POLYMER ANALYSIS

Barbara H. Stuart

University of Technology, Sydney, Australia

POLYMER ANALYSIS

Analytical Techniques in the Sciences (AnTS)

Series Editor: David J. Ando, Consultant, Dartford, Kent, UK

A series of open learning/distance learning books which covers all of the major analytical techniques and their application in the most important areas of physical, life and materials sciences.

Titles Available in the Series

Analytical Instrumentation: Performance Characteristics and Quality Graham Currell, University of the West of England, Bristol, UK

Fundamentals of Electroanalytical Chemistry Paul M. S. Monk, Manchester Metropolitan University, Manchester, UK

Introduction to Environmental Analysis Roger N. Reeve, University of Sunderland, UK

Polymer Analysis Barbara H. Stuart, University of Technology, Sydney, Australia

Forthcoming Titles

Chemical Sensors and Biosensors Brain R. Eggins, University of Ulster at Jordanstown, Northern Ireland, UK

Analysis of Controlled Substances Michael D. Cole, Anglia Polytechnic University, Cambridge, UK

POLYMER ANALYSIS

Barbara H. Stuart

University of Technology, Sydney, Australia

Copyright © 2002 by John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Reprinted with corrections September 2003

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the publication.

Neither the author(s) nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned to any person or property through using the material, instructions, methods or ideas contained herein, or acting or refraining from acting as a result of such use. The author(s) and Publisher expressly disclaim all implied warranties, including merchantability of fitness for any particular purpose.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Etobicoke, Ontario M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0471899267 (Hb) ISBN 047181363X (Pb)

Typeset in 10/12pt Times by Laserwords, Private Limited, Chennai, India. Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Contents

Series Preface		xi	
Pr	Preface Acronyms, Abbreviations and Symbols		
A			
A	bout tl	he Author	xxi
1	Intro	oduction	1
	1.1	Introduction	1
	1.2	History	3
	1.3	Thermoplastics	4
	1.4	Thermosets	11
	1.5	Elastomers	15
	1.6	High-Performance Polymers	17
	1.7	Copolymers	20
	1.8	Blends	22
	1.9	Composites	23
	1.10	Additives	24
	1.11	Speciality Polymers	24
		1.11.1 Liquid Crystalline Polymers	25
		1.11.2 Conducting Polymers	25
		1.11.3 Thermoplastic Elastomers	26
		1.11.4 Biomedical Polymers	27
		1.11.5 Biodegradable Polymers	28
	Refe	rences	28

Iden	tification	31
2.1	Introduction	31
2.2	Preliminary Identification Methods	31
	2.2.1 Solubility	32
	2.2.2 Density	33
	2.2.3 Behaviour on Heating	33
2.3	Infrared Spectroscopy	37
2.4	Raman Spectroscopy	41
2.5	Nuclear Magnetic Resonance Spectroscopy	46
2.6	Ultraviolet–Visible Spectroscopy	52
2.7	Differential Scanning Calorimetry	55
2.8	Mass Spectrometry	58
2.9	Chromatography	60
$\frac{2}{2}$ 10	Emission Spectroscopy	64
Refe	erences	68

3	Poly	Polymerization	
	3.1	Introduction	71
	3.2	Chain Polymerization	72
		3.2.1 Free-Radical Chain Polymerization	72
		3.2.2 Ionic Chain Polymerization	75
		3.2.3 Coordination Polymerization	78
		3.2.4 Ring-Opening Polymerization	79
		3.2.5 Practical Methods of Chain Polymerization	80
	3.3	Step Polymerization	83
		3.3.1 Statistics	83
		3.3.2 Kinetics	84
	3.4	Copolymerization	87
3.5 Cross-Linking		89	
	3.6	Dilatometry	90
3.7 Infrared Spectroscopy3.8 Raman Spectroscopy	Infrared Spectroscopy	92	
	Raman Spectroscopy	92	
	3.9	Nuclear Magnetic Resonance Spectroscopy	95
3.10 Differential Scanning Calorimetry 3.11 Electron Spin Resonance Spectroscopy		Differential Scanning Calorimetry	95
		95	
	3.12	Refractometry	98
References		100	

