see that you create the JavaScript function AlertHello() as a string called
 myScript . Then using the Page.ClientScript.RegisterClientScriptBlock method, you program
the script to be placed on the page. The two possible constructions of the RegisterClientScriptBlock
method are the following:

 RegisterClientScriptBlock (type , key , script)

 RegisterClientScriptBlock (type , key , script , script tag specifi cation)

 In the example from Listing 2 - 11, you are specifying the type as Me.GetType() , the key, the script to include,
and then a Boolean value setting of True so that .NET places the script on the ASP.NET page with < script >
tags automatically. When running the page, you can view the source code for the page to see the results:

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head > < title >
 Adding JavaScript
 < /title > < /head >
 < body >
 < form method="post" action="JavaScriptPage.aspx" id="form1" >
 < div >
 < input type="hidden" name="__VIEWSTATE"
 value="/wEPDwUKMTY3NzE5MjIyMGRkiyYSRMg+bcXi9DiawYlbxndiTDo=" / >
 < /div >

 < script type="text/javascript" >
 < !--
function AlertHello() { alert('Hello ASP.NET'); }// -- >
 < /script >

 < div >
 < input type="submit" name="Button1" value="Button" onclick="AlertHello();"
 id="Button1" / >
 < /div >
 < /form >
 < /body >
 < /html >

 From this, you can see that the script specifi ed was indeed included on the ASP.NET page before the page
code. Not only were the < script > tags included, but the proper comment tags were added around the script
(so older browsers will not break).

➤

➤

C#C#

Manipulating Pages and Server Controls with JavaScript ❘ 67

c02.indd 67c02.indd 67 2/3/10 12:16:55 PM2/3/10 12:16:55 PM

68 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 Using Page.ClientScript.RegisterStartupScript

 The RegisterStartupScript method is not too much different from the RegisterClientScriptBlock
method. The big difference is that the RegisterStartupScript places the script at the bottom of the
ASP.NET page instead of at the top. In fact, the RegisterStartupScript method even takes the same
constructors as the RegisterClientScriptBlock method:

 RegisterStartupScript (type , key , script)

 RegisterStartupScript (type, key, script, script tag specifi cation)

 So what difference does it make where the script is registered on the page? A lot, actually!

 If you have a bit of JavaScript that is working with one of the controls on your page, in most cases you want
to use the RegisterStartupScript method instead of RegisterClientScriptBlock . For example, you ’ d
use the following code to create a page that includes a simple < asp:TextBox > control that contains a default
value of Hello ASP.NET .

 < asp:TextBox ID="TextBox1" Runat="server" > Hello ASP.NET < /asp:TextBox >

 Then use the RegisterClientScriptBlock method to place a script on the page that utilizes the value in
the TextBox1 control, as illustrated in Listing 2 - 12.

 LISTING 2 - 12: Improperly using the RegisterClientScriptBlock method

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Dim myScript As String = "alert(document.forms[0]['TextBox1'].value);"
 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "myKey", myScript,
 True)
End Sub

protected void Page_Load(object sender, EventArgs e)
{
 string myScript = @"alert(document.forms[0]['TextBox1'].value);";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "MyScript", myScript, true);
}

 Running this page (depending on the version of IE you are using) gives you a JavaScript error, as shown in
Figure 2 - 9.

➤

➤

VBVB

C#C#

FIGURE 2-9

 The reason for the error is that the JavaScript function fi red before the text box was even placed on the
screen. Therefore, the JavaScript function did not fi nd TextBox1 , and that caused an error to be thrown by
the page. Now try the RegisterStartupScript method shown in Listing 2 - 13.

c02.indd 68c02.indd 68 2/3/10 12:16:56 PM2/3/10 12:16:56 PM

 Client - Side Callback ❘ 69

 LISTING 2 - 13: Using the RegisterStartupScript method

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Dim myScript As String = "alert(document.forms[0]['TextBox1'].value);"
 Page.ClientScript.RegisterStartupScript(Me.GetType(), "myKey", myScript,
 True)
End Sub

protected void Page_Load(object sender, EventArgs e)
{
 string myScript = @"alert(document.forms[0]['TextBox1'].value);";
 Page.ClientScript.RegisterStartupScript(this.GetType(),
 "MyScript", myScript, true);
}

 Filename RegisterStartupScript.aspx

 This approach puts the JavaScript function at the bottom of the ASP.NET page, so when the JavaScript
actually starts, it fi nds the TextBox1 element and works as planned. The result is shown in Figure 2 - 10.

VB

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

C#C#

FIGURE 2-10

 Using Page.ClientScript.RegisterClientScriptInclude

 The fi nal method is RegisterClientScriptInclude . Many developers place their JavaScript inside
a .js fi le, which is considered a best practice because it makes it very easy to make global JavaScript
changes to the application. You can register the script fi les on your ASP.NET pages using the
 RegisterClientScriptInclude method illustrated in Listing 2 - 14.

 LISTING 2 - 14: Using the RegisterClientScriptInclude method

Dim myScript As String = "myJavaScriptCode.js"
Page.ClientScript.RegisterClientScriptInclude("myKey", myScript)

string myScript = "myJavaScriptCode.js";
Page.ClientScript.RegisterClientScriptInclude("myKey", myScript);

 This creates the following construction on the ASP.NET page:

 < script src="myJavaScriptCode.js" type="text/javascript" > < /script >

 CLIENT - SIDE CALLBACK

 ASP.NET 4 includes a client callback feature that enables you to retrieve page values and populate them
to an already - generated page without regenerating the page. This was introduced with ASP.NET 2.0. This
capability makes it possible to change values on a page without going through the entire postback cycle; that

VBVB

C#C#

c02.indd 69c02.indd 69 2/3/10 12:16:57 PM2/3/10 12:16:57 PM

70 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

means you can update your pages without completely redrawing the page. End users will not see the page
fl icker and reposition, and the pages will have a fl ow more like the fl ow of a thick - client application.

 To work with the callback capability, you have to know a little about working with JavaScript. This book
does not attempt to teach you JavaScript. If you need to get up to speed on this rather large topic, check out
Wrox ’ s Beginning JavaScript, Fourth Edition , by Paul Wilton and Jeremy McPeak (Wiley Publishing, Inc.,
ISBN: 978 - 0 - 470 - 52593 - 7).

 You can also accomplish client callbacks in a different manner using ASP.NET AJAX.
You will fi nd more information on this in Chapters 18 and 19.

 Comparing a Typical Postback to a Callback

 Before you jump into some examples of the callback feature, fi rst look at a comparison to the current
postback feature of a typical ASP.NET page.

