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CMC’s Research in Europe and the Future Potential of CMC’s in Industry 

Marcel H.Van de Voorde Martin R. Nedele 
European Union Deutsche Forschungsanstalt fiir Luft- und Raumfahrt 
JRC-Institute for Advanced Materials Institute of Structures and Design 
P.O. Box 2, 1755 ZG Petten Pfaffenwaldring 38-40, D-70569 Stuttgart 
The Netherlands Germany 

Abstract 

CMC’s ceramics Matrix Composites) have been developed for high temperature applications in 
aerospace and military industries. In general, the CMC’s should be capable of outperforming the 
best available superalloys. Great efforts are being given to pinpoint spin-off technologies i.e. 
applications in modern fossil fuel power plants, gas turbines, petrochemistry etc. In these 
applications, the CMC’s have to operate at temperatures up to 140O0C, in corrosive environments 
for long durations. These developments will provoke a breakthrough for this new group CMC- 
materials. 

i) give an overview of the CMC’s research in Europe; processing, and characterization of 
physical, chemical and engineering properties at high temperatures; 

ii) pinpoint the R&D needs to achieve the potential growth; 
iii) review the industrial potentials. 

The paper will: 

Introduction 

Many challenges for improvements and new developments in energy technology and industrial 
productivity are not met because of the unavailability of structural materials capable of assuring 
safe and reliable plant operation, at competitive costs. The advanced enerev technology requires 
materials with: 
i) 
ii) better mechanical behaviour, 
iii) higher temperature capability. 
A new group of high temperature materials with engineering properties better than the best modem 
superalloys and metal matrix composites has to be invented. The transDort industry has an 
additional need for light weight materials; with high stiffness and wear resistance. New materials, 
complimenting the use of advanced polymers and carbon composites have to be realized, to meet 
the severe technical specifications. 

Monolithic ceramics offer combined properties of low weight, high temperature strength and 

improved erosion - and corrosion resistance, 
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environmental stability. The problem with these ceramic materials is their lack of defect tolerance, 
leading to the possibility of catastrophic service failure in structural components. This may result 
in: 
i) 
ii) 

air-trafic problems caused by for example; damaged aero engine components and 
in important financial losses due to unforseen shutdowns in industrial plants. 

Improved ceramic processing techniques and toughening of ceramics through the incorporation of 
particulates, whisker and short fibers result in ceramics with better fracture toughness, but the 
brittle failure problem still persists. 

Long fiber and woven reinforced ceramic composites have the potential to combine chemical 
resistance, high temperature strength and toughness. CMC's may offer a challenge for the 
technology of the 211L century in which the modem industry demands a combination of: 
i) 
ii) 
iii) 
iv) 

high temperature stability for thousands of hours, 
hot and ash corrosion resistance, 
reliable mechanical properties - in the 1200°C to 1600°C temperature range; and 
cost competitivety, Figs. 1 and 2. 

Ceramics matrix 

A Ceramicmatrix 

b m Z m i c  matfix 
+ plastic 

Plastic matrix 
+ ceramics 

Metal mairix Fkt lc  matrix 
+plasUc +metal 

. --., 
CFRP ~ Carbon fiber reinforced polymers 
GMC -Glass matrix composites 
GCMC . Glass-ceramic matrbc cnmposites 
CMC - Ceramic matrix wmposites 
MMC - Metal matrix composites 

z6w C-C ~ Carbon-carbon composites 

900 
1 

n 8: 
6.. 
$400 

B 200 
rom 

v) 

100 

0 
0 200 400 6w 800 loo0 1200 1400 1800 

Temperature, *C 

Fig. 1 : Different forms of composites Fig.2: S-ht of stnrdural materials 

The ceramic matrix composites "C-Sic" and Sic-Sic" form the leitmotiv through the whole paper, 
because of the great interest in these materials by industry and the extreme difficulties to introduce 
them in innovative technologies. Much information available in the paper can easily be used for 
other ceramic- and carboncarbon composites. 