vi

Contents		vii	
4	Molecular	r Weight	103
	4.1 Intro	duction	103
	4.2 Mole	ecular Weight Calculations	104
	4.3 Visco	ometry	106
	4.4 Chro	omatography	108
	4.5 Ultra	centrifugation	112
	4.6 Osm	ometry	113
	4.7 Light	t Scattering	115
	4.8 End-	Group Analysis	116
	4.9 Turb	idimetric Titration	118
	References	S	119
5	Structure		121
	5.1 Intro	duction	121
	5.2 Isom	erism	122
	5.3 Chai	n Dimensions	124
	5.4 Crys	tallinity	126
	5.5 Orier	ntation	132
	5.6 Blen	ds	134
	5.7 Ther	mal Behaviour	135
	5.8 Dilat	tometry	140
	5.9 Infra	red Spectroscopy	141
	5.10 Ram	an Spectroscopy	148
	5.11 Nucl	lear Magnetic Resonance Spectroscopy	149
	5.12 Ther	mal Analysis	152
	5.12	.1 Differential Scanning Calorimetry	152
	5.12	.2 Thermal Mechanical Analysis	155
	5.12	.3 Dynamic Mechanical Analysis	157
	5.13 Opti	cal Microscopy	161
	5.14 Tran	smission Electron Microscopy	163
	5.15 X-R	ay Diffraction	164
	5.16 Neut	tron Scattering	169
	Reference	s	170
6	Surface P	Properties	173
	6.1 Intro	oduction	173
	6.2 Infra	ared Spectroscopy	174
	0. <i>2</i> mm	and productopy	

		6.2.1 Attenuated Total Reflectance Spectroscopy	174
		6.2.2 Specular Reflectance Spectroscopy	176
		6.2.3 Diffuse Reflectance Spectroscopy	176
		6.2.4 Photoacoustic Spectroscopy	178
	6.3	Raman Spectroscopy	178
	6.4	Photoelectron Spectroscopy	178
	6.5	Secondary-Ion Mass Spectrometry	182
	6.6	Inverse Gas Chromatography	183
	6.7	Scanning Electron Microscopy	185
	6.8	Surface Tension	186
	6.9	Atomic Force Microscopy	187
	6.10	Tribology	188
	Refe	erences	189
7	Deg	radation	191
	7.1	Introduction	191
	7.2	Oxidative Degradation	192
	7.3	Thermal Degradation	193
	7.4	Radiation Degradation	195
	7.5	Combustion	195
	7.6	Dissolution	196
	7.7	Infrared Spectroscopy	198
	7.8	Raman Spectroscopy	199
	7.9	Electron Spin Resonance Spectroscopy	199
	7.10	Thermal Analysis	201
		7.10.1 Thermogravimetric Analysis	201
		7.10.2 Differential Scanning Calorimetry	205
		7.10.3 Thermal Mechanical Analysis	205
	7.11	Pyrolysis Gas Chromatography	207
	Refe	erences	208
8	Mec	chanical Properties	209
	8.1	Introduction	209
	8.2	Stress-Strain Behaviour	210
	8.3	Viscous Flow	213
	8.4	Viscoelasticity	215
		8.4.1 Creep	215
		8.4.2 Models	217
		8.4.3 Stress Relaxation	220
	8.5	Elasticity	222
	8.6	Processing Methods	224
	8.7	Tensile Testing	227

Contents	
8.8 Flexural Testing	229
8.9 Tear-Strength Testing	229
8.10 Fatigue Testing	230
8.11 Impact Testing	231
8.12 Hardness Testing	231
8.13 Viscometry	232
8.14 Dynamic Mechanical Analysis	233
References	
Responses to Self-Assessment Questions	237
Bibliography	263
Glossary of Terms	265
Units of Measurement and Physical Constants	269
Periodic Table	273
Index	275

Series Preface

There has been a rapid expansion in the provision of further education in recent years, which has brought with it the need to provide more flexible methods of teaching in order to satisfy the requirements of an increasingly more diverse type of student. In this respect, the *open learning* approach has proved to be a valuable and effective teaching method, in particular for those students who for a variety of reasons cannot pursue full-time traditional courses. As a result, John Wiley & Sons, Ltd first published the Analytical Chemistry by Open Learning (ACOL) series of textbooks in the late 1980s. This series, which covers all of the major analytical techniques, rapidly established itself as a valuable teaching resource, providing a convenient and flexible means of studying for those people who, on account of their individual circumstances, were not able to take advantage of more conventional methods of education in this particular subject area.

