Analysis and Design of Autonomous Microwave Circuits

ALMUDENA SUÁREZ

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Analysis and Design of Autonomous Microwave Circuits

To my father Gerardo Suárez and my mother Carmen Rodriguez

Analysis and Design of Autonomous Microwave Circuits

ALMUDENA SUÁREZ

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Suárez, Almudena.
Analysis and design of autonomous microwave circuits / Almudena Suárez.
p. cm. – (Wiley series in microwave and optical engineering)
Includes bibliographical references and index.
ISBN 978-0-470-05074-3 (cloth)
1. Microwaves circuits-Mathematical models. 2. Oscillators,
Microwave-Design and construction. 3. Oscillators, Microwaves-Automatic
control. 4. System analysis. I. Title.
TK7876.S759 2008
621.381'32-dc22

2008007472

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Preface xiii 1 **Oscillator Dynamics** 1 1.1 Introduction 1 1.2 Operational Principle of Free-Running Oscillators 3 Impedance-Admittance Analysis of an Oscillator 12 1.3 Steady-State Analysis 1.3.1 14 1.3.2 Stability of Steady-State Oscillation 17 1.3.3 **Oscillation Startup** 19 1.3.4 Formulation of Perturbed Oscillator Equations as an Eigenvalue Problem 21 Generalization of Oscillation Conditions 1.3.5 to Multiport Networks 23 1.3.6 Design of Transistor-Based Oscillators from a Single **Observation Port** 25 Frequency-Domain Formulation of an Oscillator Circuit 32 1.4 1.4.1 Steady-State Formulation 32 1.4.2 Stability Analysis 36 37 1.5 **Oscillator Dynamics** 1.5.1 Equations and Steady-State Solutions 37 1.5.2 Stability Analysis 46 1.6 Phase Noise 62 References 64 **Phase Noise** 2 66 2.1 Introduction 66 2.2 Random Variables and Random Processes 68 Random Variables and Probability 2.2.1 68 2.2.2 Random Processes 71 2.2.3 Correlation Functions and Power Spectral Density 75 2.2.4 **Stochastic Differential Equations** 77

	2.3	Noise	Sources in Electronic Circuits	81
		2.3.1	Thermal Noise	82
		2.3.2	Shot Noise	83
			Generation-Recombination Noise	84
			Flicker Noise	85
		2.3.5	Burst Noise	86
	2.4		ation of the Oscillator Noise Spectrum Using	
			Domain Analysis	87
		2.4.1	Oscillator with White Noise Sources	87
		2.4.2	White and Colored Noise Sources	97
	2.5	Freque	ency-Domain Analysis of a Noisy Oscillator	103
		2.5.1	1 2 1	103
		2.5.2		105
		2.5.3	1 2	110
		2.5.4	Phase Deviation	112
		2.3.4	Comparison of Two Techniques for Frequency-Domain Analysis of Phase Noise	118
		2.5.5	Amplitude Noise	120
	Pofe	erences		124
	Kere	lences		124
3	Bifu	rcation	Analysis	126
	3.1	Introdu	uction	126
	3.2	Repres	sentation of Solutions	127
		3.2.1	Phase Space	127
		5.4.1		
			Poincaré Map	128
	3.3		Poincaré Map	128 132
	3.3	3.2.2 Bifurc	Poincaré Map ations	132
	3.3	3.2.2 Bifurc 3.3.1	Poincaré Map ations Local Bifurcations	
	3.3	3.2.2 Bifurc 3.3.1 3.3.2	Poincaré Map ations	132 133
		3.2.2 Bifurc 3.3.1 3.3.2	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles	132 133 173
		3.2.2 Bifurc 3.3.1 3.3.2 3.3.3	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles	132 133 173 173
4	Refe	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles	132 133 173 173
4	Refe	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations	132 133 173 173 182
4	Refe Inje	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations	132 133 173 173 182 183
4	Refe Inje 4.1	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations scillators and Frequency Dividers	132 133 173 173 182 183
4	Refe Inje 4.1	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu Injecti	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations scillators and Frequency Dividers uction on-Locked Oscillators	132 133 173 173 182 183
4	Refe Inje 4.1	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu Injecti	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations scillators and Frequency Dividers uction on-Locked Oscillators Analysis Based on Linearization About	132 133 173 173 182 183 183 185
4	Refe Inje 4.1	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu Injecti 4.2.1 4.2.2 4.2.3	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations scillators and Frequency Dividers uction on-Locked Oscillators Analysis Based on Linearization About a Free-Running Solution Nonlinear Analysis of Synchronized Solution Curves Stability Analysis	132 133 173 173 182 183 183 183 185 185 190 193
4	Refe Inje 4.1	3.2.2 Bifurc 3.3.1 3.3.2 3.3.3 erences cted Os Introdu Injecti 4.2.1 4.2.2	Poincaré Map ations Local Bifurcations Transformations Between Solution Poles Global Bifurcations scillators and Frequency Dividers uction on-Locked Oscillators Analysis Based on Linearization About a Free-Running Solution Nonlinear Analysis of Synchronized Solution Curves	132 133 173 173 182 183 183 183 185 185 190

