
P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

SOFTWARE ERROR
DETECTION THROUGH
TESTING AND ANALYSIS

J. C. Huang
University of Houston

A JOHN WILEY & SONS, INC., PUBLICATION

iii

Innodata
File Attachment
9780470464052.jpg

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

ii

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

SOFTWARE ERROR
DETECTION THROUGH
TESTING AND ANALYSIS

i

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

ii

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

SOFTWARE ERROR
DETECTION THROUGH
TESTING AND ANALYSIS

J. C. Huang
University of Houston

A JOHN WILEY & SONS, INC., PUBLICATION

iii

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

Copyright C© 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Huang, J. C., 1935–
Software error detection through testing and analysis / J. C. Huang.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-40444-7 (cloth)
1. Computer software–Testing. 2. Computer software–Reliability. 3. Debugging in

computer science. I. Title.
QA76.76.T48H72 2009
005.1′4–dc22

2008045493

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

iv

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

To my parents

v

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

vi

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

CONTENTS

Preface ix

1 Concepts, Notation, and Principles 1

1.1 Concepts, Terminology, and Notation 4
1.2 Two Principles of Test-Case Selection 8
1.3 Classification of Faults 10
1.4 Classification of Test-Case Selection Methods 11
1.5 The Cost of Program Testing 12

2 Code-Based Test-Case Selection Methods 14

2.1 Path Testing 16
2.2 Statement Testing 17
2.3 Branch Testing 21
2.4 Howden’s and McCabe’s Methods 23
2.5 Data-Flow Testing 26
2.6 Domain-Strategy Testing 36
2.7 Program Mutation and Fault Seeding 39
2.8 Discussion 46
Exercises 51

3 Specification-Based Test-Case Selection Methods 53

3.1 Subfunction Testing 55
3.2 Predicate Testing 68
3.3 Boundary-Value Analysis 70
3.4 Error Guessing 71
3.5 Discussion 72
Exercises 73

4 Software Testing Roundup 76

4.1 Ideal Test Sets 77
4.2 Operational Testing 80
4.3 Integration Testing 82
4.4 Testing Object-Oriented Programs 84
4.5 Regression Testing 88

vii

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

viii CONTENTS

4.6 Criteria for Stopping a Test 88
4.7 Choosing a Test-Case Selection Criterion 90
Exercises 93

5 Analysis of Symbolic Traces 94

5.1 Symbolic Trace and Program Graph 94
5.2 The Concept of a State Constraint 96
5.3 Rules for Moving and Simplifying Constraints 99
5.4 Rules for Moving and Simplifying Statements 110
5.5 Discussion 114
5.6 Supporting Software Tool 126
Exercises 131

6 Static Analysis 132

6.1 Data-Flow Anomaly Detection 134
6.2 Symbolic Evaluation (Execution) 137
6.3 Program Slicing 141
6.4 Code Inspection 146
6.5 Proving Programs Correct 152
Exercises 161

7 Program Instrumentation 163

7.1 Test-Coverage Measurement 164
7.2 Test-Case Effectiveness Assessment 165
7.3 Instrumenting Programs for Assertion Checking 166
7.4 Instrumenting Programs for Data-Flow-Anomaly Detection 169
7.5 Instrumenting Programs for Trace-Subprogram Generation 181
Exercises 192

Appendix A: Logico-Mathematical Background 194

Appendix B: Glossary 213

Appendix C: Questions for Self-Assessment 220

Bibliography 237

Index 253

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

PREFACE

The ability to detect latent errors in a program is essential to improving program
reliability. This book provides an in-depth review and discussion of the methods of
software error detection using three different techniqus: testing, static analysis, and
program instrumentation. In the discussion of each method, I describe the basic idea
of the method, how it works, its strengths and weaknesses, and how it compares to
related methods.

I have writtent this book to serve both as a textbook for students and as a technical
handbook for practitioners leading quality assurance efforts. If used as a text, the book
is suitable for a one-semester graduate-level course on software testing and analysis
or software quality assurance, or as a supplementary text for an advanced graduate
course on software engineering. Some familiarity with the process of software quality
assurance is assumed. This book provides no recipe for testing and no discussion of
how a quality assurance process is to be set up and managed.

In the first part of the book, I discuss test-case selection, which is the crux of
problems in debug testing. Chapter 1 introduces the terms and notational conventions
used in the book and establishes two principles which together provide a unified
conceptual framework for the existing methods of test-case selection. These principles
can also be used to guide the selection of test cases when no existing method is deemed
applicable. In Chapters 2 and 3 I describe existing methods of test-case selection in
two categories: Test cases can be selected based on the information extracted form
the source code of the program as described in Chapter 2 or from the program
specifications, as described in Chapter 3. In Chapter 4 I tidy up a few loose ends and
suggest how to choose a method of test-case selection.