Following upon the success of the ACOL series, which by its very name is predominately concerned with Analytical *Chemistry*, the *Analytical Techniques in the Sciences* (AnTS) series of open learning texts has now been introduced with the aim of providing a broader coverage of the many areas of science in which analytical techniques and methods are now increasingly applied. With this in mind, the AnTS series of texts seeks to provide a range of books which will cover not only the actual techniques themselves, but *also* those scientific disciplines which have a necessary requirement for analytical characterization methods.

Analytical instrumentation continues to increase in sophistication, and as a consequence, the range of materials that can now be almost routinely analysed has increased accordingly. Books in this series which are concerned with the *techniques* themselves will reflect such advances in analytical instrumentation, while at the same time providing full and detailed discussions of the fundamental concepts and theories of the particular analytical method being considered. Such books will cover a variety of techniques, including general instrumental analysis,

spectroscopy, chromatography, electrophoresis, tandem techniques, electroanalytical methods, X-ray analysis and other significant topics. In addition, books in the series will include the *application* of analytical techniques in areas such as environmental science, the life sciences, clinical analysis, food science, forensic analysis, pharmaceutical science, conservation and archaeology, polymer science and general solid-state materials science.

Written by experts in their own particular fields, the books are presented in an easy-to-read, user-friendly style, with each chapter including both learning objectives and summaries of the subject matter being covered. The progress of the reader can be assessed by the use of frequent self-assessment questions (SAQs) and discussion questions (DQs), along with their corresponding reinforcing or remedial responses, which appear regularly throughout the texts. The books are thus eminently suitable both for self-study applications and for forming the basis of industrial company in-house training schemes. Each text also contains a large amount of supplementary material, including bibliographies, lists of acronyms and abbreviations, and tables of SI Units and important physical constants, plus where appropriate, glossaries and references to original literature sources.

It is therefore hoped that this present series of text books will prove to be a useful and valuable source of teaching material, both for individual students and for teachers of science courses.

> Dave Ando Dartford, UK

Preface

Polymers are of major economic and social importance and thus it is necessary to understand the appropriate methods for characterizing such materials. Although there are a number of polymer science texts currently on the market, there are few which are directed at the true beginner to the field. Therefore, one of the aims of this present book is to explain the fundamentals of the subject in a straightforward, clear and concise manner. There are also several books available which cover the specific techniques used to analyse and characterize polymers. This text further aims to introduce the most commonly used techniques for polymer analysis in one book – again, at a level suitable for the beginner.

This text is not intended to be comprehensive – polymer science is a very extensive field! However, it is hoped that the information provided here can be used as a starting point for more detailed investigations. The book is laid out with chapters covering the main aspects of polymer science and technology, namely identification, polymerization, molecular weight, structure, surface properties, degradation, and mechanical properties. The background to each analytical technique is introduced and explained, and how these techniques may be applied to the study of polymers is then covered in the various chapters. Suitable questions and problems (in the form of self-assessment and discussion questions (SAQs and DQs)) are included in each chapter to assist the reader in understanding the specific techniques/analytical methods being discussed.

I should like to thank Kin Hong Friolo and Kristen Nissen for providing data, and, in particular, Paul Thomas for his contributions and his support during the period that this book was being prepared.

Finally, I very much hope that those learning about and researching polymers will find this text both a useful and valuable introduction to the area of 'Polymer Analysis'.