		4.2.6 4.2.7	Analysis of a FET-Based Oscillator Phase Noise Analysis	207 211
	4.3	Freque	ency Dividers	222
		4.3.1	General Characteristics of a Frequency-Divided	
			Solution	223
		4.3.2	J	225
		4.3.3		239
		4.3.4 4.3.5	1 9	244 246
	4.4			240
	4.4		rmonically and Ultrasubharmonically on-Locked Oscillators	248
	4.5	0	Oscillating Mixers	254
	Refe	erences	C	257
	11011	i enees		237
5	Non	linear (Circuit Simulation	259
	5.1	Introd	uction	259
	5.2	Time-	Domain Integration	262
		5.2.1	Time-Domain Modeling of Distributed Elements	264
		5.2.2	Integration Algorithms	269
		5.2.3	Convergence Considerations	274
	5.3	Fast T	ime-Domain Techniques	279
		5.3.1	Shooting Methods	279
		5.3.2	Finite Differences in the Time Domain	281
	5.4	Harmo	onic Balance	283
		5.4.1	· · · · · · · · · · · · · · · · · · ·	283
		5.4.2		285
		5.4.5 5.4.4	Piecewise Harmonic Balance Continuation Techniques	292 293
		5.4.5	Algorithms for Calculation of Discrete	275
			Fourier Transforms	295
	5.5	Harmo	Harmonic Balance Analysis of Autonomous	
		and S	ynchronized Circuits	298
			Mixed Harmonic Balance Formulation	299
		5.5.2	Auxiliary Generator Technique	300
	5.6		ope Transient	313
		5.6.1	Expression of Circuit Variables	315
		5.6.2	Envelope Transient Formulation	316
		5.6.3	Extension of the Envelope Transient Method to the Simulation of Autonomous Circuits	318

	5.7	Conversion Matrix Approach	334	
	Refe	erences	338	
6	Stab	oility Analysis Using Harmonic Balance	343	
	6.1	Introduction	343	
	6.2	Local Stability Analysis	344	
		6.2.1 Small-Signal Regime6.2.2 Large-Signal Regime	344 358	
	6.3	Stability Analysis of Free-Running Oscillators	369	
	6.4	Solution Curves Versus a Circuit Parameter	371	
		6.4.1 Parameter Switching Applied to Harmonic Balance Equations	372	
		6.4.2 Parameter Switching Applied to an Auxiliary	373	
		Generator Equation 6.4.3 Arc-Length Continuation	375	
	6.5	Global Stability Analysis	377	
	0.0	6.5.1 Bifurcation Detection from the Characteristic	011	
		Determinant of a Harmonic Balance System	379	
		6.5.2 Bifurcation Detection Using Auxiliary Generators	382	
	6.6	Bifurcation Synthesis and Control	394	
		6.6.1 Bifurcation Synthesis6.6.2 Bifurcation Control	394 394	
	Def			
	Refe	erences	398	
7	Noise Analysis Using Harmonic Balance			
	7.1	Introduction	400	
	7.2	Noise in Semiconductor Devices	402	
		7.2.1 Noise in Field-Effect Transistors	402	
		7.2.2 Noise in Bipolar Transistors	404	
		7.2.3 Noise in Varactor Diodes	405	
	7.3	Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System	405	
		7.3.1 Perturbed Oscillator Equations	405	
		7.3.2 Phase Noise	408	
		7.3.3 Amplitude Noise	415	
	7.4	Coupled Phase and Amplitude Noise Calculation		
	7.5	Carrier Modulation Approach	423	