 When a page event is triggered on an ASP.NET page that is working with a typical postback scenario, a lot
is going on. The diagram in Figure 2 - 11 illustrates the process.

Page event

triggers postback

as POST Request

Response

Init

Load State

Process Postback Data

Load

Postback Events

Save State

PreRender

Render

Unload

FIGURE 2-11

c02.indd 70c02.indd 70 2/3/10 12:16:59 PM2/3/10 12:16:59 PM

 Client - Side Callback ❘ 71

 In a normal postback situation, an event of some kind triggers an HTTP Post request to be sent to the Web
server. An example of such an event might be the end user clicking a button on the form. This sends the
HTTP Post request to the Web server, which then processes the request with the IPostbackEventHandler
and runs the request through a series of page events. These events include loading the state (as found in the
view state of the page), processing data, processing postback events, and fi nally rendering the page to be
interpreted by the consuming browser once again. The process completely reloads the page in the browser,
which is what causes the fl icker and the realignment to the top of the page.

 On the other hand, you have the alternative of using the callback capabilities, as shown in the diagram in
Figure 2 - 12.

Script Event Handler

Async

request

Event triggers

callback to

script event

handler

Script Callback

Result

of callback

returned

Init

Load State

Process Postback Data

Load

Callback Event

Unload

FIGURE 2-12

 In this case, an event (again, such as a button click) causes the event to be posted to a script event
handler (a JavaScript function) that sends off an asynchronous request to the Web server for processing.
 ICallbackEventHandler runs the request through a pipeline similar to what is used with the postback — but
you notice that some of the larger steps (such as rendering the page) are excluded from the process chain. After
the information is loaded, the result is returned to the script callback object. The script code then pushes this
data into the Web page using JavaScript ’ s capabilities to do this without refreshing the page. To understand
how this all works, look at the simple example in the following section.

c02.indd 71c02.indd 71 2/3/10 12:17:05 PM2/3/10 12:17:05 PM

72 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 Using the Callback Feature — A Simple Approach

 Begin examining the callback feature by looking at how a simple ASP.NET page uses it. For this example,
you have only an HTML button control and a TextBox server control (the Web server control version).
The idea is that when the end user clicks the button on the form, the callback service is initiated and a
random number is populated into the text box. Listing 2 - 15 shows an example of this in action.

 LISTING 2 - 15: Using the callback feature to populate a random value to a Web page

 .aspx page (VB version)

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”RandomNumber.aspx.vb”
 Inherits=”RandomNumber” %>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Callback Page</title>

 <script type=”text/javascript”>
 function GetNumber(){
 UseCallback();
 }

 function GetRandomNumberFromServer(TextBox1, context){
 document.forms[0].TextBox1.value = TextBox1;
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <input id=”Button1” type=”button” value=”Get Random Number”
 onclick=”GetNumber()” />

 <asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
 </div>
 </form>
</body>
</html>

VB (code-behind)

Partial Class RandomNumber
 Inherits System.Web.UI.Page
 Implements System.Web.UI.ICallbackEventHandler

 Dim _callbackResult As String = Nothing

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

 Dim cbReference As String =
 Page.ClientScript.GetCallbackEventReference(
 Me, “arg”, “GetRandomNumberFromServer”, “context”)
 Dim cbScript As String = “function UseCallback(arg, context)” & _
 “{“ & cbReference & “;” & “}”

 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(),
 “UseCallback”, cbScript, True)
 End Sub

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c02.indd 72c02.indd 72 2/3/10 12:17:06 PM2/3/10 12:17:06 PM

 Client - Side Callback ❘ 73

 Public Sub RaiseCallbackEvent(ByVal eventArgument As String)
 Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

 _callbackResult = Rnd().ToString()
 End Sub

 Public Function GetCallbackResult() As String _
 Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

 Return _callbackResult
 End Function
End Class

C# (code-behind)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class RandomNumber : System.Web.UI.Page,
 System.Web.UI.ICallbackEventHandler
{
 private string _callbackResult = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 string cbReference =
 Page.ClientScript.GetCallbackEventReference(this,
 “arg”, “GetRandomNumberFromServer”, “context”);
 string cbScript = “function UseCallback(arg, context)” +
 “{“ + cbReference + “;” + “}”;

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 “UseCallback”, cbScript, true);
 }

 public void RaiseCallbackEvent(string eventArg)
 {
 Random rnd = new Random();
 _callbackResult = rnd.Next().ToString();
 }

 public string GetCallbackResult()
 {
 return _callbackResult;
 }
}

 Filenames RandomNumber.aspx, RandomNumber.aspx.vb, and RandomNumber.aspx.cs

 When this page is built and run in the browser, you get the results shown in Figure 2 - 13.

c02.indd 73c02.indd 73 2/3/10 12:17:10 PM2/3/10 12:17:10 PM

74 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 Clicking the button on the page invokes the client callback capabilities of the page, and the page then makes
an asynchronous request to the code behind of the same page. After getting a response from this part of the
page, the client script takes the retrieved value and places it inside the text box — all without doing a page
refresh!

 Now look at the .aspx page, which simply contains an HTML button control and a TextBox server control.
Notice that a standard HTML button control is used because a typical < asp:button > control does not
work here. No worries. When you work with the HTML button control, just be sure to include an onclick
event to point to the JavaScript function that initiates this entire process:

 < input id="Button1" type="button" value="Get Random Number"
 onclick="GetNumber()" / >

 You do not have to do anything else with the controls themselves. The fi nal thing to include in the page is
the client - side JavaScript functions to take care of the callback to the server - side functions. GetNumber()
is the fi rst JavaScript function that ’ s instantiated. It starts the entire process by calling the name of the client
script handler that is defi ned in the page ’ s code behind. A string type result from GetNumber() is retrieved
using the GetRandomNumberFromServer() function. GetRandomNumberFromServer() simply populates
the string value retrieved and makes that the value of the Textbox control — specifi ed by the value of the
 ID attribute of the server control (TextBox1):

 < script type="text/javascript" >
 function GetNumber(){
 UseCallback();
 }

 function GetRandomNumberFromServer(TextBox1, context){
 document.forms[0].TextBox1.value = TextBox1;
 }
 < /script >

 Now turn your attention to the code behind.