Barbara Stuart University of Technology, Sydney, Australia

Acronyms, Abbreviations and Symbols

ABS	acrylonitrile-butadiene-styrene
AFM	atomic force microscopy
AIBN	azobisisobutyronitrile
ATR	attenuated total reflectance
DGEBA	diglycidyl ether of bisphenol A
DMA	dynamic mechanical analysis
DMTA	dynamic mechanical thermal analysis
DOP	dioctyl phthalate
DP	degree of polymerization
DRIFT	diffuse reflectance
DSC	differential scanning calorimetry
DTA	differential thermal analysis
EPR	electron paramagnetic resonance
ESCA	electron spectroscopy for chemical analysis
ESEM	environmental scanning electron microscopy
ESR	electron spin resonance
FIB	fast-ion bombardment
FID	free-induction decay
FT	Fourier transform
FTIR	Fourier-transform infrared (spectroscopy)
GC	gas chromatography
GPC	gel permeation chromatography
HDPE	high-density polyethylene
HMA	hexyl methacrylate
HPLC	high performance liquid chromatography
HPP	high-performance polymer

ICP	intrinsically conducting polymer
IGC	inverse gas chromatography
IPN	interpenetrating polymer network
I	initiator concentration
K-K	Kramers-Kronig
KRS-5	thallium iodide
LCD	liquid crystal display
LCP	liquid crystalline polymer
LCST	lower critical solution temperature
LDPE	low-density polyethylene
LLDPE	linear low-density polyethylene
LOI	limiting oxygen index
MALDI	matrix-assisted laser desorption ionization
M–F	melamine-formaldehyde
MMA	methyl methacrylate
MS	mass spectrometry
M•	radical species concentration
NBR	acrylonitrile-butadiene rubber
NMR	nuclear magnetic resonance
OM	optical microscopy
PA	polyacetylene
PAN	polyacrylonitrile
PAS	photoacoustic spectroscopy
PBT	poly(butylene terephthalate)
PC	polycarbonate
PCL	polycaprolactone
PCTFE	polychlorotrifluoroethylene
PDI	polydispersity index
PDMS	polydimethylsiloxane
PE	polyethylene
PEEK	poly(ether ether ketone)
PEES	poly(ether ether sulfone)
PEI	poly(ether imide)
PEO	poly(ethylene oxide)
PES	poly(ether sulfone)
PET	poly(ethylene terephthalate)
PGC	pyrolysis gas chromatography
PHEMA	poly(hydroxyethyl methacrylate)
PIP	piperidine
PMMA	poly(methyl methacrylate)
PP	polypropylene
PPO	poly(phenylene oxide)
PPP	poly(p-phenylene)

xvi

PPS	poly(phenylene sulfide)
PPY	polypyrrole
PS	polystyrene
PTFE	polytetrafluoroethylene
PU	polyurethane
PVA	poly(vinyl acetate)
PVAl	poly(vinyl alcohol)
PVC	poly(vinyl chloride)
R•	free radical
SALS	small-angle light scattering
SAN	styrene-acrylonitrile
SANS	small-angle neutron scattering
SAXS	small-angle X-ray scattering
SBR	styrene-butadiene rubber
SDS	sodium dodecyl sulfate
SEC	size-exclusion chromatography
SEM	scanning electron microscopy
SIMS	secondary-ion mass spectrometry
TCE	tetrachloroethane
TEM	transmission electron microscopy
TGA	thermogravimetric analysis
TLC	thin layer chromatography
TMA	thermal mechanical analysis
TMS	tetramethylsilane
TOF	time-of-flight
TPE	thermoplastic elastomer
UCST	upper critical solution temperature
U–F	urea-formaldehyde
UHMWPE	ultra-high-molecular-weight polyethylene
UTS	ultimate tensile strength
UV-Vis	ultraviolet-visible
WAXS	wide-angle X-ray scattering
WLF	Williams–Landel–Ferry
XPS	X-ray photoelectron spectroscopy
a	Mark-Houwink-Sakurada constant; capillary constant
a _T	shift factor
A	absorbance; area
B	field strength; osmotic virial coefficient
с	concentration
C_n	heat capacity (at constant pressure)
ď	distance
d_{p}	depth of penetration
F .	