2. MANUFACTURE OF HIGH TEMPERATURE CMC-MATERIALS 

A status report is given on the development of: 
i) 
ii) ceramic matrices and 
iii) 

high temperature ceramic f i b  reinforcements, 

manufacturing methods for industrial CMC's-materials. 
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2.1. Advanced Ceramic Fiber Reinforcements 

The commercial breakthrough of CMC's strongly depends on the future of high temperature 
technologylindustry. Therefore, continuous ceramic fiber reinforcements should have a variety of 
corresponding 'high temperature' properties: high stiffness at low and high temperatures, high 
strength, high thermal-mechanical stability, high oxidation - corrosion resistance, small diameter 
for CMC fabricability, and low cost for commercial viability. 

Potential ceramic fibers of commercial interest for high temperature use in European industry 
and for research are discussed: 

2.1. I .  Alunu'na based fibers: A series of multifilament small-diameter fibers were recently made 
available commercially: the "Nextal 720" from 3M Company; Sumitomo's "Altex" fiber and a 
high purity ~u-a lumi~  fiber "Almax" from Mitsui. The main advantage of oxide fibers is their 
chemical stability. However, internal grain growth, phase transfomation and creep of 
polycrystalline fibers limit their working temperature to a maximum of 1200°C. Superior creep 
resistance can be obtained by the use of monofilament large - diameter fibers, for example the 
single crystal Sapphire fibers from Saphikon and the YAG (Yttrium Aluminum Garnet) fiber from 
General Atomics. They have potential for CMC service above 1200"C, however their large 
diameter of 140 pm prohibits weaving and low cost fibers are not available. 

2.1.2. Silicon carbide basedfibers: New multifilament small-diameter fibers are available: Nippon 
Carbon's Hi-Nicalon and Ube's Tyranno Sic-fibers are typical representatives. The new Hi- 
Nicalon fiber gives an increase in creep resistance of up to 200°C compared with standard Sic 
fibers. The small diameter fiber of roughly 10 pm allows weaving into two and three - 
dimensional fabrics and the availability in large quantities provides industrial production of high 
quality CMC-materials. Tyranno fibers, with only 13% oxygen also offers better engineering 
properties. 

Above their thermal stability threshold of about 1100°C degradation rapidly occurs primarily 
by recrystallisation and crystal growth, and additionally through internal oxidation due to the 
residual oxygen context. Developments focussed on the reduction of both effects have resulted in 
a series of new fiber types with improved properties. Nippon "Hi-Nicalon S" fiber; powder 
derived and sintered a-Sic fiber from Carborundum and a polymer derived and sintered R-Sic 
fiber from Dow Corning. The new fibers have excellent thermal stability - up to 1200"C, with 
high elastic modulus of 420 GPa, higher temperature creep and corrosion resistance than the 
commercially available fibers and are potential candidates for the reinforcement of CMC's in the 
1200°C to 1400°C temperature range. 

Monofilament,$ "100 to 140 pm" diameter CVD-SIC fibers are produced. They currently offer 
the best combination of creep and mpture strength and corrosion resistance. Typical examples are 
the Textron Specialty Materials (TSM) - SCS-6 and the DRA-Sigma fibers. The newly developed 
TSM-SCS-2 with 50 pm diameter, is especially promising. 

2.1.3. Silicon nitride basedfibers: Latest developments are focussed on improved products of 
silicon nitride and derivatives. Examples are the Tonen corporation Si,N, fibers; the Dow Corning 
silicon nitride carbide fibers and the single phase Si-B-(N,C) fibers of Bayer A.G. The forecast 
is that continuous ceramic fibers will be produced with outstanding oxidation resistance (up to 
1600°C) and with considerably improved mechanical performance at high temperatures 
(crystallization resistance up to 1800°C). The commercial availability is long term. 
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