 The Page class of the Web page implements the System.Web.UI.ICallbackEventHandler interface:

Partial Class RandomNumber
 Inherits System.Web.UI.Page
 Implements System.Web.UI.ICallbackEventHandler

 ' Code here

End Class

FIGURE 2-13

c02.indd 74c02.indd 74 2/3/10 12:17:11 PM2/3/10 12:17:11 PM

 Client - Side Callback ❘ 75

 This interface requires you to implement a couple of methods — the RaiseCallbackEvent and
the GetCallbackResult methods, both of which work with the client script request. RaiseCallback
Event enables you to do the work of retrieving the value from the page, but the value can be only
of type string :

Public Sub RaiseCallbackEvent(ByVal eventArgument As String)
 Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

 _callbackResult = Rnd().ToString()
End Sub

 The GetCallbackResult is the method that actually grabs the returned value to be used:

Public Function GetCallbackResult() As String
 Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

 Return _callbackResult
End Function

 In addition, the Page_Load event includes the creation and placement of the client callback script manager
(the function that will manage requests and responses) on the client:

Dim cbReference As String = Page.ClientScript.GetCallbackEventReference(Me, "arg",
 "GetRandomNumberFromServer", "context")
Dim cbScript As String = "function UseCallback(arg, context)" &
 "{" & cbReference & ";" & "}"

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(),
 "UseCallback", cbScript, True)

 The function placed on the client for the callback capabilities is called UseCallback() . This string is then
populated to the Web page itself using the Page.ClientScript.RegisterClientScripBlock that also
puts < script > tags around the function on the page. Make sure that the name you use here is the same
name you use in the client - side JavaScript function presented earlier.

 In the end, you have a page that refreshes content without refreshing the overall page. This opens
the door to a completely new area of possibilities. One caveat is that the callback capabilities described
here use XmlHTTP and, therefore, the client browser needs to support XmlHTTP (Microsoft ’ s
Internet Explorer and FireFox do support this feature). Because of this, .NET Framework 2.0, 3.5,
and 4 have the SupportsCallBack and the SupportsXmlHttp properties. To ensure this support, you
could put a check in the page ’ s code behind when the initial page is being generated. It might look similar to
the following:

If (Page.Request.Browser.SupportsXmlHTTP) Then

End If

if (Page.Request.Browser.SupportsXmlHTTP == true) {

}

 Using the Callback Feature with a Single Parameter

 Now you will build a Web page that utilizes the callback feature but requires a parameter to retrieve a
returned value. At the top of the page, place a text box that gathers input from the end user, a button, and
another text box to populate the page with the result from the callback.

 The page asks for a ZIP Code from the user and then uses the callback feature to instantiate an XML Web
service request on the server. The Web service returns the latest weather for that particular ZIP Code in a
string format. Listing 2 - 16 shows an example of the page.

VBVB

C#C#

c02.indd 75c02.indd 75 2/3/10 12:17:13 PM2/3/10 12:17:13 PM

76 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 LISTING 2 - 16: Using the callback feature with a Web service

.aspx page (VB version)

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”WSCallback.aspx.vb”
 Inherits=”WSCallback” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Web Service Callback</title>

 <script type=”text/javascript”>
 function GetTemp(){
 var zipcode = document.forms[0].TextBox1.value;
 UseCallback(zipcode, “”);
 }

 function GetTempFromServer(TextBox2, context){
 document.forms[0].TextBox2.value = “Zipcode: “ +
 document.forms[0].TextBox1.value + “ | Temp: “ + TextBox2;
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

 <input id=”Button1” type=”button” value=”Get Temp” onclick=”GetTemp()” />

 <asp:TextBox ID=”TextBox2” Runat=”server” Width=”400px”>
 </asp:TextBox>

 </div>
 </form>
</body>
</html>

VB (code-behind)

Partial Class WSCallback
 Inherits System.Web.UI.Page
 Implements System.Web.UI.IcallbackEventHandler

 Dim _callbackResult As String = Nothing

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load

 Dim cbReference As String = Page.ClientScript.GetCallbackEventReference(
 Me, “arg”, “GetTempFromServer”, “context”)
 Dim cbScript As String = “function UseCallback(arg, context)” & _
 “{“ & cbReference & “;” & “}”

 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(),
 “UseCallback”, cbScript, True)
 End Sub

 Public Sub RaiseCallbackEvent(ByVal eventArgument As String)
 Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c02.indd 76c02.indd 76 2/3/10 12:17:14 PM2/3/10 12:17:14 PM

 Client - Side Callback ❘ 77

 Dim ws As New Weather.TemperatureService
 _callbackResult = ws.getTemp(eventArgument).ToString()
 End Sub
 Public Function GetCallbackResult() As String
 Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

 Return _callbackResult
 End Function
End Class

C# (code-behind)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class WSCallback : System.Web.UI.Page,
 System.Web.UI.ICallbackEventHandler
{
 private string _callbackResult = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 string cbReference = Page.ClientScript.GetCallbackEventReference(this,
 “arg”, “GetTempFromServer”, “context”);
 string cbScript = “function UseCallback(arg, context)” +
 “{“ + cbReference + “;” + “}”;

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 “UseCallback”, cbScript, true);
 }

 public void RaiseCallbackEvent(string eventArg)
 {
 Weather.TemperatureService ws = new Weather.TemperatureService();
 _callbackResult = ws.getTemp(eventArg).ToString();
 }
 public string GetCallbackResult()
 {
 return _callbackResult;
 }
}

 Filenames WSCallback.aspx, WSCallback.aspx.vb, and WSCallback.aspx.cs

 What you do not see on this page from the listing is that a Web reference has been made to a
theoretical remote Web service that returns the latest weather to the application based on a ZIP Code the
user supplied.

 For more information on working with Web services in your ASP.NET applications,
check out Chapter 31.

 After building and running this page, you get the results illustrated in Figure 2 - 14.

c02.indd 77c02.indd 77 2/3/10 12:17:14 PM2/3/10 12:17:14 PM

78 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 The big difference with the client callback feature is that this example sends in a required parameter. That is
done in the GetTemp() JavaScript function on the .aspx part of the page:

function GetTemp(){
 var zipcode = document.forms[0].TextBox1.value;
 UseCallback(zipcode, "");
}

 The JavaScript function shows the population that the end user input into TextBox1 and places its value in a
variable called zipcode that is sent as a parameter in the UseCallback() method.

 This example, like the previous one, updates the page without doing a complete page refresh.

 Using the Callback Feature — A More Complex Example

 So far, you have seen an example of using the callback feature to pull back a single item as well as to
pull back a string whose output is based on a single parameter that was passed to the engine. The next
example takes this operation one step further and pulls back a collection of results based upon a parameter
provided.