D	diffusion coefficient
Ε	Young's modulus
E'	storage modulus
<i>E</i> ″	loss modulus
<i>E</i> *	complex modulus
EA	activation energy
$E_{\rm B}$	binding energy
E _c	Young's modulus of composite
$E_{\rm D}$	activation energy for transport of polymer chains
E_{f}	Young's modulus of fibre
E _K	kinetic energy
Em	Young's modulus of matrix
f	initiator frequency; mole fraction in monomer feed
F	degree of orientation; flow rate; force; mole fraction of
	monomer
8	g-value
h	height; Planck constant
Н	optical constant
H_0	external magnetic field strength
Ι	spin number; intensity
I_{f}	fluorescence intensity
<i>I</i> p	phosphorescence intensity
I ₀	incident intensity
J	coupling constant; gas compressibility factor
J(t)	creep compliance
k	rate constant; molar absorption coefficient
Κ	calibration factor; Mark-Houwink-Sakurada constant; proportionality constant
l	pathlength; bond length; length
m	mass
М	molecular weight
\overline{M}_n	number-average molecular weight
\overline{M}_{w}	weight-average molecular weight
m/z	mass-to-charge (ratio)
n	refractive index; Avrami exponent; melt flow index
\overline{n}_n	number-average degree of polymerization
Ν	number of molecules; number of bonds; cycles to failure
p	extent of reaction
Р	pressure
P(x)	probability
q	heating rate; quantum yield
Q	rate of extrusion
r	radius; reactivity ratio

R	universal constant; X-ray distance; reaction rate
R _c	contour length
R _g	radius of gyration
R _{rms}	root-mean-square end-to-end distance
R_{∞}	absolute reflectance
$R(\theta)$	Rayleigh ratio
S	speed
S	sedimentation constant
S ₀	ground singlet state
S_1	excited singlet state
t	time (general); elution time
Т	transmittance; temperature
T _c	crystallization temperature
T _d	degradation temperature
Tg	glass transition temperature
$T_{\rm m}$	melting temperature
T_1	excited triplet state
υ	volume fraction; velocity
$v_{\rm s}$	specific volume
V	volume
$V_{ m f}$	fibre volume
V_{g}	specific retention volume
<i>V</i> _m	matrix volume
V _R	retention volume
w	weight
w_i	weight fraction
x	X-ray line spacing
x _c	mass fraction of crystals
x _i	number fraction
<i>x</i> _n	number-average chain length
xw	weight-average chain length
$Z_{\rm c}$	critical chain length
Z_{w}	weight-average chain length
α	coefficient of thermal expansion
β	Bohr magneton
γ	magnetogyric ratio; shear rate
Yc	critical surface tension
'n	surface tension
δ	chemical shift; phase angle; solubility parameter
ΔC_p	heat capacity change
ΔE	energy change
$\Delta G_{ m m}$	Gibbs free energy change on mixing

ΔH	enthalpy change
$\Delta H_{\rm a}$	enthalpy change of amorphous standard
$\Delta H_{\rm c}$	enthalpy change of crystalline standard
$\Delta H_{\rm m}$	enthalpy change on mixing
Δn	birefringence
$\Delta S_{\rm m}$	entropy change on mixing
ΔT	temperature change
ε	molar absorptivity; strain
η	viscosity
[η]	intrinsic viscosity
θ	angle of incidence; contact angle; Flory temperature
$\theta_{\rm d}$	dynamic contact angle
$\theta_{\rm s}$	static contact angle
λ	wavelength; extension ratio
μ	friction coefficient
ν	frequency; linear spherulite growth rate
ν_0	universal constant for crystalline polymers
π	osmotic pressure
ρ	density
$ ho_{\mathrm{a}}$	density of amorphous polymer
$ ho_{ m c}$	composite density; density of crystalline polymer
$ ho_{ m f}$	fibre density
$ ho_{ m m}$	matrix density
$ ho_{ m s}$	density of polymer sample
σ	stress
$\sigma_{ m c}$	tensile strength of composite
$\sigma_{\rm f}$	tensile strength of fibre
$\sigma_{ m m}$	tensile strength of matrix
$\sigma_{ m Y}$	yield strength
τ	shear stress; relaxation time
ϕ	angle of refraction
Φ	work function
ω	angular velocity