I then proceed to discuss the techniques of static analysis and program instru-
mentation in turn. Chapter 5 covers how the symbolic trace of an execution path can
be analyzed to extract additional information about a test execution. In Chapter 6 I
address static analysis, in which source code is examined systematically, manually
or automatically, to find possible symptoms of programming errors. Finally, Chapter
7 covers program instrumentation, in which software instruments (i.e., additional
program statements) are inserted into a program to extract information that may be
used to detect errors or to facilitate the testing process.

Because precision is necessary, I have made use throughout the book of concepts
and notations developed in symbolic logic and mathematics. A review is included as
Appendix A for those who may not be conversant with the subject.

I note that many of the software error detection methods discussed in this book are
not in common use. The reason for that is mainly economic. With few exceptions,

ix

P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

FM JWBS015-Huang March 12, 2009 7:15 Printer: Yet to come

x PREFACE

these methods cannot be put into practice without proper tool support. The cost of the
tools required for complete automation is so high that it often rivals that of a major
programming language compiler. Software vendors with products on the mass market
can afford to build these tools, but there is no incentive for them to do so because
under current law, vendors are not legally liable for the errors in their products. As a
result, vendors, in effect, delegate the task of error detection to their customers, who
provide that service free of charge (although vendors may incur costs in the form of
customer dissatisfaction). Critical software systems being built for the military and
industry would benefit from the use of these methods, but the high cost of necessary
supporting tools often render them impractical, unless and until the cost of supporting
tools somehow becomes justifiable. Neverthless, I believe that knowledge about these
existing methods is useful and important to those who specialize in software quality
assurance.

I would like to take opportunity to thank anonymous reviewers for their comments;
William E. Howden for his inspiration; Raymond T. Yeh, José Muñoz, and Hal Watt
for giving me professional opportunities to gain practical experience in this field;
and John L. Bear and Marc Garbey for giving me the time needed to complete the
first draft of this book. Finally, my heartfelt thanks go to my daughter, Joyce, for
her active and affectionate interest in my writing, and to my wife, Shih-wen, for her
support and for allowing me to neglect her while getting this work done.

J. C. Huang
Houston

P1: OTA/XYZ P2: ABC

c01 JWBS015-Huang March 4, 2009 13:53 Printer: Yet to come

1 Concepts, Notation, and Principles

Given a computer program, how can we determine whether or not it will do exactly
what it is intended to do? This question is not only intellectually challenging, but
also of primary importance in practice. An ideal solution to this problem would
be to develop certain techniques that can be used to construct a formal proof (or
disproof) of the correctness of a program systematically. There has been considerable
effort to develop such techniques, and many different techniques for proving program
correctness have been reported. However, none of them has been developed to the
point where it can be used readily in practice.

There are several technical hurdles that prevent formal proof of correctness from
becoming practical; chief among them is the need for a mechanical theorem prover.
The basic approach taken in the development of these techniques is to translate the
problem of proving program correctness into that of proving a certain statement to
be a theorem (i.e., always true) in a formal system. The difficulty is that all known
automatic theorem-proving techniques require an inordinate amount of computation
to construct a proof. Furthermore, theorem proving is a computationally unsolvable
problem. Therefore, like any other program written to solve such a problem, a theorem
prover may halt if a solution is found. It may also continue to run without giving any
clue as to whether it will take one more moment to find the solution, or whether it
will take forever. The lack of a definitive upper bound of time required to complete a
job severely limits its usefulness in practice.

Until there is a major breakthrough in the field of mechanical theorem proving,
which is not foreseen by the experts any time soon, verification of program correctness
through formal proof will remain impractical. The technique is too costly to deploy,
and the size of programs to which it is applicable is too small (relative to that of
programs in common use). At present, a practical and more intuitive solution would
be to test-execute the program with a number of test cases (input data) to see if it will
do what it is intended to do.

How do we go about testing a computer program for correctness? Perhaps the
most direct and intuitive answer to this question is to perform an exhaustive test:
that is, to test-execute the program for all possible input data (for which the program
is expected to work correctly). If the program produces a correct result for every
possible input, it obviously constitutes a direct proof that the program is correct.
Unfortunately, it is in general impractical to do the exhaustive test for any nontrivial
program simply because the number of possible inputs is prohibitively large.

Software Error Detection through Testing and Analysis, By J. C. Huang
Copyright C© 2009 John Wiley & Sons, Inc.

1

P1: OTA/XYZ P2: ABC

c01 JWBS015-Huang March 4, 2009 13:53 Printer: Yet to come

2 CONCEPTS, NOTATION, AND PRINCIPLES

To illustrate, consider the following C++ program.