 This example works with an instance of the Northwind database found in SQL Server. For this example,
create a single page that includes a TextBox server control and a button. Below that, place a table that will
be populated with the customer details from the customer ID provided in the text box. The .aspx page for
this example is provided in Listing 2 - 17.

 LISTING 2 - 17: An ASP.NET page to collect the CustomerID from the end user

.aspx Page

<%@ Page Language=”VB” AutoEventWireup=”false”
 CodeFile=”Default.aspx.vb” Inherits=”_Default” %>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Customer Details</title>

 <script type=”text/javascript”>
 function GetCustomer(){
 var customerCode = document.forms[0].TextBox1.value;
 UseCallback(customerCode, “”);
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 2-14

c02.indd 78c02.indd 78 2/3/10 12:17:20 PM2/3/10 12:17:20 PM

 Client - Side Callback ❘ 79

 function GetCustDetailsFromServer(result, context){
 var i = result.split(“|”);
 customerID.innerHTML = i[0];
 companyName.innerHTML = i[1];
 contactName.innerHTML = i[2];
 contactTitle.innerHTML = i[3];
 address.innerHTML = i[4];
 city.innerHTML = i[5];
 region.innerHTML = i[6];
 postalCode.innerHTML = i[7];
 country.innerHTML = i[8];
 phone.innerHTML = i[9];
 fax.innerHTML = i[10];
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
 <input id=”Button1” type=”button” value=”Get Customer Details”
 onclick=”GetCustomer()” />

 <table cellspacing=”0” cellpadding=”4” rules=”all” border=”1”
 id=”DetailsView1”
 style=”background-color:White;border-color:#3366CC;border-width:1px;
 border-style:None;height:50px;width:400px;border-collapse:collapse;”>
 <tr style=”color:#003399;background-color:White;”>
 <td>CustomerID</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>CompanyName</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>ContactName</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>ContactTitle</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>Address</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>City</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>Region</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>PostalCode</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>Country</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>Phone</td><td></td>
 </tr><tr style=”color:#003399;background-color:White;”>
 <td>Fax</td><td></td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

 Filename CallbackNorthwind.aspx

 As in the previous examples, two JavaScript functions are contained in the page. The fi rst, GetCustomer() ,
is the function that passes in the parameter to be processed by the code - behind fi le on the application server.
This is quite similar to what appeared in the previous example.

c02.indd 79c02.indd 79 2/3/10 12:17:21 PM2/3/10 12:17:21 PM

80 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

 The second JavaScript function, however, is different. Looking over this function, you can see that it is
expecting a long string of multiple values:

function GetCustDetailsFromServer(result, context){
 var i = result.split("|");
 customerID.innerHTML = i[0];
 companyName.innerHTML = i[1];
 contactName.innerHTML = i[2];
 contactTitle.innerHTML = i[3];
 address.innerHTML = i[4];
 city.innerHTML = i[5];
 region.innerHTML = i[6];
 postalCode.innerHTML = i[7];
 country.innerHTML = i[8];
 phone.innerHTML = i[9];
 fax.innerHTML = i[10];
}

 The multiple results expected are constructed in a pipe - delimited string, and each of the values is placed into
an array. Then each string item in the array is assigned to a particular < span > tag in the ASP.NET page. For
instance, look at the following bit of code:

customerID.innerHTML = i[0];

 The i[0] variable is the fi rst item found in the pipe - delimited string, and it is assigned to the
customerID item on the page. This customerID identifi er comes from the following < span > tag found in
the table:

 < span id="customerID" / >

 Now, turn your attention to the code - behind fi le for this page, as shown in Listing 2 - 18.

 LISTING 2 - 18: The code - behind fi le for the Customer Details page

Imports System.Data
Imports System.Data.SqlClient

Partial Class CallbackNorthwind
 Inherits System.Web.UI.Page
 Implements System.Web.UI.ICallbackEventHandler

 Dim _callbackResult As String = Nothing

 Public Function GetCallbackResult() As String _
 Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult
 Return _callbackResult
 End Function

 Public Sub RaiseCallbackEvent(ByVal eventArgument As String)
 Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent
 Dim conn As SqlConnection = New _
 SqlConnection("Data Source=.;Initial Catalog=Northwind;User ID=sa")
 Dim cmd As SqlCommand = New _
 SqlCommand("Select * From Customers Where CustomerID ='" &
 eventArgument & "'", conn)

 conn.Open()

 Dim MyReader As SqlDataReader
 MyReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

VB

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

c02.indd 80c02.indd 80 2/3/10 12:17:21 PM2/3/10 12:17:21 PM

 Client - Side Callback ❘ 81

 Dim MyValues(10) As String

 While MyReader.Read()
 MyValues(0) = MyReader("CustomerID").ToString()
 MyValues(1) = MyReader("CompanyName").ToString()
 MyValues(2) = MyReader("ContactName").ToString()
 MyValues(3) = MyReader("ContactTitle").ToString()
 MyValues(4) = MyReader("Address").ToString()
 MyValues(5) = MyReader("City").ToString()
 MyValues(6) = MyReader("Region").ToString()
 MyValues(7) = MyReader("PostalCode").ToString()
 MyValues(8) = MyReader("Country").ToString()
 MyValues(9) = MyReader("Phone").ToString()
 MyValues(10) = MyReader("Fax").ToString()
 End While

 Conn.Close()

 _callbackResult = String.Join("|", MyValues)
 End Sub

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim cbReference As String = _
 Page.ClientScript.GetCallbackEventReference(Me, "arg", _
 "GetCustDetailsFromServer", "context")
 Dim cbScript As String = "function UseCallback(arg, context)" & _
 "{" & cbReference & ";" & "}"

 Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
 "UseCallback", cbScript, True)
 End Sub
End Class

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class CallbackNorthwind : System.Web.UI.Page,
 System.Web.UI.ICallbackEventHandler
{
 private string _callbackResult = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 string cbReference = Page.ClientScript.GetCallbackEventReference(this,
 "arg", "GetCustDetailsFromServer", "context");
 string cbScript = "function UseCallback(arg, context)" +
 "{" + cbReference + ";" + "}";

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "UseCallback", cbScript, true);
 }

contiuues

C#C#

c02.indd 81c02.indd 81 2/3/10 12:17:22 PM2/3/10 12:17:22 PM

82 ❘ CHAPTER 2 ASP.NET SERVER CONTROLS AND CLIENT - SIDE SCRIPTS

LISTING 2-18 (continued)