About the Author

Barbara Stuart, B.Sc., M.Sc. (Hons), Ph.D., DIC, MRACI, CChem MRSC

After graduating with a B.Sc. degree from the University of Sydney in Australia, Barbara Stuart then worked as a tutor at this university. She also carried out research in the field of biophysical chemistry in the Department of Physical Chemistry and graduated with an M.Sc. degree in 1990. The author then moved to the UK to carry out doctoral studies in polymer engineering within the Department of Chemical Engineering and Chemical Technology at Imperial College (University of London). After obtaining her Ph.D. in 1993, she took up a position as a Lecturer in Physical Chemistry at the University of Greenwich in South East London. Barbara returned to Australia in 1995, joining the staff of the Department of Materials Science at the University of Technology, Sydney, where she is currently a Senior Lecturer. She is presently conducting research in the fields of polymer spectroscopy, materials conservation and forensic science. Barbara is the author of two other books published by John Wiley and Sons, Ltd, namely *Modern Infrared Spectroscopy* and *Biological Applications of Infrared Spectroscopy*, both of these titles in the ACOL Series of open learning texts.

Chapter 1 Introduction

Learning Objectives

- To understand the basic definitions used to describe polymers.
- To understand the different categories of polymers as based on their structures.
- To appreciate the history of the development of synthetic polymers.
- To recognize common thermoplastics, thermosets and elastomers, and their specific properties.
- To recognize the structures and properties of high-performance polymers.
- To understand the nature and types of copolymers.
- To understand the characteristics of polymer blends.
- To understand the nature and composition of polymer composites.
- To recognize the types of additives used in polymers.
- To understand the nature of speciality polymeric materials, such as liquid crystalline polymers, conducting polymers, thermoplastic elastomers, biomedical polymers and biodegradable polymers.

1.1 Introduction

Polymers play an enormously important role in modern society. The significance of these materials is often taken for granted, yet polymers are fundamental to most aspects of modern life such as building, communication, transportation, clothing and packaging. Thus, an understanding of the structures and properties of polymeric materials is vital.

What is a polymer? Polymers are large molecules consisting of a large number of small component molecules. In fact, the name polymer derives from the Greek 'polys' meaning 'many' and 'meros' meaning 'part.' Many polymers are synthesized from their constituent *monomers* via a *polymerization* process. Most commercial polymers are based on covalent compounds of carbon, although certain synthetic polymers may also be based on inorganic atoms such as silicon.

Vinyl polymers have names which are derived from the names of their particular monomers. For example, poly(vinyl chloride) (PVC) is made from vinyl chloride (CH_2 =CHCl). PVC is usually denoted as follows:

$$+CH_2-CH_n$$

illustrating the structural repeat unit of the polymer. The repeat unit in a polymer is often referred to as a *mer*. The n in the polymer structure is known as the *degree of polymerization* (DP) and refers to the number of 'mers' in a polymer structure.

SAQ 1.1

What is the degree of polymerization of a sample of polyethylene, $[(CH_2-CH_2)_n]$, which has a molecular weight of 100 000 g mol⁻¹ ?

Polymers can display a range of different structures (see Figure 1.1). In the simplest case, they possess a simple *linear* structure. However, polymers can also be *branched*, depending on the method of polymerization. They may also display a *cross-linked* structure. Some more unusual polymer structures include *star* polymers, which contain three or more polymer chains connected to a central unit, *ladder* polymers, which consist of repeating ring structures, and *dendrimers*, which show a star-like structure with branching. These different sorts of microstructures have an effect on the properties of the polymer; this aspect will be discussed further in Chapter 5.

