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Suárez, Almudena.
Analysis and design of autonomous microwave circuits / Almudena Suárez.
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Preface

Autonomous circuits are capable of sustaining a steady-state oscillation at a
frequency different from those delivered by input generators or their harmonic
frequencies. The most obvious example is the free-running oscillator, generating
a periodic solution from the energy delivered by direct-current (dc) sources
only. Another example is the frequency divider, giving rise to a subharmonic
frequency of the input periodic source. In injection-locked regimes, the oscillation
frequency agrees with a multiple or submultiple of the input frequency, and
this relationship is maintained within certain input frequency and input power
intervals. Free-running oscillators and frequency dividers are used primarily in the
frequency generation and frequency conversion stages of communication systems.
Other applications of injection-locked oscillators take advantage of their high
phase sensitivity with respect to their bias sources and component values to obtain
phase shifters and phase-shift-keying modulators. In turn, the coupled-oscillator
systems are composed of oscillator circuits connected through linear networks
which operate in synchronous manner at a single fundamental frequency. They can
be used for a variety of purposes. Multidevice oscillators with a global coupling
network are applied for power combination at the fundamental frequency, or at
a given harmonic component of this frequency. On the other hand, one- and
two-dimensional oscillator systems with nearest-neighbor coupling can be used
for beam steering in phased arrays. The beam steering capability comes from
the fact that it is possible to synthesize a constant phase shift progression with a
very simple tuning procedure by varying the tuning voltages of the peripheral
elements only.

The autonomous circuits must contain amplitude-sensitive devices to enable the
self-sustained oscillation: that is, an oscillation that does not grow unboundedly
(which would be unphysical) or decays to zero. Thus, they must necessarily be
nonlinear. The analysis of autonomous circuits is difficult due to this inherent non-
linearity and the usual coexistence of the oscillatory solution with a mathematical
solution for which the circuit does not oscillate. As a simple example, consider the
case of a free-running oscillator, which can always be solved for a dc solution even
when the oscillatory solution is the only solution observed physically. The physical
solutions are capable of recovering from the small perturbations, that are always
present in real life, coming from noise or small fluctuations. They are robust versus
small perturbations or stable. In fact, the stability analysis of a given mathematical
solution is the verification of its physical existence. This analysis should be carried
out in all circuits containing nonlinear devices and it is essential in autonomous
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