 #region ICallbackEventHandler Members

 public string GetCallbackResult()
 {
 return _callbackResult;
 }

 public void RaiseCallbackEvent(string eventArgument)
 {
 SqlConnection conn = new
 SqlConnection("Data Source=.;Initial Catalog=Northwind;User ID=sa");
 SqlCommand cmd = new
 SqlCommand("Select * From Customers Where CustomerID ='" +
 eventArgument + "'", conn);

 conn.Open();

 SqlDataReader MyReader;
 MyReader = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 string[] MyValues = new string[11];

 while (MyReader.Read())
 {
 MyValues[0] = MyReader["CustomerID"].ToString();
 MyValues[1] = MyReader["CompanyName"].ToString();
 MyValues[2] = MyReader["ContactName"].ToString();
 MyValues[3] = MyReader["ContactTitle"].ToString();
 MyValues[4] = MyReader["Address"].ToString();
 MyValues[5] = MyReader["City"].ToString();
 MyValues[6] = MyReader["Region"].ToString();
 MyValues[7] = MyReader["PostalCode"].ToString();
 MyValues[8] = MyReader["Country"].ToString();
 MyValues[9] = MyReader["Phone"].ToString();
 MyValues[10] = MyReader["Fax"].ToString();
 }

 _callbackResult = String.Join("|", MyValues);
 }

 #endregion
}

Filenames CallbackNorthwind.aspx.vb and CallbackNorthwind.aspx.cs

 Much of this document is quite similar to the document in the previous example using the callback feature.
The big difference comes in the RaiseCallbackEvent() method. This method fi rst performs a SELECT
statement on the Customers database based upon the CustomerID passed in via the eventArgument
variable. The result retrieved from this SELECT statement is then made part of a string array, which is
fi nally concatenated using the String.Join() method before being passed back as the value of the
 _callbackResult object.

 With this code in place, you can now populate an entire table of data using the callback feature. This
means that the table is populated with no need to refresh the page. The results from this code operation are
presented in Figure 2 - 15.

c02.indd 82c02.indd 82 2/3/10 12:17:23 PM2/3/10 12:17:23 PM

 SUMMARY

 This chapter gave you one of the core building blocks of an ASP.NET page — the server control. The server
control is an object - oriented approach to page development that encapsulates page elements into modifi able
and expandable components.

 The chapter also introduced you to how to customize the look - and - feel of your server controls using
Cascading Style Sheets (CSS). Working with CSS in ASP.NET 4 is easy and quick, especially if you have
Visual Studio 2010 to assist you. Finally, this chapter looked at both using HTML server controls and
adding JavaScript to your pages to modify the behaviors of your controls.

 FIGURE 2 - 1 5

 Summary ❘ 83

c02.indd 83c02.indd 83 2/3/10 12:17:23 PM2/3/10 12:17:23 PM

c02.indd 84c02.indd 84 2/3/10 12:17:24 PM2/3/10 12:17:24 PM

 ASP.NET Web Server Controls
 WHAT ’ S IN THIS CHAPTER?

 Reviewing key Web server controls

 Diff erentiating between Web server control features

 Removing items from a collection

 Of the two types of server controls, HTML server controls and Web server controls, the latter is
considered the more powerful and fl exible. The previous chapter looked at how to use HTML server
controls in applications. HTML server controls enable you to manipulate HTML elements from your
server - side code. On the other hand, Web server controls are powerful because they are not explicitly
tied to specifi c HTML elements; rather, they are more closely aligned to the specifi c functionality that
you want to generate. As you will see throughout this chapter, Web server controls can be very simple
or rather complex depending on the control you are working with.

 The purpose of the large collection of controls is to make you more productive. These controls give
you advanced functionality that, in the past, you would have had to laboriously program or simply
omit. In the classic ASP days, for example, few calendars were used on Internet Web sites. With the
introduction of the Calendar server control in ASP.NET 1.0, calendar creation on a site became a
trivial task. Building an image map on top of an image was another task that was diffi cult to achieve
in ASP.NET 1. x , but this capability was introduced as a new server control in ASP.NET 2.0. As
ASP.NET evolves through the releases, new controls are always added that help to make you a more
productive Web developer.

 This chapter introduces some of the available Web server controls. The fi rst part of the chapter
focuses on the Web server controls that were around since the fi rst days of ASP.NET. Then the
chapter explores the server controls that were introduced after the initial release of ASP.NET. This
chapter does not discuss every possible control because some server controls are introduced and
covered in other chapters throughout the book as they might be more related to that particular topic.

 AN OVERVIEW OF WEB SERVER CONTROLS

 The Web server control is ASP.NET ’ s most - used component. Although you may have seen a lot of
potential uses of the HTML server controls shown in the previous chapter, Web server controls are
defi nitely a notch higher in capability. They allow for a higher level of functionality that becomes
more apparent as you work with them.

➤

➤

➤

3

c03.indd 85c03.indd 85 2/3/10 10:46:50 AM2/3/10 10:46:50 AM

86 ❘ CHAPTER 3 ASP.NET WEB SERVER CONTROLS

 The HTML server controls provided by ASP.NET work in that they map to specifi c HTML elements. You
control the output by working with the HTML attributes that the HTML element provides. The attributes
can be changed dynamically on the server side before they are fi nally output to the client. There is a lot of
power in this, and you have some HTML server control capabilities that you simply do not have when you
work with Web server controls.

 Web server controls work differently. They do not map to specifi c HTML elements, but instead enable you
to defi ne functionality, capability, and appearance without the attributes that are available to you through
a collection of HTML elements. When constructing a Web page that is made up of Web server controls,
you are describing the functionality, the look - and - feel, and the behavior of your page elements. You then let
ASP.NET decide how to output this construction. The output, of course, is based on the capabilities of the
container that is making the request. This means that each requestor might see a different HTML output
because each is requesting the same page with a different browser type or version. ASP.NET takes care of all
the browser detection and the work associated with it on your behalf.

 Unlike HTML server controls, Web server controls are not only available for working with common Web
page form elements (such as text boxes and buttons), but they can also bring some advanced capabilities and
functionality to your Web pages. For instance, one common feature of many Web applications is a calendar.
No HTML form element places a calendar on your Web forms, but a Web server control from ASP.NET
can provide your application with a full - fl edged calendar, including some advanced capabilities. In the past,
adding calendars to your Web pages was not a small programming task. Today, adding calendars with ASP.
NET is rather simple and is achieved with a single line of code!