		7.5.1	Direct Calculation of Phase and Amplitude	
		750	Noise Spectra Calculation of Variance of the Phase	424
		7.5.2	Deviation $\sigma_{\theta}^2(t)$	425
	7.6	Conve	0	425
	7.0	7.6.1	ersion Matrix Approach Coloulation of Complex Sidebonds $A\overline{X}$	423
		7.6.2	I I I I I I I I I I I I I I I I I I I	420
		7.0.2	Noise Spectra	428
	7.7	Noise	in Synchronized Oscillators	431
		7.7.1	Conversion Matrix Approach	432
		7.7.2	Semianalytical Formulation	433
	Refe	erences		442
8	Har	monic	Balance Techniques for Oscillator Design	444
	8.1	Introd	uction	444
	8.2	Oscill	ator Synthesis	446
		8.2.1	Oscillation Startup Conditions	446
		8.2.2	Steady-State Design Using One-Harmonic Accuracy	453
		8.2.3	Multiharmonic Steady-State Design	456
	8.3	Design	n of Voltage-Controlled Oscillators	460
		8.3.1	Technique for Increasing Oscillation Bandwidth	460
		8.3.2	Technique to Preset the Oscillation Band	462
		8.3.3	Technique to Linearize the VCO Characteristic	464
	8.4		nization of Oscillator Efficiency	467
		8.4.1	0	467
		8.4.2 8.4.3	Class F Design General Load–Pull System	473 476
	8.5		ol of Oscillator Transients	477
	0.5	8.5.1		478
		8.5.2	Improvement in the Modulated Response of a	470
			Voltage-Controlled Oscillator	483
	8.6	Phase	Noise Reduction	485
	App	endix		490
	Refe	erences		493
9	Stab	oilizatio	n Techniques for Phase Noise Reduction	496
	9.1		uction	496

x CONTENTS

	9.2	Self-In	jection Topology	498
		9.2.1	Steady-State Solution	498
		9.2.2	Stability Analysis	502
		9.2.3	Phase Noise Analysis	503
	9.3	Use of	High-Q Resonators	507
	9.4	Stabiliz	zation Loop	512
	9.5	Transis	stor-Based Oscillators	516
		9.5.1	Harmonic Balance Analysis	516
		9.5.2	Semianalytical Formulation	517
		9.5.3	Application to a 5-GHz MESFET-Based Oscillator	518
	Refe	rences		521
10	Cou	oled-Os	cillator Systems	523
	10.1	Introdu	uction	523
	10.2	Oscilla	tor Systems with Global Coupling	526
		10.2.1	Simplified Analysis of Oscillation Modes	526
		10.2.2	Applications of Globally Coupled Oscillators	530
			Stability Analysis of a Steady-State Periodic Regime	537
			Phase Noise	541
		10.2.5	Analysis and Design Using Harmonic Balance	546
	10.3	Couple	d-Oscillator Systems for Beam Steering	555
			Analytical Study of Oscillator-Array Operation	557
			Harmonic Balance Analysis	561
			Semianalytical Formulation	569
			Determination of Coexisting Solutions	572
			Stability Analysis	577
			Phase Noise Analysis Comparison Between Weak and Strong	580
		10.5.7	Oscillator Coupling	585
		10.3.8	Forced Operation of a Coupled-Oscillator Array	590
	Refe	rences		592
11	Simu	Iation 7	Fechniques for Frequency-Divider Design	594
		Introdu		594
			of frequency dividers	595
			of Transistor-Based Regenerative Frequency Dividers	597