Program 1.1

main ()
{
int i, j, k, match;

cin >> i >> j >> k;
cout << i << j << k;
if (i <= 0 || j <= 0 || k <= 0

|| i+j <= k || j+k <= i || k+i <= j)
match = 4;

else if !(i == j || j == k || k == i)
match = 3;

else if (i != j || j != k || k != i)
match = 2;

else match = 1;
cout << match << endl;

}

If, for an assignment of values to the input variables i, j, and k, the output variable
matchwill assume a correct value upon execution of the program, we can assert that
the program is correct for this particular test case. And if we can test the program for
all possible assignments to i, j, and k, we will be able to determine its correctness.
The difficulty here is that even for a small program like this, with only three input
variables, the number of possible assignments to the values of those variables is
prohibitively large. To see why this is so, recall that an ordinary integer variable in
C++ can assume a value in the range −32,768 to +32,767 (i.e., 216 different values).
Hence, there are 216 × 216 × 216 = 248 ≈ 256 × 1012 possible assignments to the
input triple (i, j, k). Now suppose that this program can be test-executed at the rate
of one test per microsecond on average, and suppose further that we do testing 24
hours a day, 7 days a week. It will take more than eight years for us to complete an
exhaustive test for this program. Spending eight years to test a program like this is
an unacceptably high expenditure under any circumstance!

This example clearly indicates that an exhaustive test (i.e., a test using all possible
input data) is impractical. It may be technically doable for some small programs, but
it would never be economically justifiable for a real-world program. That being the
case, we will have to settle for testing a program with a manageably small subset of
its input domain.

Given a program, then, how do we construct such a subset; that is, how do we
select test cases? The answer would be different depending on why we are doing the
test. For software developers, the primary reason for doing the test is to find errors
so that they can be removed to improve the reliability of the program. In that case
we say that the tester is doing debug testing. Since the main goal of debug testing
is to find programming errors, or faults in the Institute of Electrical and Electronics

P1: OTA/XYZ P2: ABC

c01 JWBS015-Huang March 4, 2009 13:53 Printer: Yet to come

CONCEPTS, NOTATION, AND PRINCIPLES 3

Engineers (IEEE) terminology, the desired test cases would be those that have a high
probability of revealing faults.

Other than software developers, expert users of a software system may also have
the need to do testing. For a user, the main purpose is to assess the reliability so that
the responsible party can decide, among other things, whether or not to accept the
software system and pay the vendor, or whether or not there is enough confidence in
the correctness of the software system to start using it for a production run. In that
case the test cases have to be selected based on what is available to the user, which
often does not include the source code or program specification. Test-case selection
therefore has to be done based on something else.

Information available to the user for test-case selection includes the probability
distribution of inputs being used in production runs (known as the operational profile)
and the identity of inputs that may incur a high cost or result in a catastrophe if the
program fails. Because it provides an important alternative to debug testing, possible
use of an operational profile in test-case selection is explained further in Section 4.2.
We discuss debug testing in Chapters 2 and 3. Chapter 4 is devoted to other aspects
of testing that deserve our attention. Other than testing as discussed in Chapters 2
and 3, software faults can also be detected by means of analysis, as discussed in
Chapters 5 through 7.

When we test-execute a program with an input, the test result will be either correct
or incorrect. If it is incorrect, we can unequivocally conclude that there is a fault in
the program. If the result is correct, however, all that we can say with certainty is that
the program will execute correctly for that particular input, which is not especially
significant in that the program has so many possible inputs. The significance of
a correct test result can be enhanced by analyzing the execution path traversed to
determine the condition under which that path will be traversed and the exact nature
of computation performed in the process. This is discussed in Chapter 5.

We can also detect faults in a program by examining the source code systematically
as discussed in Chapter 6. The analysis methods described therein are said to be static,
in that no execution of the program is involved. Analysis can also be done dynamically,
while the program is being executed, to facilitate detection of faults that become more
obvious during execution time. In Chapter 7 we show how dynamic analysis can be
done through the use of software instruments.

For the benefit of those who are not theoretically oriented, some helpful logico-
mathematical background material is presented in Appendix A. Like many others
used in software engineering, many technical terms used in this book have more
than one possible interpretation. To avoid possible misunderstanding, a glossary is
included as Appendix B. For those who are serious about the material presented
in this book, you may wish to work on the self-assessment questions posed in
Appendix C.

There are many known test-case selection methods. Understanding and compar-
ison of those methods can be facilitated significantly by presenting all methods in
a unified conceptual framework so that each method can be viewed as a particular
instantiation of a generalized method. We develop such a conceptual framework in
the remainder of the chapter.