 Remember that when you are constructing your Web server controls, you are actually constructing a
control — a set of instructions — that is meant for the server (not the client). By default, all Web server
controls provided by ASP.NET use an asp: at the beginning of the control declaration. The following is a
typical Web server control:

 < asp:Label ID="Label1" runat="server" Text="Hello World" > < /asp:Label >

 Like HTML server controls, Web server controls require an ID attribute to reference the control in the
server - side code, as well as a runat= “ server ” attribute declaration. As you do for other XML - based
elements, you need to properly open and close Web server controls using XML syntax rules. In the
preceding example, you can see the < asp:Label > control has a closing < /asp:Label > element associated
with it. You could have also closed this element using the following syntax:

 < asp:Label ID="Label1" Runat="server" Text="Hello World" / >

 The rest of this chapter examines some of the Web server controls available to you in ASP.NET.

 THE LABEL SERVER CONTROL

 The Label server control is used to display text in the browser. Because this is a server control, you can
dynamically alter the text from your server - side code. As you saw from the preceding examples of using the
 < asp:Label > control, the control uses the Text attribute to assign the content of the control as shown here:

 < asp:Label ID="Label1" runat="server" Text="Hello World" / >

 Instead of using the Text attribute, however, you can place the content to be displayed between the
 < asp:Label > elements like this:

 < asp:Label ID="Label1" runat="server" > Hello World < /asp:Label >

 You can also provide content for the control through programmatic means, as illustrated in Listing 3 - 1.

 LISTING 3 - 1: Programmatically providing text to the Label control

Label1.Text = "Hello ASP.NET"

Label1.Text = "Hello ASP.NET";

VBVB

C#C#

c03.indd 86c03.indd 86 2/3/10 10:47:00 AM2/3/10 10:47:00 AM

 The Label server control has always been a control that simply showed text. Ever since ASP.NET 2.0, it has
a little bit of extra functionality. The big change since this release of the framework is that you can now give
items in your form hot - key functionality (also known as accelerator keys). This causes the page to focus on
a particular server control that you declaratively assign to a specifi c hot - key press (for example, using Alt+N
to focus on the fi rst text box on the form).

 A hot key is a quick way for the end user to initiate an action on the page. For instance, if you use Microsoft
Internet Explorer, you can press Ctrl+N to open a new instance of IE. Hot keys have always been quite
common in thick - client applications (Windows Forms), and now you can use them in ASP.NET. Listing 3 - 2
shows an example of how to give hot - key functionality to two text boxes on a form.

 LISTING 3 - 2: Using the Label server control to provide hot - key functionality

 < %@ Page Language="VB" % >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Label Server Control < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < p >
 < asp:Label ID="Label1" runat="server" AccessKey="N"
 AssociatedControlID="Textbox1" > User < u > n < /u > ame < /asp:Label >
 < asp:TextBox ID="TextBox1" runat="server" > < /asp:TextBox > < /p >
 < p >
 < asp:Label ID="Label2" runat="server" AccessKey="P"
 AssociatedControlID="Textbox2" > < u > P < /u > assword < /asp:Label >
 < asp:TextBox ID="TextBox2" Runat="server" > < /asp:TextBox > < /p >
 < p >
 < asp:Button ID="Button1" runat="server" Text="Submit" / >
 < /p >
 < /form >
 < /body >
 < /html >

 Hot keys are assigned with the AccessKey attribute. In this case, Label1 uses N , and Label2 uses P . The
second attribute for the Label control is the AssociatedControlID attribute. The String value placed here
associates the Label control with another server control on the form. The value must be one of the other
server controls on the form. If not, the page gives you an error when invoked.

 With these two controls in place, when the page is called in the browser, you can press Alt+N or Alt+P to
automatically focus on a particular text box in the form. In Figure 3 - 1, HTML - declared underlines indicate
the letters to be pressed along with the Alt key to create focus on the control adjoining the text. This is not
required, but we highly recommend it because it is what the end user expects when working with hot keys.
In this example, the letter n in Username and the letter P in Password are underlined.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 3-1

The Label Server Control ❘ 87

c03.indd 87c03.indd 87 2/3/10 10:47:05 AM2/3/10 10:47:05 AM

88 ❘ CHAPTER 3 ASP.NET WEB SERVER CONTROLS

 When working with hot keys, be aware that not all letters are available to use with the Alt key. Microsoft
Internet Explorer already uses Alt+F, E, V, I, O, T, A, W, and H. If you use any of these letters, IE actions
supersede any actions you place on the page.

 THE LITERAL SERVER CONTROL

 The Literal server control works very much like the Label server control does. This control was always used
in the past for text that you wanted to push out to the browser but keep unchanged in the process (a literal
state). A Label control alters the output by placing < span > elements around the text as shown:

 < span id="Label1" > Here is some text < /span >

 The Literal control just outputs the text without the < span > elements. One feature found in this server
control is the attribute Mode . This attribute enables you to dictate how the text assigned to the control is
interpreted by the ASP.NET engine.

 If you place some HTML code in the string that is output (for instance, < b > Here is some text < /b >), the
Literal control outputs just that and the consuming browser shows the text as bold:

 Here is some text

 Try using the Mode attribute as illustrated here:

 < asp:Literal ID="Literal1" runat="server" Mode="Encode"
 Text=" < b > Here is some text < /b > " > < /asp:Literal >

 Adding Mode= “ Encode “ encodes the output before it is received by the consuming application:

 & lt;b & gt;Label & lt;/b & gt;

 Now, instead of the text being converted to a bold font, the < b > elements are displayed:

 < b > Here is some text < /b >

 This is ideal if you want to display code in your application. Other values for the Mode attribute include
 Transform and PassThrough . Transform looks at the consumer and includes or removes elements as
needed. For instance, not all devices accept HTML elements so, if the value of the Mode attribute is set to
 Transform , these elements are removed from the string before it is sent to the consuming application. A value
of PassThrough for the Mode property means that the text is sent to the consuming application without any
changes being made to the string.

 THE TEXTBOX SERVER CONTROL

 One of the main features of Web pages is to offer forms that end users can use to submit their information
for collection. The TextBox server control is one of the most used controls in this space. As its name
suggests, the control provides a text box on the form that enables the end user to input text. You can map
the TextBox control to three different HTML elements used in your forms.

 First, the TextBox control can be used as a standard HTML text box, as shown in the following code snippet:

 < asp:TextBox ID="TextBox1" runat="server" > < /asp:TextBox >

 This code creates a text box on the form that looks like the one shown in Figure 3 - 2.

