Principles of Broadband Switching and Networking

Tony T. Lee and Soung C. Liew

Principles of Broadband Switching and Networking

WILEY SERIES IN TELECOMMUNICATIONS AND SIGNAL PROCESSING

John G. Proakis, Editor Northeastern University

A complete list of the titles in this series appears at the end of this volume.

Principles of Broadband Switching and Networking

Tony T. Lee and Soung C. Liew

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com

ISBN: 978-0-471-13901-0

Library of Congress Cataloging-in-Publication Data is available.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Dedicated to Professor Charles K. Kao for his guidance, and to our wives, Alice and So Kuen, for their unwavering support.

CONTENTS

Pr	Preface				
Ak	About the Authors				
1	Introduction and Overview			1	
	1.1	Switching and Transmission		2	
		1.1.1	Roles of Switching and Transmission	2	
		1.1.2	Telephone Network Switching and Transmission Hierarchy	4	
	1.2	Multi	plexing and Concentration	5	
	1.3 Timescales of Information Transfer		scales of Information Transfer	8	
		1.3.1	Sessions and Circuits	9	
		1.3.2	Messages	9	
		1.3.3	Packets and Cells	9	
	1.4	Broad	Iband Integrated Services Network	10	
		Proble	ems	12	
2	Circuit Switch Design Principles			15	
	2.1 Space-Domai		2-Domain Circuit Switching	16	
		2.1.1	Nonblocking Properties	16	
		2.1.2	Complexity of Nonblocking Switches	18	
		2.1.3	Clos Switching Network	20	
		2.1.4	Benes Switching Network	28	
		2.1.5	Baseline and Reverse Baseline Networks	31	
		2.1.6	Cantor Switching Network	32	
	2.2	Time-	Domain and Time-Space-Time Circuit Switching	35	
		2.2.1	Time-Domain Switching	35	
		2.2.2	Time–Space–Time Switching	37	
		Proble	ems	39	

3	Fur	ndame	ntal Principles of Packet Switch Design	43
	3.1	Packe	t Contention in Switches	45
	3.2	Fundamental Properties of Interconnection Networks		
		3.2.1	Definition of Banyan Networks	49
		3.2.2	Simple Switches Based on Banyan Networks	51
		3.2.3	Combinatoric Properties of Banyan Networks	54
		3.2.4	Nonblocking Conditions for the Banyan Network	54
	3.3 Sorting Networks		ng Networks	59
		3.3.1	Basic Concepts of Comparison Networks	61
		3.3.2	Sorting Networks Based on Bitonic Sort	64
		3.3.3	The Odd–Even Sorting Network	70
		3.3.4	Switching and Contention Resolution in Sort-Banyan Network	71
	3.4	Nonblocking and Self-Routing Properties of Clos Networks		
		3.4.1	Nonblocking Route Assignment	76
		3.4.2	Recursiveness Property	79
		3.4.3	Basic Properties of Half-Clos Networks	81
		3.4.4	Sort-Clos Principle	89
		Proble	ems	90
4	Switch Performance Analysis and Design Improvements			95
	4.1	Perfor	rmance of Simple Switch Designs	95
		4.1.1	Throughput of an Internally Nonblocking Loss System	96
		4.1.2	Throughput of an Input-Buffered Switch	96
		4.1.3	Delay of an Input-Buffered Switch	103
		4.1.4	Delay of an Output-Buffered Switch	112
	4.2	Desig	n Improvements for Input Queueing Switches	113
		4.2.1	Look-Ahead Contention Resolution	113
		4.2.2	Parallel Iterative Matching	115
	4.3	Desig	n Improvements Based on Output Capacity Expansion	119
		4.3.1	Speedup Principle	119
		4.3.2	Channel-Grouping Principle	121
		4.3.3	Knockout Principle	131
		4.3.4	Replication Principle	137
		4.3.5	Dilation Principle	138
		Problems		144
5	٨d	vanceo	d Switch Design Principles	151
	5.1	Swite	h Design Principles Based on Deflection Routing	151
		5.1.1	Tandem-Banyan Network	151
		5.1.2	Shuffle-Exchange Network	154

		5.1.3	Feedback Shuffle-Exchange Network	158		
		5.1.4	Feedback Bidirectional Shuffle-Exchange Network	166		
		5.1.5	Dual Shuffle-Exchange Network	175		
	5.2	Switcl	hing by Memory I/O	184		
	5.3	Desig	n Principles for Scalable Switches	187		
		5.3.1	Generalized Knockout Principle	187		
		5.3.2	Modular Architecture	191		
		Proble	ems	198		
6	Switching Principles for Multicast, Multirate,					
	and	and Multimedia Services				
	6.1	Multic	cast Switching	205		
		6.1.1	Multicasting Based on Nonblocking Copy Networks	208		
		6.1.2	Performance Improvement of Copy Networks	213		
		6.1.3	Multicasting Algorithm for Arbitrary Network Topologies	220		
		6.1.4	Nonblocking Copy Networks Based on Broadcast Clos			
			Networks	228		
	6.2	Path S	witching	235		
		6.2.1	Basic Concept of Path Switching	237		
		6.2.2	Capacity and Route Assignments for Multirate Traffic	242		
		6.2.3	Trade-Off Between Performance and Complexity	249		
		6.2.4	Multicasting in Path Switching	254		
	6.A	Apper	ndix	268		
		6.A.1	A Formulation of Effective Bandwidth	268		
		6.A.2	Approximations of Effective Bandwidth Based on On–Off Source Model	269		
		Proble	ems	270		
7	Bas	ic Cor	ncepts of Broadband Communication Networks	275		
	7.1	Synch	ronous Transfer Mode	275		
	7.2	Delay	s in ATM Network	280		
	7.3	Cell Size Consideration		283		
	7.4	4 Cell Networking, Virtual Channels, and Virtual Paths		285		
		7.4.1	No Data Link Layer	285		
		7.4.2	Cell Sequence Preservation	286		
		7.4.3	Virtual-Circuit Hop-by-Hop Routing	286		
		7.4.4	Virtual Channels and Virtual Paths	287		
		7.4.5	Routing Using VCI and VPI	289		
		7.4.6	Motivations for VP/VC Two-Tier Hierarchy	293		