Polymers are often commonly referred to as 'plastics'. However, this is somewhat of a misnomer. The term 'plastic' refers to one class of polymers known as *thermoplastics*. Polymers in this category show a range of different properties, but a simple definition is to describe these as polymers that melt when heated and re-solidify when cooled. Thermoplastics tend to be made up of linear or lightly branched molecules, as such structures enable the polymer chains enough freedom of movement to change form as a function of temperature. However, not all polymers are capable of being melted. For example, *thermosets* are polymers that do not melt when heated, but decompose irreversibly at high temperatures. Thermosets are cross-linked, with the restrictive structure preventing melting behaviour. Some cross-linked polymers may show rubber-like characteristics and these are known as *elastomers*. Such materials can be extensively stretched but will rapidly recover their original dimensions.

Figure 1.1 Various types of polymer structures.

1.2 History

The modern polymer industry evolved from the modification of the properties of certain natural polymers [1]. In the 19th century, the latex extracted from a tropical rubber tree was used to produce a rubbery material. The US chemist, Charles Goodyear, was able to improve the elastic properties of natural rubber by heating with sulfur, a process known as *vulcanization*.

Cellulose nitrate, derived from cellulose, was developed by Christian Schoenbein in Switzerland during 1846. Although initially recognized as an explosive, it was soon realized that cellulose nitrate was also a hard elastic material which could be readily moulded into different shapes. The development of *celluloid*, a plasticized version of cellulose nitrate, soon followed and was a commercial success, leading to the development of photography. By the late 19th century, other modifications of cellulose, such as viscose rayon fibres and cellophane, had been developed. The first decade of the 20th century saw the development of the first synthetic plastics. In the United States, Leo Baekeland reacted phenol and formaldehyde to obtain a heat-resistant material that was marketed as 'Bakelite'. This polymer soon achieved broad commercial success and became widely used for house-hold goods, and in the developing electronic and car industries. Despite the success of Bakelite, one disadvantage was its dark colour. Consequently, in the 1920s, urea-formaldehyde polymers were introduced, with such materials being available in a wide range of colours.

The 1930s saw the development of the commercially important material, *poly*ethylene. Chemists at ICI in the UK, while experimenting with ethylene at different temperatures and pressures, stumbled upon this important polymer. The development of *nylon* was a more deliberate process. Wallace Carothers of the DuPont Company in the United States set about producing a material which could replace silk. The 2nd World War was responsible for the development of many synthetic polymers, with war-time needs forcing the production of lowcost plastics. By the 1950s, polyethylene, polystyrene and poly(vinyl chloride) had become widely available materials and very much a part of everyday life. Since this period, polymers have been developed and incorporated into many aspects of life – everything from engineering to medicine.

1.3 Thermoplastics

Thermoplastics are polymers that require heat to make them processable. After cooling, such materials retain their shape. In addition, these polymers may be reheated and reformed, often without significant changes to their properties. Many thermoplastics contain long main chains consisting of covalently bonded carbon atoms. Table 1.1 summarizes the properties and applications of some common thermoplastics [2].

Polyethylene (PE) is the major general purpose thermoplastic and is widely used for packaging, containers, tubing and household goods. The structural repeat unit of PE is as follows:

 $+CH_2-CH_2+$

The main reasons for the popularity of PE is its low cost, easy processability and good mechanical properties. A susceptibility to weathering is a limitation, but this is not usually a problem with routine applications of PE. There are two main types of mass-produced polyethylene. *Low-density polyethylene* (LDPE) has a branched chain structure and tends to be used for bags and packaging, while *high-density polyethylene* (HDPE) has a mostly linear structure and finds uses in bottles and containers. *Linear low-density polyethylene* (LLDPE) has also been developed for its good processing properties. This PE has a linear chain structure with short side branches and is used for bags. Another class of PE of note is