 Second, the TextBox control can allow end users to input their passwords into a form.
This is done by changing the TextMode attribute of the TextBox control to Password , as
illustrated here:

 < asp:TextBox ID="TextBox1" runat="server" TextMode="Password" > < /asp:TextBox >

 When asking end users for their passwords through the browser, it is best practice
to provide a text box that encodes the content placed in this form element. Using an
attribute and value of TextMode= “ Password ” ensures that the text is encoded with either
a star (*) or a dot, as shown in Figure 3 - 3. FIGURE 3-3

FIGURE 3-2

c03.indd 88c03.indd 88 2/3/10 10:47:06 AM2/3/10 10:47:06 AM

 Third, the TextBox server control can be used as a multiline text box. The code for accomplishing this task
is as follows:

 < asp:TextBox ID="TextBox1" runat="server" TextMode="MultiLine"
 Width="300px" Height="150px" > < /asp:TextBox >

 Giving the TextMode attribute a value of MultiLine creates a multilined
text box in which the end user can enter a larger amount of text in the
form. The Width and Height attributes set the size of the text area, but
these are optional attributes — without them, the text area is produced
in its smallest size. Figure 3 - 4 shows the use of the preceding code after
adding some text.

 When working with a multilined text box, be aware of the Wrap
attribute. When set to True (which is the default), the text entered into the text area wraps to the next line
if needed. When set to False , the end user can type continuously in a single line until she presses the Enter
key, which brings the cursor down to the next line.

 Using the Focus() Method

 Because the TextBox server control is derived from the base class of WebControl , one of the methods
available to it is Focus() . The Focus() method enables you to dynamically place the end user ’ s cursor in
an appointed form element (not just the TextBox control, but in any of the server controls derived from the
 WebControl class). With that said, it is probably most often used with the TextBox control, as illustrated in
Listing 3 - 3.

 LISTING 3 - 3: Using the Focus() method with the TextBox control

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 TextBox1.Focus()
End Sub

protected void Page_Load(object sender, EventArgs e)
{
 TextBox1.Focus();
}

 When the page using this method is loaded in the browser, the cursor is already placed inside of the text
box, ready for you to start typing. There is no need to move your mouse to get the cursor in place so you
can start entering information in the form. This is ideal for those folks who take a keyboard approach to
working with forms.

 Using AutoPostBack

 ASP.NET pages work in an event - driven way. When an action on a Web page triggers an event, server -
 side code is initiated. One of the more common events is an end user clicking a button on the form. If you
double - click the button in Design view of Visual Studio 2010, you can see the code page with the structure
of the Button1_Click event already in place. This is because OnClick is the most common event of the
Button control. Double - clicking the TextBox control constructs an OnTextChanged event. This event is
triggered when the end user moves the cursor focus outside the text box, either by clicking another element
on the page after entering something into a text box, or by simply tabbing out of the text box. The use of
this event is shown in Listing 3 - 4.

 LISTING 3 - 4: Triggering an event when a TextBox change occurs

 < %@ Page Language="VB" % >

 < script runat="server" >

VBVB

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

FIGURE 3-4

continues

The TextBox Server Control ❘ 89

c03.indd 89c03.indd 89 2/3/10 10:47:07 AM2/3/10 10:47:07 AM

90 ❘ CHAPTER 3 ASP.NET WEB SERVER CONTROLS

LISTING 3-4 (continued)

 Protected Sub TextBox1_TextChanged(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Response.Write("OnTextChanged event triggered")
 End Sub

 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Response.Write("OnClick event triggered")
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > OnTextChanged Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < div >
 < asp:TextBox ID="TextBox1" runat="server" AutoPostBack="True"
 OnTextChanged="TextBox1_TextChanged" > < /asp:TextBox >
 < asp:Button ID="Button1" runat="server" Text="Button"
 OnClick="Button1_Click" / >
 < /div >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void TextBox1_TextChanged(object sender, EventArgs e)
 {
 Response.Write("OnTextChanged event triggered");
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 Response.Write("OnClick event triggered");
 }
 < /script >

 As you build and run this page, notice that you can type something in the text box, but once you tab out
of it, the OnTextChanged event is triggered and the code contained in the TextBox1_TextChanged event
runs. To make this work, you must add the AutoPostBack attribute to the TextBox control and set it to
 True . This causes the Web page to look for any text changes prior to an actual page postback. For the
 AutoPostBack feature to work, the browser viewing the page must support ECMAScript.

 Using AutoCompleteType

 You want the forms you build for your Web applications to be as simple to use as possible. You want to
make them easy and quick for the end user to fi ll out the information and proceed. If you make a form too
onerous, the people who come to your site may leave without completing it.

 One of the great capabilities for any Web form is smart auto - completion. You may
have seen this yourself when you visited a site for the fi rst time. As you start to fi ll out
information in a form, a drop - down list appears below the text box as you type, showing
you a value that you have typed in a previous form. The plain text box you were working
with has become a smart text box. Figure 3 - 5 shows an example of this feature.

C#C#

FIGURE 3-5

c03.indd 90c03.indd 90 2/3/10 10:47:09 AM2/3/10 10:47:09 AM

 A great aspect of the TextBox control is the AutoCompleteType attribute, which enables you to apply the
auto - completion feature to your own forms. You have to help the text boxes on your form to recognize
the type of information that they should be looking for. What does that mean? Well, fi rst look at the
possible values of the AutoCompleteType attribute:

BusinessCity Disabled HomeStreetAddress
BusinessCountryRegion DisplayName HomeZipCode
BusinessFax Email JobTitle
BusinessPhone FirstName LastName
BusinessState Gender MiddleName
BusinessStateAddress HomeCity None
BusinessUrl HomeCountryRegion Notes
BusinessZipCode HomeFax Office
Cellular Homepage Pager
Company HomePhone Search
Department HomeState

 From this list, you can see that if your text box is asking for the end user ’ s home street address, you want to
use the following in your TextBox control:

 < asp:TextBox ID="TextBox1" runat="server"
 AutoCompleteType="HomeStreetAddress" > < /asp:TextBox >

 As you view the source of the text box you created, you can see that the following construction has
occurred:

 < input name="TextBox1" type="text" vcard_name="vCard.Home.StreetAddress"
 id="TextBox1" / >

 This feature makes your forms easier to work with. Yes, it is a simple thing but sometimes the little things
keep the viewers coming back again and again to your Web site.

 THE BUTTON SERVER CONTROL

 Another common control for your Web forms is a button that can be constructed using the Button server
control. Buttons are the usual element used to submit forms. Most of the time you are simply dealing with
items contained in your forms through the Button control ’ s OnClick event, as illustrated in Listing 3 - 5.

 LISTING 3 - 5: The Button control ’ s OnClick event

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 ' Code here
End Sub

protected void Button1_Click(object sender, EventArgs e)
{
 // Code here
}

 The Button control is one of the easier controls to use, but there are a couple of properties of which you
must be aware: CausesValidation and CommandName . They are discussed in the following sections.

 The CausesValidation Property

 If you have more than one button on your Web page and you are working with the validation
server controls, you may not want to fi re the validation for each button on the form. Setting the
 CausesValidation property to False is a way to use a button that will not fi re the validation process. This
is explained in more detail in Chapter 4.

VBVB

C#C#

The Button Server Control ❘ 91

c03.indd 91c03.indd 91 2/3/10 10:47:10 AM2/3/10 10:47:10 AM

92 ❘ CHAPTER 3 ASP.NET WEB SERVER CONTROLS

 The CommandName Property

 You can have multiple buttons on your form all working from a single event. The nice thing is that you can
also tag the buttons so that the code can make logical decisions based on which button on the form was
clicked. You must construct your Button controls in the manner illustrated in Listing 3 - 6 to take advantage
of this behavior.

 LISTING 3 - 6: Constructing multiple Button controls to work from a single function

 < asp:Button ID="Button1" runat="server" Text="Button 1"
 OnCommand="Button_Command" CommandName="DoSomething1" / >
 < asp:Button ID="Button2" runat="server" Text="Button 2"
 OnCommand="Button_Command" CommandName="DoSomething2" / >

 Looking at these two instances of the Button control, you should pay attention to several things. The fi rst
thing to notice is what is not present — any attribute mention of an OnClick event. Instead, you use the
 OnCommand event, which points to an event called Button_Command . You can see that both Button controls
are working from the same event. How does the event differentiate between the two buttons being clicked?
Through the value placed in the CommandName property. In this case, they are indeed separate values —
 DoSomething1 and DoSomething2 .

 The next step is to create the Button_Command event to deal with both these buttons by simply typing one
out or by selecting the Command event from the drop - down list of available events for the Button control
from the code view of Visual Studio. In either case, you should end up with an event like the one shown in
Listing 3 - 7.

 LISTING 3 - 7: The Button_Command event

Protected Sub Button_Command(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.CommandEventArgs)

 Select Case e.CommandName
 Case "DoSomething1"
 Response.Write("Button 1 was selected")
 Case "DoSomething2"
 Response.Write("Button 2 was selected")
 End Select

End Sub

protected void Button_Command(Object sender,
 System.Web.UI.WebControls.CommandEventArgs e)
{
 switch (e.CommandName)
 {
 case("DoSomething1"):
 Response.Write("Button 1 was selected");
 break;
 case("DoSomething2"):
 Response.Write("Button 2 was selected");
 break;
 }
}

 Notice that this method uses System.Web.UI.WebControls.CommandEventArgs instead of the typical
 System.EventArgs . This gives you access to the member CommandName used in the Select Case (switch)
statement as e.CommandName . Using this object, you can check for the value of the CommandName property
used by the button that was clicked on the form and take a specifi c action based upon the value passed.

VBVB

C#C#

c03.indd 92c03.indd 92 2/3/10 10:47:10 AM2/3/10 10:47:10 AM

 You can add some parameters to be passed in to the Command event beyond what is defi ned in the
 CommandName property. You do this by using the Button control ’ s CommandArgument property. Adding
values to the property enables you to defi ne items a bit more granularly if you want. You can get at this
value via server - side code using e.CommandArgument from the CommandEventArgs object.

 Buttons That Work with Client - Side JavaScript

 Buttons are frequently used for submitting information and causing actions to occur on a Web page. Before
ASP.NET 1.0/1.1, people intermingled quite a bit of JavaScript in their pages to fi re JavaScript events when
a button was clicked. The process became more cumbersome in ASP.NET 1.0/1.1, but ever since ASP.NET
2.0, it has been much easier.

 You can create a page that has a JavaScript event, as well as a server - side event, triggered when the button is
clicked, as illustrated in Listing 3 - 8.

 LISTING 3 - 8: Two types of events for the button

 < %@ Page Language="VB" % >

 < script runat="server" >
 Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Response.Write("Postback!")
 End Sub
 < /script >

 < script language="javascript" >
 function AlertHello()
 {
 alert('Hello ASP.NET');
 }
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Button Server Control < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < asp:Button ID="Button1" runat="server" Text="Button"
 OnClientClick="AlertHello()" OnClick="Button1_Click" / >
 < /form >
 < /body >

< /html >
 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Button1_Click(object sender, EventArgs e)
 {
 Response.Write("Postback!");
 }
 < /script >

 The fi rst thing to notice is the attribute for the Button server control: OnClientClick . It points to the
client - side function, unlike the OnClick attribute that points to the server - side event. This example uses a
JavaScript function called AlertHello() .

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

The Button Server Control ❘ 93

c03.indd 93c03.indd 93 2/3/10 10:47:11 AM2/3/10 10:47:11 AM

94 ❘ CHAPTER 3 ASP.NET WEB SERVER CONTROLS

 One cool thing about Visual Studio 2010 is that it can work with server - side script tags that are right
alongside client - side script tags. It all works together seamlessly. In the example, after the JavaScript alert
dialog is issued (see Figure 3 - 6) and the end user clicks OK, the page posts back as the server - side event
is triggered.

FIGURE 3-6

 Another interesting attribute for the button controls is PostBackUrl . It enables you to perform cross -
page posting, instead of simply posting your ASP.NET pages back to the same page, as shown in the
following example:

 < asp:Button ID="Button2" runat="server" Text="Submit page to Page2.aspx"
 PostBackUrl="Page2.aspx" / >

 Cross - page posting is covered in greater detail in Chapter 1.

 THE LINKBUTTON SERVER CONTROL

 The LinkButton server control is a variation of the Button control. It is the same except that the LinkButton
control takes the form of a hyperlink. Nevertheless, it is not a typical hyperlink. When the end user clicks
the link, it behaves like a button. This is an ideal control to use if you have a large number of buttons on
your Web form.

 A LinkButton server control is constructed as follows:

 < asp:LinkButton ID="LinkButton1" Runat="server" OnClick="LinkButton1_Click" >
 Submit your name to our database
 < /asp:LinkButton >

 Using the LinkButton control gives you the results shown in Figure 3 - 7.

FIGURE 3-7

c03.indd 94c03.indd 94 2/3/10 10:47:12 AM2/3/10 10:47:12 AM