	7.5	ATM	Layer, Adaptation Layer, and Service Class	295	
	7.6	Transı	mission Interface	300	
	7.7	Appro	aches Toward IP over ATM	300	
		7.7.1	Classical IP over ATM	301	
		7.7.2	Next Hop Resolution Protocol	302	
		7.7.3	IP Switch and Cell Switch Router	303	
		7.7.4	ARIS and Tag Switching	306	
		7.7.5	Multiprotocol Label Switching	308	
	App	endix 7	.A ATM Cell Format	311	
		7.A.1	ATM Layer	311	
		7.A.2	Adaptation Layer	314	
		Proble	ems	319	
8	Net	Network Traffic Control and Bandwidth Allocation			
	8.1	Fluid-	Flow Model: Deterministic Discussion	326	
	8.2	Fluid-	Flow On–Off Source Model: Stochastic Treatment	332	
	8.3	Traffic	e Shaping and Policing	348	
	8.4	Open-	Loop Flow Control and Scheduling	354	
		8.4.1	First-Come-First-Serve Scheduling	355	
		8.4.2	Fixed-Capacity Assignment	357	
		8.4.3	Round-Robin Scheduling	358	
		8.4.4	Weighted Fair Queueing	364	
		8.4.5	Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control	373	
	8.5	Closed	d-Loop Flow Control	380	
		Proble	ems	381	
9	Pac	Packet Switching and Information Transmission 3			
	9.1	Dualit	y of Switching and Transmission	386	
	9.2	Paralle	el Characteristics of Contention and Noise	390	
		9.2.1	Pseudo Signal-to-Noise Ratio of Packet Switch	390	
		9.2.2	Clos Network with Random Routing as a Noisy Channel	393	
	9.3	Clos N	Network with Deflection Routing	396	
		9.3.1	Cascaded Clos Network	397	
		9.3.2	Analysis of Deflection Clos Network	397	
	9.4	Route	Assignments and Error-Correcting Codes	402	
		9.4.1	Complete Matching in Bipartite Graphs	402	
		9.4.2	Graphical Codes	405	
		9.4.3	Route Assignments of Benes Network	407	

9.5	Clos I	Network as Noiseless Channel-Path Switching	410
	9.5.1	Capacity Allocation	411
	9.5.2	Capacity Matrix Decomposition	414
9.6	Sched	luling and Source Coding	416
	9.6.1	Smoothness of Scheduling	417
	9.6.2	Comparison of Scheduling Algorithms	420
	9.6.3	Two-Dimensional Scheduling	424
9.7	Conclusion		430
Bibliography			433

PREFACE

The past few decades have seen the merging of many computer and communication applications. Enabled by the advancement of optical fiber, wireless communication, and very-large-scale integration (VLSI) technologies, modern telecommunication networks can be regarded as one of the most important inventions of the past century.

Before the emergence of Broadband Integrated Services Digital Network (B-ISDN), several separate communication networks already existed. They include the telephone network for voice communication, the computer network for data communication, and the television network for TV program broadcasting. These networks are designed with a specific application in mind and are typically not well suited for other applications. For example, the conventional telephone network cannot carry high-speed multimedia services, which require diverse quality-of-service (QoS) guarantees to support multirate and multicast connections. In addition, these heterogeneous networks often require expensive gateways equipped with different access interfaces running different protocols.

Meanwhile, the appeal of interactive video communication is on the rise in a society that is increasingly information-oriented. Images and facial expressions are more vivid and informative than text and audio for many types of human interactions. For example, video conferencing has made distant learning, medicine, and surgery possible, while 3D Internet games give rise to real-time interactions between remote players. All these applications are based on high-resolution video with large bandwidth demands. These developments led to the emergence of B-ISDN—the concept of an integrated network to support communication services of all kinds to achieve the most cost-effective sharing of resources was conceived in the late 1980s.

This book focuses on the design and analysis of switch architectures that are suitable for broadband integrated networks. In particular, the emphasis is on packetswitched interconnection networks with distributed routing algorithms. The focus is on the mathematical properties of these networks rather than specific implementation technologies. As such, although the pedagogical explanations in this book are in the context of switches, many of the fundamental principles are relevant to other communication networks with regular topologies. For example, the terminals in a multi-hop ad hoc wireless network could conceivably be interconnected together to form a logical topology that is regular. This could be enabled by the use of directional