		Frequency-Divided Regime Control of Operation Bands in Frequency	597
		Dividers by 2	602
	11.3.3	Control of Divider Settling Time	606
11.4	Design	of Harmonic Injection Dividers	609
	11.4.1	Semianalytical Estimation of Synchronization Bands	609
		Full Harmonic Balance Design	613
		Introduction of a Low-Frequency Feedback Loop	617
	11.4.4	Control of Turning Points	619
11.5		ion of the Techniques	
	to Sub	harmonic Injection Oscillators	624
Refe	rences		627
Circ	uit Stab	ilization	630
12.1	Introdu	iction	630
12.2	Unstab	le Class AB Amplifier Using Power Combiners	631
	12.2.1	Oscillation Modes	631
	12.2.2	Analytical Study of the Mechanism	
	10.0.0	for Frequency Division by 2	636
		Global Stability Analysis with Harmonic Balance	638
		Amplifier Stabilization	640
12.3		le Class E/F Amplifier	642
		Class E/F Operation	642
	12.3.2	Anomalous Experimental Behavior in a Class E/F _{odd} Power Amplifier	645
	1233	Stability Analysis of a Class E/F _{odd} Power Amplifier	646
		Stability Analysis of a Class Er and Fower Amplifier Stability Analysis with Pole–Zero Identification	647
		Hopf Bifurcation Locus	647
		Analysis of an Undesired Oscillatory Solution	649
	12.3.7	Circuit Stabilization	653
12.4	Unstab	le Class E Amplifier	657
	12.4.1	Amplifier Measurements	658
	12.4.2	Stability Analysis of the Power Amplifier	659
		Analysis of Noisy Precursors	663
	12.4.4	Elimination of the Hysteresis Phenomenon	
	12 4 5	from the Power Transfer Curve $P_{in} - P_{out}$	667 672
		Elimination of Noisy Precursors	
12.5		zation of Oscillator Circuits	676
	12.5.1		676
	12.5.2	Stabilization Technique for Fixed Bias Voltage	679

12

xii CONTENTS

	12.5.3	Stabilization Technique for the Entire	
		Tuning Voltage Range	683
12.6	Stabiliz	zation of Multifunction MMIC Chips	686
	12.6.1	Analyses at the Lumped-Element Schematic Level	689
	12.6.2	Analyses at the Layout Level	689
Refe	rences		693

Index

697

Preface

Autonomous circuits are capable of sustaining a steady-state oscillation at a frequency different from those delivered by input generators or their harmonic frequencies. The most obvious example is the free-running oscillator, generating a periodic solution from the energy delivered by direct-current (dc) sources only. Another example is the frequency divider, giving rise to a subharmonic frequency of the input periodic source. In injection-locked regimes, the oscillation frequency agrees with a multiple or submultiple of the input frequency, and this relationship is maintained within certain input frequency and input power intervals. Free-running oscillators and frequency dividers are used primarily in the frequency generation and frequency conversion stages of communication systems. Other applications of injection-locked oscillators take advantage of their high phase sensitivity with respect to their bias sources and component values to obtain phase shifters and phase-shift-keying modulators. In turn, the coupled-oscillator systems are composed of oscillator circuits connected through linear networks which operate in synchronous manner at a single fundamental frequency. They can be used for a variety of purposes. Multidevice oscillators with a global coupling network are applied for power combination at the fundamental frequency, or at a given harmonic component of this frequency. On the other hand, one- and two-dimensional oscillator systems with nearest-neighbor coupling can be used for beam steering in phased arrays. The beam steering capability comes from the fact that it is possible to synthesize a constant phase shift progression with a very simple tuning procedure by varying the tuning voltages of the peripheral elements only.

The autonomous circuits must contain amplitude-sensitive devices to enable the self-sustained oscillation: that is, an oscillation that does not grow unboundedly (which would be unphysical) or decays to zero. Thus, they must necessarily be nonlinear. The analysis of autonomous circuits is difficult due to this inherent non-linearity and the usual coexistence of the oscillatory solution with a mathematical solution for which the circuit does not oscillate. As a simple example, consider the case of a free-running oscillator, which can always be solved for a dc solution even when the oscillatory solution is the only solution observed physically. The physical solutions are capable of recovering from the small perturbations, that are always present in real life, coming from noise or small fluctuations. They are robust versus small perturbations or *stable*. In fact, the stability analysis of a given mathematical solution is the verification of its physical existence. This analysis should be carried out in all circuits containing nonlinear devices and it is essential in autonomous