Name	Trade names	Properties	Applications
Polyethylene (PE)	Polythene, Rigidex, Alkathene, Hostalen, Lupolen, Alathon	Inexpensive, easily pro- cessed, good chemical resistance, poor resistance to weathering	Household goods, packaging, con- tainers
Polypropylene (PP)	Propathene, Appryl, Novolen	Inexpensive, good chemical resistance, poor ultravio- let resistance	Packaging, con- tainers, furni- ture, pipes
Poly(vinyl chlo- ride) (PVC)	Darvic, Corvic, Geon, Evipol, Vinnolit, Hostalit	Inexpensive, rigid, good chemical resistance, lim- ited thermal stability, additives required for processing	Packaging, cable insulation, pipes, toys
Polystyrene (PS)	Styron, Polystyrol, Novacor	Inexpensive, transparent, rigid, good insulating properties, low water absorption, flammable, brittle	Food contain- ers, packag- ing, appliance housings
Poly(methyl methacrylate) (PMMA)	Perspex, Plexiglas, Lucite, Acrylite	Transparent, good weath- ering properties, tough, rigid, poor insulating properties, poor resis- tance to organic solvents	Transparent sheets and mouldings, aeroplane win- dows, street lamps, display signs
Polyamide (PA)	Nylon, Ultramid, Zytel, Caprolan, Stanyl, Capron, Akulon, Rilsan, Vestamid	Tough, flexible, abrasion resistant, good wear and frictional properties, absorbs water	Textiles, brushes, surgical appli- cations, bear- ings, gears
Polytetrafluoro- ethylene (PTFE)	Teflon, Fluon, Halon, Hostaflon	Low friction, good electri- cal insulation, excellent chemical resistance, cannot be dissolved, rela- tively expensive	Non-stick sur- faces, insu- lation tape, engineering applications
Polyacrylonitrile (PAN)	Barex, Orlon	Strong, good chemical resistance	Wool-type applications
Cellulose acetate	Tenite, Acetate, Clar- ifoil, Dexel	Crease resistance, moisture resistance, dyeability	Textile fibres, moulded prod- ucts, film, packaging
Poly(vinyl acetate) (PVA)	Elvacet, Vinylite	Good general stability, quick drying, inexpensive	Surface coatings, adhesives, paint
Poly(vinyl alco- hol) (PVAl)	Vinex	Water-soluble	Fibres, adhesives, thickening agents
Poly(ethylene terephthalate) (PET)	Terylene, Dacron, Melinex, Mylar	Low short-term water ab- sorption, fibres are crease resistant, strong, high processing temperatures required	Textile fibres, film, packaging, magnetic tapes
Poly(butylene terephthalate) (PBT)	Celanex, Tenite, Rynite, Valox	Strong, good chemical resistance, good electrical insulation	Electrical, elec- tronic and automative engineering

Table 1.1 The properties and applications of some common thermoplastics

ultra-high-molecular-weight polyethylene (UHMWPE), a linear PE with a high molecular weight of the order of 4×10^6 g mol⁻¹. This form of polyethylene shows excellent wear and abrasion resistance, high impact resistance and a very low friction coefficient. UHMWPE also possesses good chemical resistance and a self-lubricating and non-stick surface. This combination of properties leads to its use in diverse applications such as medical prostheses, blood filters, bullet-proof vests and fishing lines.

Polypropylene (PP) shows a similar structure to PE, but with a substituted methyl group, as follows:

The presence of the methyl group restricts the rotation of the PP chain and produces a less flexible, but stronger polymer. Like polyethylene, polypropylene shows several attractive properties such as good chemical and moisture resistance and high dimensional stability. These characteristics make this polymer suitable for a wide range of applications, such as bottles, carpets, casings and packaging.

Poly(vinyl chloride) (PVC) is the second largest volume thermoplastic polymer. PVC has a structure which contains a chlorine atom on alternate main chain carbons, as follows:

There are strong dipole interactions between the PVC chains and steric hindrance reduces the flexibility of the molecules. This lack of flexibility in PVC molecules means that this polymer can only be processed when compounded with various *plasticizers*. PVC is widely used because of its excellent chemical resistance and its ability to be modified with additives. In its rigid form, PVC is commonly used in construction as piping, guttering, siding and electrical conduit. Plasticized PVC is also used widely as electrical wire insulation and in household and automotive applications.

Polystyrene (PS) is another widely used thermoplastic, being the fourth most produced polymer by weight. PS is a clear, rigid and brittle material, unless it is modified with rubber. The polymer molecule contains a benzene ring attached to alternate carbon atoms on the backbone, as follows: