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IN 1 9 8 6 , Rob Benne’s research group published their finding of a posttran-
scriptional process in which mitochondrial messenger RNAs were altered by uridine
insertions and deletions, a process he referred to as RNA editing. The finding
explained aparadox that themitochondrial genomeof protozoa such asTrypanosomes
encoded a scarcity of proteins andmany of the genes appeared to have disrupted open
reading frames or lacked a translational start codon. Benne’s publication took the
scientific community by surprise.Theknownmechanisms for nucleotidemodification
in RNA and alternative mRNA splicing could simply not accommodate the finding
thatTrypanosomamitochondrialmRNAscontainedmultiple insertions ofoneormore
non-genomically encoded uridines with no apparent consensus flanking sequence at
the sites of insertion.

By the early 1990s, several forms of insertion/deletion and base modification
editing had been described in amoeba, flagellates, Physarum, mammalian viruses,
plants, and the kidney, intestine, liver, and neuronal tissues of mammals. However,
many in the scientific community remained unaware of this emerging frontier and the
sporadic nature of the identification of editing in different organisms, tissues, and
organelles, and the diversity of editing mechanisms led others to question the
significance that editing mechanisms would have in understanding cellular systems.
For these early years the field collectively had an orphan status, finding outlets for its
new discoveries largely in “catch-all” sessions at diverse scientific society meetings.

Beginning in 1994, RNA editing realized solidarity through three international
conferences on RNA editing and modification organized independently by Harold
Smith and Steve Hajduk (1994, Albany Conference, Rensselaerville, NY, USA),
Glenn Bjork, Ted Maden, and Henri Grosjean (1994, EMBO Workshop, Aussois,
France), and Paul Sloof and Rob Benne (1996, EMBO Workshop, Maastricht, The
Netherlands). The first text dedicated to the topic of RNA editing was edited by Rob
Benne in 1993.* The inaugural Gordon Research Conference dedicated to RNA
editing and modification was led by Smith and co-chaired by Jonatha Gott and
Maureen Hanson in 1997. By 1998, many of the RNA editing systems that are known
today had been identified, and it was at this time that Grosjean and Benne co-edited a
comprehensive text on RNA modification and editing.† The field has grown rapidly
and gathered momentum as we learn how RNA and DNA editing mechanisms
influence, and are influenced by, other biochemical pathways in the cell.

PREFACE

*RNAEditing: TheAlteration of ProteinCoding Sequences of RNA, Benne,R. (ed.), EllisHorwoodSeries in
Molecular Biology, Prentice Hall, Englewood Cliffs, NJ, 1993.
†Modification and Editing of RNA, Grosjean, H., and Benne, R. (eds.), American Society of Microbiology
Press, Washington, D.C., 1997.
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The topic of this book is RNA andDNAediting. The chapters werewritten from
the perspective of the next generation of investigators who were formerly trainees in
the field or have been newly drawn to it. The authors suggest open questions to pursue
while evaluating the context of discoveries and methodologies that have led research-
ers to this threshold.Thevitalityof this text lies in its cutting-edgeperspectiveand in its
fresh introspective treatment of the progress to date. The target audience of the book
are not only the aficionados of the field, but also academics andmembers of the private
sector who are seeking to learn about the field and explore its new applications.

RNA editing is a process in which the nucleotide sequence of RNA is altered
from the genomic code. Editing is accomplished through nucleotide insertion,
nucleotide deletion, or base modification. It is distinguished from other forms of
RNAmodification in that the consequence of RNA editing is a change in the diversity
and/or abundance of proteins expressed in the proteomes of organisms, their tissues, or
organelles.RNAmodifications that diversifyRNAfunctionorproduceagainor loss of
RNA function are also considered editing. Within this rubric, numerous alterations to
nucleotides have been documented affecting coding and noncoding sequences of
messenger RNAs (mRNAs) as well as transfer RNAs (tRNAs), ribosomal RNAs
(rRNAs), and spliceosomal RNAs (UsnRNAs).

As might be anticipated, coordination of editing activity is essential relative to
other cellular pathways involving RNA such as transcription, RNA processing, and
translation.Our appreciation of this regulation has grown through the characterization
of the biological occurrence ofRNAediting and themacromolecules that contribute to
editing mechanisms. In this regard, the factors involved in RNA substrate recognition
and catalysis are diverse, ranging from lone enzymes with both substrate recognition
and catalytic activity tomacromolecular complexes containing both protein and small
RNAs as guides for substrate recognition and multiple proteins to carry out and
coordinate editing activity. InA-to-I andC-to-Ubasemodification editing, one editing
factor or editosome serves multiple sites. In other systems, such as plant organellar
C-to-U editing and organellar guide RNA-dependent mRNA, UsnRNA, and rRNA
editing andmodification, there is more complexity and a large number of site-specific
editing factors.

A recent development in the field is the identification of select members in the
family of cytidine deaminase editing enzymes that use single-stranded DNA as a
substrate. DNA editing is mutagenic and is responsible for diversification of the
genomic coding capacity for immunoglobulins and also serves in antiviral host
defense. Another exciting discovery is that A-to-I RNA editing can regulate the
production of interference RNA (RNAi) and thereby may constitute an important
cellular mechanism for modulating the abundance of individual sequences within the
transcriptome. A-to-I RNA editing also can modulate gene silencing through RNAi-
dependent regulation of the specificity and activity of themachinery involved inDNA
and histone modification, leading to chromatin remodeling.

Given these considerations, RNA and DNA editing will be discussed in four
thematic areas to provide a contextual map for this field. Part I, “Diversification of the
Proteome through RNA and DNA Editing,” highlights how editing regulates protein
expression through A-to-I base modification of mRNA, dC-to-dU modification of
immunoglobulin genes for somatic hypermutation and immunoglobulin class switch
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recombination, guide RNA-dependent uridine insertion and deletion editing of
mitochondrial RNA, and C-to-U and U-to-C mRNA editing in plant chloroplast and
mitochondrial transcripts. This chapter explores the question “Why are nucleic acid
sequences edited instead of encoded genomically?” through discussion of the occur-
rence of editing sites within transcriptomes and their distribution within individual
RNAs. Depending on the biological system, editing can be seen through the lens of
diversification, repair, or mutagenesis. Paramount in these discussions are mechan-
isms that govern RNA editing site selectivity and specificity and restrict the chromo-
somal domains targeted for DNA editing. Regulation depends on the temporal control
of site-specific editing factor expression, subcellular localization, their interaction
with nucleic acids, and the composition of individual editosomes. The reader will
appreciate how diversity in cis- and trans-acting factors in different species, or in
different organelleswithin the same species, contributes to different patterns of editing
activity and thereby enables plasticity in each biological system.

Part II, “Functional Coordination of RNAEditing with Other Cellular Mechan-
isms,” brings to the forefront why RNA and DNA editing is essential for cell survival
and adaptation. This section profiles base modification of RNA and DNA and guided
RNA editing as examples where cells require editing to produce functional tRNAs,
process rRNA, splice pre-mRNA, regulate the stability of mRNAs, and control RNAi
and viral infectivity. In some instances, editing at different sites within the same RNA
is interdependent and requires coordination of the activity of different editosomes or
transport of editing enzymes or their substrates within the cell and its organelles. In
other examples, RNA editing site selectivity is coordinated through the interaction of
A-to-I editing enzymeswith theC-terminus orRNApolymerase II. In thisway, editing
factors have immediate access to nascent transcripts and can carry out editing before
pre-mRNA splicing deletes introns that participate in RNA secondary structure
necessary for editing site recognition. Transcription also makes available single-
stranded DNAwithin chromosomes that can be targeted for mutational DNA editing
leading to diversification of the genomic sequences encoding the variable regions of
antibodies (as described in the prior section). Reverse transcription, coupled to RNase
H activity, also regulates editing activity by exposing single-stranded viral DNA
during replication for mutagenic DNA editing as a form of host defense.

The global role of RNA editing in cellular regulation is emphasized in this
section of the book through several examples. Modification editing of U2 spliceo-
somal RNA is essential for U2-snRNP splice site binding specificity and spliceosome
activity. The stability of selectmRNAs is affected bybinding of the factors responsible
for C-to-U mRNA editing in mammalian cells to AU-rich elements in mRNA. And,
modulation of RNAi production by A-to-I RNA editing is described as a mechanism
for regulating gene silencing by affecting the specificity and activity of the enzymes
that carry out DNA and histone modifications. The exquisite level of integration of
editing with other biochemical pathways and cellular functions described in all of the
chapters will lead the reader to the inescapable conclusion that RNA andDNAediting
have significant roles in biology that includes, and goes well beyond, codon sequence
changes and reading frame alterations.

A long-sought goal in the field has been to use our understanding of editing sites
and editing factors to discover novel editing substrates and new biological roles for
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editing. Part III, “Predictive Studies,” underscores the power of computational
approaches in identifying novel editing sites and predicting the biological conse-
quences of editing at these sites. Historically, computational analyses have been used
sporadically to validate sequences as having been edited; however, computational
methods have developed to the point where comparative sequence analyses enable
genomewidepredictionsof editedmRNAsequences.Computational approacheshave
also advanced comparative phylogenic analyses of edited sequences. These studies
have provided unique insights into the origins of editing systems, their evolution, and
an understanding of the conserved, minimally essential functional domains within
editing factors.

Highly related to these discussions is Part IV, “Structural Approaches,” which is
the final section of the text. Structural biology is an enabling technology for basic
science, biomedical research, and drug development. The structural basis for function
is more conserved in many instances than is primary nucleotide or amino acid
sequence. Comparative structural analyses have been vital in predicting RNA sec-
ondary structure of the substrates for A-to-I editing and guide RNAs as well as the
functional folds within enzymes in both A-to-I and C-to-U families of deaminases.
Comparative structural analysis suggests conserved protein folds and implicate, in
some instances, ancient phylogenic origins for components of editing machinery.
Importantly, computational and structural studies suggest the reaction chemistry that
enzymes catalyze, and they aim to predict the physical constraints in macromolecules
that determine substrate and editing site specificity.

The selection of chapters and organization of the book was conceived with
multiple purposes in mind. The text serves as a reference for background information
in the field. It provides an opportunity for the newest contributors to the editing field to
express their vision for the future. The perspectives voiced by these authors are
anticipated to be provocative and are intended to motivate discussion, lead to new
experiments, and promote collaboration. Finally, this book is intended to promote new
hypotheses and models to springboard the next generation of discovery in the field.

Harold C. Smith
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CHAPTER 1
DIVERSIFYING EXON CODE
THROUGH A-TO-I RNA EDITING

Willemijn M. Gommans
Dylan E. Dupuis
Jill E. McCane

Nicholas E. Tatalias
Stefan Maas

AN I N C R E A S I N G number of gene transcripts are found to be subject to

recoding by RNA editing. RNA-targeted recoding leads to the substitution of single

amino acids in the resulting proteins with subtle or sometimes drastic impact on

protein function. New strategies to search for edited genes in mammals have

accelerated the discovery of new targets and promise to reveal the many roles of

RNA editing in gene regulation.

1.1 INTRODUCTION AND BACKGROUND

According to the central dogma, protein-coding sequences in eukaryotic genomes
directly predict the primary structure of the encoded protein. However, processes such
as alternative splicing of exons result in the inclusion or omission of protein domains
and subdomains and thereby substantially extend the repertoire of expressible protein
variants (1). Often, the occurrence and extent of alternative splicing is not predictable
from analysis of genomic DNA sequences. Other posttranscriptional RNAmodifica-
tions also contribute to the complexity of the proteome. One such important mecha-
nism is RNA editing by adenosine modification (2–4), where single adenosine bases
are converted into inosine. Since inosine is interpreted by the translation machinery
as guanosine (5), A-to-I modification often results in nonsynonymous codon changes
leading to protein variants with single amino acid substitutions. To date, it is
impossible to predict with reasonable confidence a recoding event in mRNA from
analyzing genomic sequence data. In this chapter we are reviewing the current
knowledge regarding the prevalence and consequences of A-to-I recoding events in
eukaryotic transcripts and discuss recent strategies for identifying and characterizing
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recoding editing sites in translated sequences as well as A-to-I editing events in micro
RNA transcripts.

1.1.1 Initial Discovery and Context of A-to-I RNA Editing
and ADARs

It came as a surprise when in 1991 an A/G discrepancy between genomic and cDNA
sequences of the mammalian glutamate-gated ion channel subunit GluR-2 (6) turned
out to be due to an adenosine base modification on the RNA level. Editing of this
adenosine nucleotide results in the conversion of a glutamine codon into a codon
specifying arginine. In fact, this single nucleotide substitution turned out to domi-
nantly regulate ion-permeability in heteromeric receptor molecules and up to today
represents maybe the most significant, intriguing, and puzzling case of adenosine
modification editing in mammals (see Section 1.2.3).

The initial discovery of adenosine-modification editing quickly led to the
identification of several other cases of recoding in nervous-system-specific tran-
scripts, such as additional GluRs (7, 8) and 5HT2C-R (9). In each case a single
nucleotide change resulting in an aminoacid substitution couldbe linked to a change in
protein function. Since unedited and edited protein variants often are co-expressed in
the samecellsRNAeditingwas soon recognized as apotentially importantmechanism
to diversify genetic information with the ability to enhance the complexity of the
eukaryotic transcriptome and proteome.

At the time that the editing event in GluR-2 mRNAwas discovered, neither the
cellular machinery responsible for this adenosine base substitution nor the molecular
mechanism at playwas known. The observedA-to-G change in the cloned cDNAswas
thought to be a result of either an adenosinemodification process that alters this purine
into another purine base functionally equivalent to a guanosine, such as hypoxanthine
or due to a mechanism that involves removal of the base or of the whole nucleotide
followed by introduction of the guanosine.

Interestingly, there was an enzyme known for a long time that converts
adenosine mononucleotides to hypoxanthin nucleotides (also termed inosine). This
evolutionary conserved adenosine deaminase (ADA) mediates an important step in
eukaryotic and prokaryotic nucleotide metabolism. The ADA enzyme is well-
studied and has become an important therapeutic target as ADA deficiency leads to
various types of immune disorders (10). ADAmodifies adenosine mononucleotides
employing a hydrolytic deaminationmechanism. However, the enzyme is not active
on adenosines present in the context of DNA or RNA molecules. In addition to the
modification of mononucleotides by ADA, the modification of genomically en-
coded adenosines to inosines in transfer RNAs (tRNA) has long been known (for
reference see 11) and represents a critical feature for the degeneracy of the genetic
code (wobble base in the anticodon of several tRNAs). The reaction mechanism and
enzyme responsible for generating the wobble base was only recently revealed (12)
(see below).

More importantly, a few years before the discovery of adenosine modification
editing in pre-mRNAs, a novel enzymatic activity had been discovered that specifi-
cally targets adenosines embedded in dsRNA molecules (13, 14). Initially, it was
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described as dsRNAunwinding activity, but the actual nature of themolecular process
was soon identified as adenosine-to-inosine modifications through an analysis of
reaction products (15).

With the establishment of in vitro systems for RNA editing based on glutamate
receptor transcript minigenes and cellular extracts, the chemical mechanism of the
observed A-to-G changes in mRNAs was also soon shown to be the result of A-to-I
deamination, catalyzed by a zinc-dependent protein factor (16–18). Furthermore, the
cis-acting features in editing targets were characterized, identifying the requirement
for partial double-stranded (ds)RNAsecondary structures butwith noobvious primary
sequence signatures (8, 19, 20). This clearly distinguished the A-to-I editing mecha-
nism from the mammalian C-to-U deamination process that involves secondary
structure elements in addition to a primary sequence motif (mooring sequence) that
guides theRNAmodificationmachinery (seeChapter 11). Invitro editing systems also
accelerated the isolation and cloning of the first A-to-I RNA editing enzyme from
mammals (21–23). It turned out that the responsible protein (initially termed dsRAD,
orDRADA,which laterwas renamedADAR1) had in fact been investigated by several
laboratories as either an interferon-induced protein with potential antiviral functions
(24) or as the dsRNA-specific A-to-I editing activity in mammalian cells (see Section
1.1.3) (25, 26). Cloning of the first mammalian ADAR (ADAR1) was followed by the
identification of ADAR2 (27) and ADAR3 (28), as well as ADAR homologs in other
vertebrates (29, 30), flies (31) and worms (32) (see Section 1.1.3). Also, related
enzymes responsible for tRNA-specific A-to-I editing were cloned and characterized
in several species (33–35).

The C-to-U editing enzyme (APOBEC1) is remotely sequence-related to the
first adenosine-targeting editing enzyme ADAR1, and it is believed that APOBEC1
cytidine deaminase and the deaminase domain of ADARs may share a common
ancestor gene (36, 37). Interestingly, neither ADAR1 nor APOBEC1 shows primary
sequence homology to adenosine deaminase (ADA), and their predicted (ADAR1) or
known (APOBEC1) three-dimensional structures also differ substantially from that of
ADAeven though the reactionmechanisms catalyzed byADA,ADAR,andAPOBEC1
are highly similar.

1.1.2 Important Cases of Recoding by A-to-I Modification
in Pre-mRNA

The first mammalian editing events that were characterized affect several subunits
of glutamate-gated ion channels (7, 8) and a prominent serotonin receptor subunit
(9). These proteins were all found to be modulated in function by single or multiple
site-selective adenosine modifications within their primary transcripts. Serendipity
played a central role in the identification of these targets. Only recently, systematic
screening methods designed to identify recoding events caused by A-to-I editing
have been developed (38–41) leading to the identification of a few additional targets
(see Table 1.1).

Overall, the notion that A-to-I RNA recoding editing may be particularly
significant for the nervous system is supported by the preponderance of brain
tissue-specific editing events. Particularly in the fly (Drosophila melanogaster), the

INTRODUCTION AND BACKGROUND 5



TA
B
LE

1.
1

A
-t
o
-I
Ed

iti
n
g
in

th
e
C
o
d
in
g
R
eg

io
n
s
o
f
M
am

m
al
ia
n
,
In
ve

rt
eb

ra
te

an
d
V
ir
al

G
en

es

A
.
M
am

m
al
ia
n
G
en
es

F
un

ct
io
n

G
en
e
(A

cc
es
si
on

N
um

be
r)

aa
S
ub

st
it
ut
io
n

A
D
A
R
a

F
un

ct
io
na
l
Im

pa
ct

R
ef
.

S
er
ot
on

in
re
ce
pt
or

5-
H
T
2
cR

(N
M
_0

00
86

8)
I1
56

V
,
I1
56

M
,
N
15

8S
,

N
15

8D
,
N
15

8G
,
I1
60

V
A
D
A
R
1
&

A
D
A
R
2

(B
,
C
an
d
E
-s
it
e)
,

A
D
A
R
1
(A

-s
it
e)
,

A
D
A
R
2
(D

-s
it
e)

R
ed
uc
ed

ef
fi
ca
cy

G
-p
ro
te
in

co
up

li
ng

9

G
lu
ta
m
at
e
re
ce
pt
or

G
lu
R
-2

(N
M
_0

00
82

6)
R
76

3G
Q
60

6R
A
D
A
R
1
&

A
D
A
R
2

A
D
A
R
2

D
ec
re
as
ed

C
a2

+
pe
rm

ea
bi
li
ty
;

al
te
ra
ti
on

m
at
ur
at
io
n

an
d
ce
ll
ul
ar

tr
af
fi
ck
in
g;

fa
st
er

re
co
ve
ry

fr
om

de
se
ns
it
iz
at
io
n

8 6

G
lu
ta
m
at
e
re
ce
pt
or

G
lu
R
-5

(N
M
_1

75
61

1)
Q
62

1R
?

V
ar
ia
ti
on

in
io
n
pe
rm

ea
bi
li
ty

6

G
lu
ta
m
at
e
re
ce
pt
or

G
lu
R
-6

(N
M
_1

75
76

8)
I5
67

V
,
Y
57

1C
,
Q
62

1R
?
(Y

57
1C

:
A
D
A
R
2)

V
ar
ia
ti
on

in
io
n
pe
rm

ea
bi
li
ty

6

G
lu
ta
m
at
e
re
ce
pt
or

G
lu
R
-3

(N
M
_0

00
82

8)
R
77

5G
A
D
A
R
1
&

A
D
A
R
2

F
as
te
r
re
co
ve
ry

fr
om

de
se
ns
it
iz
at
io
n

8

G
lu
ta
m
at
e
re
ce
pt
or

G
lu
R
-4

(N
M
_0

00
82

9)
R
76

5G
A
D
A
R
1
&

A
D
A
R
2

F
as
te
r
re
co
ve
ry

fr
om

de
se
ns
it
iz
at
io
n

8

P
ot
as
si
um

ch
an
ne
l

hK
v
1.
1
(N

M
_0

00
21

7)
I4
00

V
A
D
A
R
2

F
as
te
r
re
co
ve
ry

fr
om

de
se
ns
it
iz
at
io
n

41
,
59

U
nk

no
w
n

B
C
10

(N
M
_0

06
69

8)
Y
2C

,
Q
5R

,
K
15

R
?

?
39

,
40

C
ro
ss
-l
in
ki
ng

ac
ti
n

fi
la
m
en
ts

F
L
N
A
(N

M
_0

01
45

6)
Q
23

33
R

?
?

40

F
M
R
1
in
te
ra
ct
in
g

pr
ot
ei
n

C
Y
F
IP
2
(N

M
_0

01
03

73
33

)
K
32

0E
?

?
40

C
hl
or
id
e
ch
an
ne
l

G
ab
ra
-3

(N
M
_0

00
80

8)
I3
42

M
A
D
A
R
1
&

A
D
A
R
2

?
10

3

A
-t
o-
I
ed
it
in
g
en
zy
m
e

A
D
A
R
2b

(N
M
_0

01
03

30
49

)
In
tr
on

ic
ed
it
in
g

le
ad
s
to

fr
am

es
hi
ft

A
D
A
R
2

A
lt
er
na
ti
ve

sp
li
ci
ng

86

6



B
.
In
ve
rt
eb
ra
te

an
d
V
ir
al

G
en
es

F
un

ct
io
n

G
en
e
(A

cc
es
si
on

nu
m
be
r)

O
rg
an
is
m

aa
S
ub

st
it
ut
io
n

F
un

ct
io
na
l
Im

pa
ct

R
ef
.

P
ot
as
si
um

ch
an
ne
l

S
qK

v
1.
1
(U

50
54

3)
S
qu

id
12

re
co
di
ng

si
te
s

A
lt
er
ed

ch
an
ne
l
ki
ne
ti
cs
;

re
du

ce
d
ab
il
it
y
to

fo
rm

te
tr
am

er
s

11
4

P
ot
as
si
um

ch
an
ne
l

sq
K
v
2
(Y

14
39

0)
S
qu

id
12

re
co
di
ng

si
te
s

A
lt
er
ed

ch
an
ne
l
ki
ne
ti
cs

(c
ha
nn

el
cl
os
ur
e
ra
te

&
al
te
re
d

sl
ow

es
t
ti
m
e
co
ns
ta
nt
)

11
5

B
as
ic

fi
br
ob

la
st

gr
ow

th
fa
ct
or

bF
G
F
(X

16
62

7)
X
en
op

us
H
yp

er
m
ut
at
io
n

U
nk

no
w
n

11
6

E
di
ti
ng

en
zy
m
e

dA
D
A
R
(A

F
20

85
35

)
D
ro
so
ph

il
a

S
43

7G
E
di
ti
ng

ac
ti
vi
ty

31
,
11

7

S
od

iu
m

ch
an
ne
l

P
ar
a
(N

M
_0

01
04

28
16

)
D
ro
so
ph

il
a

Q
47

3R
U
nk

no
w
n

11
8

K
14

55
R

N
15

87
S

G
lu
ta
m
at
e-
ga
te
d

ch
lo
ri
de

ch
an
ne
l

G
lu
R
II
E
(C
G
31

20
1)

D
ro
so
ph

il
a

I2
7V

,
K
24

1R
,
N
34

5S
U
nk

no
w
n

11
9

V
ol
ta
ge

ga
te
d

ca
lc
iu
m

ch
an
ne
l

ca
c
(N

M
_2

06
69

3)
D
ro
so
ph

il
a

S
51

4G
,
I8
15

M
,
N
83

9S
,

N
90

6S
,
S
93

7G
,
M
10

16
V
,

N
11

85
S
,
N
13

68
G
,

N
15

80
D
,
R
16

02
G

U
nk

no
w
n

12
0

A
m
in
e
re
ce
pt
or

D
op

E
cR

(C
G
18

31
4)

D
ro
so
ph

il
a

I3
16

V
U
nk

no
w
n

10
4

S
to
p3

23
W

H
yd

ro
ge
n-
tr
an
sp
or
ti
ng

tw
o-
se
ct
or

A
T
P
as
e

C
G
13

16
7

D
ro
so
ph

il
a

I9
V

U
nk

no
w
n

10
4

P
ro
te
in

ph
os
ph

at
as
e

ty
pe

1,
re
gu

la
to
r

C
G
96

19
D
ro
so
ph

il
a

S
16

0G
U
nk

no
w
n

10
4

T
ra
ns
po

rt
er

ac
ti
vi
ty

S
pi
ns
te
r
(C
G
84

28
)

D
ro
so
ph

il
a

N
67

G
U
nk

no
w
n

10
4

(C
on

in
ue
d)

7



TA
B
LE

1.
1

(C
o
n
tin

u
ed

)

F
un

ct
io
n

G
en
e
(A

cc
es
si
on

nu
m
be
r)

O
rg
an
is
m

aa
S
ub

st
it
ut
io
n

F
un

ct
io
na
l
Im

pa
ct

R
ef
.

Y
T
52

1-
B

C
G
12

07
6

D
ro
so
ph

il
a

Q
63

6R
U
nk

no
w
n

10
4

U
nk

no
w
n

T
et
ra
sp
an
in

33
B

(C
G
14

93
6)

D
ro
so
ph

il
a

T
w
o
si
le
nt

si
te
s

U
nk

no
w
n

10
4

U
nk

no
w
n

4f
-r
np

D
ro
so
ph

il
a

H
yp

er
m
ut
at
io
n

U
nk

no
w
n

12
1

S
od

iu
m

ch
an
ne
l

D
S
C
I
(C
G
90

71
)

D
ro
so
ph

il
a

M
11

74
V
,
I1
19

9V
on

ly
D
.
ps
eu
do

ob
sc
ur
a)

U
nk

no
w
n

41

P
ot
as
si
um

ch
an
ne
l

S
h
(C
G
12

34
8)

D
ro
so
ph

il
a

K
17

8E
,
K
17

8G
,
K
17

8R
,

I3
60

M
,
I4
64

V
,
T
48

9A
,

Q
49

1R

U
nk

no
w
n

41

P
ot
as
si
um

ch
an
ne
l

E
ag

(C
G
10

95
2)

D
ro
so
ph

il
a

K
46

7R
,
Y
54

8C
,

N
56

7D
,
K
69

9R
U
nk

no
w
n

41

P
ot
as
si
um

ch
an
ne
l

S
lo

(C
G
10

69
3)

D
ro
so
ph

il
a

N
26

4D
,
S
97

7G
U
nk

no
w
n

41

C
al
ci
um

se
ns
or

S
yt

(C
G
31

39
)

D
ro
so
ph

il
a

I3
65

V
,
K
37

7R
,

I3
81

V
,
I4
03

M
U
nk

no
w
n

41

S
N
A
R
E

bi
nd

in
g

un
c-
13

(C
G
29

99
)

D
ro
so
ph

il
a

S
23

71
G

U
nk

no
w
n

41

S
N
A
R
E

pr
ot
ei
n

cp
x
(C
G
32

49
0)

D
ro
so
ph

il
a

I1
24

M
,
N
12

9D
,

N
12

9G
,
N
12

9S
U
nk

no
w
n

41

U
nk

no
w
n

st
nB

(C
G
40

30
6)

D
ro
so
ph

il
a

T
11

86
A

U
nk

no
w
n

41

A
da
pt
or

pr
ot
ei
n

la
p
(C
G
25

20
)

D
ro
so
ph

il
a

T
37

2A
U
nk

no
w
n

41

nA
C
hR

a
su
bu
ni
t

D
a5

(C
G
32

97
5)

D
ro
so
ph

il
a

I5
04

V
,
T
55

3A
,

I5
54

V
,
I5
58

M
U
nk

no
w
n

41

8



nA
C
hR

su
bu
ni
t

D
a6

D
ro
so
ph

il
a

N
13

3S
,
I1
34

V
,

H
13

8R
,
N
13

9G
,

N
13

9S
,
N
13

9D
,

I1
56

M
,
N
18

7S

U
nk

no
w
n

12
2

nA
C
hR

su
bu
ni
t

A
m
el
a6

(o
rt
ho

lo
g
of

D
a6

)
A
pi
s
m
el
li
fe
ra

N
16

4S
,
K
17

6R
,

I1
81

M
,
T
18

4A
U
nk

no
w
n

12
3

nA
C
hR

b
su
bu
ni
t

A
R
D
(C
G
11

34
8)

D
ro
so
ph

il
a

R
56

G
,
I7
3M

U
nk

no
w
n

41

nA
C
hR

b
su
bu
ni
t

S
B
D
(C
G
67

98
)

D
ro
so
ph

il
a

T
27

8A
U
nk

no
w
n

41

G
A
B
A

re
ce
pt
or

R
dl

(C
G
10

53
7)

D
ro
so
ph

il
a

R
12

2G
,
I2
83

V
,

N
29

5G
,
M
36

0V
U
nk

no
w
n

41

G
T
P
as
e

R
ab
26

(G
H
21

98
4)

D
ro
so
ph

il
a

K
36

5R
U
nk

no
w
n

38

R
al

G
T
P
as
e

ac
ti
va
to
r

R
li
p
(G

H
01

99
5)

D
ro
so
ph

il
a

I2
29

V
,
E
23

0G
,
K
23

3E
,

E
25

4G
,
K
26

5R
U
nk

no
w
n

38

R
ab
3
gu

an
yl
-n
uc
le
ot
id
e

ex
ch
an
ge

fa
ct
or

R
ab
3-
G
E
F
(H

L
01

22
2)

D
ro
so
ph

il
a

Q
20

22
R
,
S
20

54
G

U
nk

no
w
n

P
ro
m
ot
es

sy
na
pt
ic

ve
si
cl
e
bu
dd

in
g

en
do

A
(G

H
12

90
7)

D
ro
so
ph

il
a

K
12

9R
,
K
13

7E
U
nk

no
w
n

38

S
yn

ap
si
n

S
yn

(C
G
39

85
)

D
ro
so
ph

il
a

R
20

G
R
ed
uc
ed

P
K
A

ph
os
ph

or
yl
at
io
n

in
vi
tr
o

12
4

A
P
-2

su
bu
ni
t

a-
A
da
pt
in

(R
H
30

20
2)

D
ro
so
ph

il
a

T
20

7A
U
nk

no
w
n

38

K
in
es
in
-d
ep
en
de
nt

ax
on

al
tr
an
sp
or
t

S
yd

(G
H
19

96
9)

D
ro
so
ph

il
a

S
98

3G
U
nk

no
w
n

38

(C
on
in
ue
d)

9



TA
B
LE

1.
1

(C
o
n
tin

u
ed

)

F
un

ct
io
n

G
en
e
(A

cc
es
si
on

nu
m
be
r)

O
rg
an
is
m

aa
S
ub

st
it
ut
io
n

F
un

ct
io
na
l
Im

pa
ct

R
ef
.

C
a2

+
bi
nd

in
g
pr
ot
ei
n

C
pn

(G
H
08

00
2)

D
ro
so
ph

il
a

S
40

2G
U
nk

no
w
n

38

K
+
de
pe
nd

en
t
N
a+
,

C
a2

+
an
ti
po

rt
er

N
ck
x3

0C
(H

L
01

98
9)

D
ro
so
ph

il
a

K
36

5R
U
nk

no
w
n

38

K
+
de
pe
nd

en
t
N
a+
,

C
a2

+
an
ti
po

rt
er

C
G
10

90
(G

H
23

04
0)

D
ro
so
ph

il
a

S
35

8G
U
nk

no
w
n

38

N
a+
,
K
+
ex
ch
an
gi
ng

A
T
P
as
e

A
tp
a
(G

H
23

48
3)

D
ro
so
ph

il
a

Y
39

0C
U
nk

no
w
n

38

C
a2

+
bi
nd

in
g,

ac
yl
tr
an
sf
er
as
e
ac
ti
vi
ty

C
G
32

69
9
(H

L
01

25
0)

D
ro
so
ph

il
a

I1
75

M
U
nk

no
w
n

38

T
rc

ki
na
se

ac
ti
va
to
r

M
ob

1
(R
H
70

63
3)

D
ro
so
ph

il
a

N
91

D
U
nk

no
w
n

38

G
-p
ro
te
in

co
up

le
d

re
ce
pt
or

B
os
s
(G

H
10

04
9)

D
ro
so
ph

il
a

T
52

9A
,
T
53

3A
U
nk

no
w
n

38

P
ot
as
si
um

ch
an
ne
l

S
K

(G
H
16

66
4)

D
ro
so
ph

il
a

Y
37

7C
U
nk

no
w
n

38

C
hl
or
id
e
ch
an
ne
l

C
G
31

11
6
(G

H
23

52
9)

D
ro
so
ph

il
a

K
23

2R
,
T
25

9A
,

K
26

8R
,
E
26

9G
U
nk

no
w
n

38

A
ct
in

nu
cl
ea
ti
on

fa
ct
or

S
pi
r
(G

H
13

32
7)

D
ro
so
ph

il
a

K
33

9R
U
nk

no
w
n

38

R
eg
ul
at
or

of
ac
ti
n

fi
la
m
en
t
fo
rm

at
io
n

A
tx
2
(G

H
01

40
9)

D
ro
so
ph

il
a

K
32

0R
,
K
33

7R
U
nk

no
w
n

38

S
tr
uc
tu
ra
l
co
ns
ti
tu
en
t

of
cy
to
sk
el
et
on

C
G
32

24
5
(G

H
04

63
2)

D
ro
so
ph

il
a

N
29

7D
U
nk

no
w
n

38

A
T
P
as
e

C
G
32

80
9
(G

H
23

43
9)

D
ro
so
ph

il
a

K
17

9R
U
nk

no
w
n

38

P
ho

sp
ha
ti
dy

li
no

si
to
l

tr
an
sp
or
te
r

R
et
m

(G
H
05

97
5)

D
ro
so
ph

il
a

Q
24

5R
U
nk

no
w
n

38

U
nk

no
w
n

C
G
15

52
(G

H
14

44
3)

D
ro
so
ph

il
a

K
12

1R
U
nk

no
w
n

38

U
nk

no
w
n

C
G
31

53
1
(G

H
25

78
0)

D
ro
so
ph

il
a

K
67

9E
U
nk

no
w
n

38

10



U
nk

no
w
n

C
G
35

56
(G

H
17

08
7)

D
ro
so
ph

il
a

I5
72

V
U
nk

no
w
n

38

U
nk

no
w
n

C
G
98

01
(G

H
23

02
6)

D
ro
so
ph

il
a

S
34

5G
U
nk

no
w
n

38

U
nk

no
w
n

I(
1)
G
01

96
(G

H
02

98
9)

D
ro
so
ph

il
a

Q
11

48
R
,
S
11

72
G
,

Q
11

76
R

U
nk

no
w
n

38

U
nk

no
w
n

C
G
12

00
1
(H

L
01

04
0)

D
ro
so
ph

il
a

I3
25

V
U
nk

no
w
n

38

U
nk

no
w
n

C
G
30

07
9
(H

L
05

61
5)

D
ro
so
ph

il
a

I1
27

M
,
T
30

3A
,

Q
34

3R
,
Q
35

8R
,

S
36

0G

U
nk

no
w
n

38

nA
C
hR

su
bu
ni
t

a7
-2

(h
om

ol
og

to
D
a6

si
te
s)

H
.
vi
re
sc
en
s

N
13

3S
,
N
13

9G
,

N
13

9S
,
N
13

9D
,

I1
56

M

U
nk

no
w
n

12
2

nA
C
hR

su
bu
ni
t

M
da
lp
ha
6

(o
rt
ho

lo
g
of

D
a6

)
M
us
ca

do
m
es
ti
ca

N
12

9S
,
I1
30

V
,
H
13

4R
,

N
13

5S
,
N
13

5D
,

N
13

5G
,
N
13

7S
,

I1
52

M
,
N
18

3S

U
nk

no
w
n

12
5

V
ir
al

re
pl
ic
at
io
n

H
D
A
g-
p2

4
(A

J3
07

07
7)

H
ep
at
it
is

de
lt
a
vi
ru
s

S
to
p1

96
W

S
w
it
ch

fr
om

vi
ra
l

re
pl
ic
at
io
n
to

pa
ck
ag
in
g

62

a
P
re
fe
re
nt
ia
l
ed
it
in
g
en
zy
m
e
fo
r
th
at

ta
rg
et

si
te

b
C
au
se
s
in
di
re
ct

ch
an
ge

in
am

in
o
ac
id

se
qu
en
ce

11



large number of neuronal editing targets and the fact that the complete elimination of
the A-to-I editing machinery results in a specific neurological phenotype (42)
demonstrates a critical role of editing for neural function. However, in mammals,
as well as in the fly, the list of non-neuronal recoding targets is steadily growing,
though knowledge regarding the physiological significance of recoding editing
affecting non-neuronal transcripts is largely lacking.

1.1.2.1 Mammalian Glutamate Receptor Subunits Ionotropic glutamate
receptors (iGluRs) constitute an important class of neurotransmitter receptors in
the central nervous system that mediate fast excitatory neurotransmission and have
been implicated in mechanisms of plasticity, such as learning and memory (43). A
total of five glutamate gated ion channel subunits have been shown to be recoded at
single positions within their mRNAs affecting a total of eight codons (for recent
detailed reviews on the sites and regulatory roles of ion-channel receptor editing, see
reference 44 and references therein).Most significantly, theGluR-2 subunit isA-to-I
edited at a critical position in the ion channel molecule, which constitutes the
molecular determinant for Ca-permeability (6) and in addition regulates channel
trafficking (45) and receptor assembly (46). Editing at this position will therefore
influence all these processes. The editing event alters a glutamine (Q) codon (CAG)
to a codon (CIG) specifying arginine (R). This Q/R site of editing is further
remarkable in that virtually 100% of GluR-2 pre-mRNA molecules are edited
and therefore almost no GluR-2(Q) protein is present in the brain. The physio-
logical significance of this recoding event became evident when transgenic mice
with impaired RNA editing function were engineered. This resulted in mice with a
severe epileptic phenotype and premature death (47, 48). It was shown that the
reduction in editing at the Q/R site from 100% to �60% results in a drastically
increased conductance and Ca2+-influx into principal neurons. These alterations
were directly responsible for the observed phenotype, because mice that carry a
genomic mutation fixing the RNA editing event in the genome showed a wild-type
phenotype despite the editing deficiency (48). Why is the critical arginine codon
generated by almost complete editing of the Q/R site and not genomically specified?
Currently, it cannot be ruled out that nonedited versions of theGluR-2 subunit have a
function during early development or within specific neuronal cell types. However,
that function is dispensable for survival and normal development as judged by the
lack of a discernable phenotype in transgenic mice that cannot produce nonedited
GluR-2 (49). A selective deficiency in GluR-2 Q/R site editing has been implicated
in a number of pathological phenotypes in humans (see reference 50 for review),
such as amyotrophic lateral sclerosis (ALS). In ALS, the ensuing increase in
glutamate receptor Ca2+-permeability of affected neurons due to a decreased
editing activity may be responsible or a contributing factor to neuronal death (51).

Another editing site changing an arginine (R) codon into a glycine (G) codon is
shared between GluR subunits GluR-2, -3, and -4. Here the single amino acid
alteration regulates kinetic properties of the heteromeric receptor channel (8) and
also modulates receptor biogenesis (52). The extent of editing at the R/G position
varies between the different GluR subunits and between neuronal cell types. It also
undergoes significant regulation during embryogenesis changing from low level
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editing extents during early embryonic stages to high levels in adult individuals (8).
The glutamate receptor subunits GluR-5 and -6 are also edited at one or three sites (7),
respectively. Here the recoding events modulate the ion-permeability and kinetic
properties of the corresponding ion channels (44).

1.1.2.2 Serotonin Receptor Another prominent and well-studied example of
A-to-I RNA editing is the serotonin receptor subtype 5-HT2C, which is important for
neuronal pathways influencing sensory and motor processes, as well as behaviors.
The 5-HT2C receptor is part of a G-protein-coupled transmembrane receptor that
couples serotonin neurotransmitter action to intracellular signaling pathways. This
mainly leads to the activation of phospholipase C, which, in turn, results in a rise in
intracellular inositol phosphates and diacylglycerol. The latter elicits protein kinase
activation and induces an increase in intracellular Ca2+ concentration. A-to-I RNA
editing in 5-HT2C transcripts affects fivemajor sites, which are all locatedwithin the
same second intracellular loop of the receptor protein (9). Overall, the higher the
extent of modification by editing at these sites, the less sensitive the receptor
becomes to serotonin activation, which is the result of a decreased G-protein
coupling efficiency (53, 54). The 5-HT receptors have been implicated in the
etiology of several neurological and behavioral disorders, such as depression,
anxiety and schizophrenia. Intriguingly, changes in the RNA editing patterns of
5-HT2C transcripts have been observed in brains of people that suffered from
suicidal depression (55). Mice treated with fluoxetine (a serotonin uptake inhibitor)
show the converse type of change in the RNA editing pattern of 5-HT2C sequences.
These data indicate that the editing extent at these modification sites may be able to
change in response to external signals, such as different levels of synaptic serotonin
(55). In agreementwith these observations, treatment of cells with the cytokine IFN-
alpha resulted in alterations in the editing pattern of 5-HT2CmRNA, whichmay link
the observed depression in patients undergoing cytokine therapy to fluctuations in
editing activity (56). Recently, increasing evidence has linked changes in mood and
behavior to alterations of serotonin receptor editing (for review see reference 57).

1.1.2.3 Kv1.1 Potassium Channel The mammalian Kv1 subfamily of
potassium channels plays an essential role in membrane hyperpolarization during
an action potential and in the propagation of action potentials along the plasma
membrane (58). The tetrameric receptors form a diverse group of ion channels due to
the existence of several subunits and also due to A-to-I RNAmodification. Editing of
the human Kv1.1 transcripts modulates the kinetics of channel inactivation (59). The
editing event in the human Kv1.1 mRNA is related to the site of editing inDrosophila
melanogaster shaker potassium channels and has independently evolved at the
equivalent (analog) site in the D. melanogaster Shab potassium channel (59).

This more recently reported editing site in humans stands out because the pre-
mRNA that undergoes modification does not contain introns, which means that the
partially base-paired RNA fold-back structure is comprised entirely of exonic
sequences (41). For each of the cases described above, the molecular determinants
for site-selective and efficient editing involve a partially double-stranded RNA fold-
back structure in the substrates that is formed between exonic sequences that surround
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the to-be-edited adenosine and partially complementary sequence elements in a
neighboring intron (see also Section 1.1.3 below).

1.1.2.4 Additional Recoding Targets in Vertebrates, Invertebrates, and
Viruses A number of additional recoding events have been reported in mammals
(see Table 1.1 and Section 1.1.2), for which there are currently no experimental data
available regarding the physiological impact of editing (38–41). Interestingly, they also
include non-neuronal transcripts.

In addition, a few examples exist where recoding events are predicted fromA/G
discrepancies that are only detected in transcripts derived from pathological tissues or
cells, such as cancer (prox1, PCNP) and lupus erythematosus (60).

Intriguingly, the hepatitis delta virus (HDV) utilizes the A-to-I editing machin-
ery to regulate viral replication. Within the antigenome of this virus, a site-specific
adenosine to inosine modification converts a stop codon into a tryptophan codon (61,
62). This leads to the expression of an HDVantigenvariant that suppresses replication
and enhances the late stages of the viral life cycle (61). It seems that the viral genome
has evolved in a way to utilize the host cell’s RNA editing machinery for productive
replication.

To date, a total of 77 targets for A-to-I editing have been identified in the fruit fly
D.melanogaster. Fewof these targets, ofwhich themajority are expressed specifically
in neurons, have been directly investigatedwith respect to the consequences of editing
for protein function.

1.1.3 Cis-Acting Features for A-to-I Editing

The requirement for a partially double-stranded RNA fold-back structure for editing
was first established for the GluR-2 Q/R editing site through meticulous analysis of
editing extents in minigene substrates that tested the validity of computer-predicted
RNA secondary structures of GluR-2 pre-mRNA transcripts (19). The partially base-
paired region in the RNA is formed between sequences flanking the to-be-edited
adenosine and a partially complementary sequence [termed the editing site comple-
mentary sequence (ECS)], which is often located within a downstream or upstream
intron (19, 63, 64). Mutations that weaken the predicted RNA fold surrounding the
editing site strongly impair or abolish editing at the Q/R site, whereas other mutations
that restore the structure boost the levels of site-selective modification (19). Also, the
modified adenosine in the GluR-2 Q/R site structure is in a base-paired configuration
andchanging thebasepair into amismatchdecreases editing efficiency (19).Although
this seems to be a rather simple set of parameters determining what constitutes an
editing substrate, the analogous analysis of RNA fold-back structures governing
editing at other sites revealed that the process is muchmore complex as in some cases
the to-be-edited adenosine may be mismatched (8) or may be part of a loop structure
embedded in base-paired regions (64). Based on the available data to date, it is not
possible to define structural or sequence requirements that would allow straightfor-
ward screening for edited genes in sequence or structure databases (see Section 1.2.2).

Apart from the requirement for a partially base-paired structure, both ADAR1
and ADAR2 show certain nearest-neighbor preferences. The ADAR1 enzyme
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preferentially targets adenosines that are preceded by U¼A >C >G, and ADAR2
displays a 50-preference of U¼A >C¼G as well as a 30-neighbor preference of
U¼G >C¼A (4, 65). These properties may be related to the reactionmechanism for
deamination that is believed to involve a flipping of the adenosine into the enzyme’s
activesite,similar tothemechanismofactionemployedbyDNAmethyltransferases(4).
Certain sequence environments will make access for the enzyme to the to-be-edited
adenosine easier. In summary, there is still an unclear picture with respect to the
molecular parameters that determine substrate specificity and editing efficiency in
natural recoding targets for A-to-I editing.

1.1.4 Properties of the A-to-I Editing Machinery

The family of mammalian ADAR proteins (ADAR1, ADAR2, and ADAR3) share a
common general domain architecture (see Figure 1.1A) mainly comprised of two or
three double-stranded RNA binding domains (dsRBDs) and a catalytic adenosine
deaminase domain toward the C-terminus (for recent reviews on ADARs see
references 66 and 67). Only ADAR1 and ADAR2 have been characterized function-
ally, whereas ADAR3, although closely sequence related to ADAR2, has not yet
been assigned a function and does not display adenosine deaminase activity in
established assay systems (28, 68). In vitro and in cellular assays, ADAR1 and
ADAR2 exhibit site-selective and efficient RNA editing activity apparently without
any proteinacious co-factor requirements (27, 69).

Figure 1.1 Molecular players andmechanism ofA-to-I editing. (A) Schematic representation
of ADAR domain structures from vertebrates, insects, and nematodes. (B) Depiction of
adenosine hydrolytic deamination mechanism with transition state.
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Zinc is known to be involved in the catalytic mechanism, where it activates a
water molecule that initiates the nucleophilic attack at the C-6 of the targeted
adenosine. However, recently it was shown that ADARs are active as dimers (70–
73) and also that a small molecule inositol-6-phosphate (IP6) is an essential co-factor
for function (74). A crystal structure of the catalytic domain ofADAR2 in conjunction
with functional experiments demonstrated that IP6 is critical for protein folding and
formation of the catalytic site (74). The mechanism of substrate recognition and site-
selectivity of ADARs is not well understood, and ADAR1 and ADAR2 are known to
display distinct, but overlapping specificity on known, physiological editing targets.
For example, both enzymes seem to be highly active on the glutamate receptor R/G
editing sites inGluR-2, -3, and -4. However, the Q/R site of GluR-B, the I/V site of the
Kv1.1 potassium channel as well as the D site of the 5-HT2C serotonin receptor are
preferentially edited by ADAR2. The enzyme ADAR1 displays preference for the B
site of 5-HT2C as well as the amber/W site in the HDVantigenome (27, 56, 75, 76).

One intriguing property of ADARs is that when encountering an extended,
perfectly double-stranded RNAmolecule, ADARs will promiscuously deaminate up
to� 50% of all adenosines (77). Further deaminations are probably prevented due to
the progressive loss of the substrate’s double-strandedness such that the dsRBDs are
unable to bind. This highlights that, intrinsically, the ADAR enzymes lack a particular
site-selectivity but that most likely the overall three-dimensional shape and sequence
environment of edited adenosines in the substrateRNAsprovide the specificity seen in
physiological recoding targets (4, 78). It has also been suggested that dsRBDs of
ADARsmay in some cases specifically interact with other structural RNAmotifs such
as a loop region, thereby mediating site-selective editing (79, 80).

Other organisms, such as insects (31) and nematodes (81), have A-to-I editing
machineries in the form of a single ADAR enzyme (i.e., dADAR in Drosophila
melanogaster) or a single heterodimeric adenosine deaminase targeting mRNAs
(C. elegans adr-1 and adr-2). They harbor single dsRBDs, and their catalytic domain
sequence is closely related to those of vertebrate ADARs. Plants, fungi, and yeast lack
ADAR enzymes and RNA-directed adenosine deaminase activity.

Overall, the ADAR enzymes are ubiquitously expressed in most, if not all, cell
types (21, 23, 27). An exception is ADAR3, which is detected only in the central
nervous system (28). The diversity of ADARs is further enhanced through the
expression of alternative splice variants (82–84) and the utilization of alternative
promoters (85) and even by A-to-I RNA editing. Mammalian ADAR2 as well as
Drosophila dADAR edit their own pre-mRNAs (31, 86). In the case of ADAR2,
intronic editing creates a novel splice site that leads to expression of a truncated,
nonfunctional enzyme (86). In dADAR, site-selective editing alters an amino acid
(S-to-G substitution) that was shown tomodulate enzymatic activity (31). Alternative
promoter usage creates two main ADAR1 transcript variants that differ substantially
with respect to subcellular localization and function (87). ADAR1-p110 is expressed
from a constitutive promoter and is active primarily within the nucleus (85). Expres-
sion of ADAR1-p150 is driven by an interferon inducible promoter and generates an
enzyme that harbors a unique N-terminal domain, which conveys specific binding
affinity to DNA and RNA in Z-conformation (88) and is actively shuttled between the
nucleus and cytoplasm (89). In contrast, both ADAR1-p110 and ADAR2 are
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dynamically associated with the nucleolus and might relocalize to the nucleoplasma
when substrates for editing are expressed (90, 91). Moreover, ADAR2 exists in
alternative splice forms that might differ in their RNA editing efficiencies or
specificities (83, 84).

1.2 MAIN QUESTIONS IN THE FIELD AND APPROACHES

A critical aspect of understanding the overall impact of A-to-I RNA editing on the
regulation of gene expression and for transcriptome and proteome diversity is to
delineate all A-to-I editing targets followed by characterization of the functional
consequences of editing. Until recently, only a relatively small number of ADAR
substrates were known (4) and the A-to-I RNA editing targets seemed to be largely
brain-specific. However, the editing machinery was shown to be functionally ex-
pressed inmany cell types (21, 23, 27), indicating potential additional targets for these
enzymes in other tissues. In fact, increasing evidence frombiochemical studies further
indicated that A-to-I editing occurs in other tissues as well (92) and that overall many
more edited genes should exist (see Section 1.2.1).

Previously, ADAR substrates were discovered mainly by coincidence when
comparing the cDNA sequence of a cloned gene to their genomic counterparts, in
which an adenosine in the genomic sequence appeared as guanosine in the cDNA
molecule. In particular, cases with high editing extents, such as the glutamate receptor
GluR-2 Q/R site (>99.9% editing), have a higher chance of being detected, also
enhanced by the fact that the ensuing amino acid substitution involves a functionally
important residue. However, in recent years, several distinct and partially comple-
mentary screening methods have been developed to detect novel ADAR substrates.

1.2.1 Biochemical Versus Computational Approaches

The first technique that was developed to systematically screen for RNAmolecules
that have been modified by the A-to-I editing machinery involves a biochemical
procedure to isolate inosine-containingmRNAmolecules (93). In this approach, the
inosine-containing RNAmolecules are chemically modified and then preferentially
cleaved at the phosphodiester bond 30 to the inosine nucleotide. The reaction
products are subsequently cloned and sequenced followed by analysis of full
lengths cDNAs spanning the identified cleavage sites. This method was successful
in that it led to the identification of initially five new cases of A-to-I editing in C.
elegans mRNAs (94). Interestingly, all detected editing sites were present in the
noncoding region of the RNA molecules, and this study therefore gave a first hint
that editing might have additional functions besides the alteration of specific
codons. In a follow-up study, five additional substrates in C. elegans were discov-
ered, as well as 19 novel editing sites in transcripts from human brain (95). Similar to
the previous study, all detected editing events were within noncoding regions and
the editing of 15 out of the 19 discovered human RNA substrates occurred within
transposon derived repeat elements. This finding led to the speculation that
repetitive sequences may generally be frequent targets of the editing machinery.
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The isolation and cloning of inosine-containing mRNAs using this technique is
relatively laborious, and a high background of false positives makes it impractical to
use for the comprehensive identification of all editing targets (94, 95).

The recent availability of complete genome sequences and annotations, includ-
ing the human genome, has made it possible to conduct specific database searches to
identify edited genes (see Figure 1.2 for schematic overview of screening methods to
identify editing targets). The “smoking gun” of A-to-I RNA editing is an A/G
discrepancy between a gene’s cDNA sequence and its genomic counterpart. However,
this feature is not sufficient to distinguish genuine RNA editing sites from A/G
discrepancies that are the result of a single-nucleotide polymorphism (SNP), a
sequencing error in the database, or a mutation introduced during cDNA cloning.
Several laboratories embarked on the genome-wide computational screening for A/G
discrepancies and through application of statistical methods were able to show that
human Alu-type repeat elements present in mRNA sequences are a major target for
A-to-I RNA editing (65, 96–98). Alu repeats are approximately 300 bp in length and
consist of two monomers linked by an A-rich region. These repeats are highly
abundant within the human genome and can occur both in forward and reverse
orientation (for review see reference 99). If present within the samemRNAmolecule,
two oppositely oriented Alu elements can form a partially double-stranded structure
generating a substrate for ADAR enzymes. In fact, when validating candidate Alu
elements for editing invivo, it turned out that if the two interacting repeat elements are
within a few kilobases of one another, the occurrence of editing could always be

Figure 1.2 Screening strategies for identification of recoding targets. Flowchart outlining
experimental strategies for delineation of editing events that lead to recoding. Approaches that
use biochemicalmethods for the initial selectionof candidate sequences (either through inosine-
specific cleavage protocol or affinity chromatography using either ADAR or inosine-specific
antibodies) are shown on one side. Approaches that start out by computationally filtering
likely editing candidates are indicated on the right. See text for discussion of individual
discussions.
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confirmed experimentally (65). Between the different studies, several thousand
mRNAs with a total of more than 20,000 editing sites were annotated. The main
reasons for the onlymoderate level of overlap between the identified target sets are the
different databases used for analysis (for example, either including or excluding EST
sequences) and different stringencies when filtering the datasets. Since exonic Alu
elements are almost always located within the noncoding regions of an mRNA
molecule, it will be intriguing to see if Alu repeat editing may influence the stability,
processing, or transport of mRNA molecules. In a few cases it was shown that Alu-
mediated editing can destroy or create predicted splice sites (65), which represents
another example of how A-to-I editing may regulate gene expression. Because Alu
repeat elements are only present in primategenomes, repeat element editing in rodents
was shown to occur at a much lower overall rate. This raises the intriguing question of
whether editing has a specific role in primate evolution (see Chapter 13 for in-depth
review on RNA editing in Alu-type repeats).

Nevertheless, rodent genomes contain other types of repetitive elements, which
differ in the sequence composition (100) butwhich also can give rise to RNA foldback
structures and subsequent A-to-I editing. In one case this has been shown to regulate
the expression of a mRNA in mouse (101) (see also Chapter 13).

Alu-repeat-mediated editing targets belong to a class of editing substrates that
are characterized by low site-selectivity andmultiple site modification and are almost
all localized in nontranslated sequences of mRNAs or introns. Figure 1.3 depicts the
spectrum of currently known targets of A-to-I editing according to site-selectivity of
modification, total rate of editing (inosine content), double-strandedness of the RNA
fold-back structure, and the prevalence among identified substrates. Recoding targets
for editing are located at the very end of the spectrumwith the highest site-selectivity,
the lowest relative content of inosine per transcript molecule, and the lowest double-
strandedness of the substrate RNA.

The many editing events identified in noncoding mRNA sequences and within
introns could explain the high amount of inosine that has been detected inmammalian

Figure 1.3 Spectrum of known A-to-I RNA editing targets. The known types of RNA editing
targets are shown according to double-strandedness of the RNA fold directing editing, the site-
selectivity of the editing event, total inosine content in the message, and the presumed
prevalence relative to all known editing targets.
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mRNApreparations (92). However, in light of the fact that rodents lack Alu elements,
which constitute the main target of the RNA editing machinery in primates, a
significant portion of the existing A-to-I editing events may still await discovery. If
so, then site-selective targets of recoding may constitute a major fraction of these
missing substrates.

Because of the predominance of inosine-containing RNAs that are edited
in Alu repeats, experimental approaches to identify other sites of editing are
challenging in primates. Ohlson et al. elegantly avoided this problem by using
mouse brain tissue samples to selectively screen for ADAR2 specific substrates
using affinity chromatography (102). For the detection of novel targets, ADAR2-
specific antibodies were used to immunoprecipitate RNA molecules in complex
with ADAR2. Reverse transcription and micro-array analysis of these co-precipi-
tated RNA molecules resulted in the detection of up to 200 potential substrates
(102), one of which, GABA(A) receptor subunit alpha3, has recently been verified
in vivo (103).

In another approach to directly detect and isolate inosine-containing RNAs, an
antibody was developed that selectively binds to inosine (104). Immunoprecipitated
RNAmolecules fromwild-type andmutant (ADAR�/�) flieswere reverse transcribed
and hybridized to a cDNA array. Comparison between wild-type and ADAR-/- cDNA
array data led to the identification of 500 putative ADAR target genes (104).
In addition, a database search was performed in which Drosophila cDNA sequences
were compared to their genomic counterparts, as a genomically encoded adenosine
will appear as guanosine in the expressed sequence after editing. This resulted in the
detection of 800 genes that show an A/G discrepancy within the coding region.
Ultimately, by comparing these two groups of putative editing targets, 62 genes were
present in both groups.However, editing still has to be proven experimentally formost
of these genes (104).

A prerequisite for editing is the presence of a double-stranded RNA structure.
This suggests that the sequence surrounding the editing site may be conserved
between species to preserve this RNA fold. Indeed, comparative genomics between
18 Drosophila species has demonstrated an almost complete absence of mutations
in the close vicinity of the exonic edited sites (41). Using this knowledge,
Hoopengardner et al. were able to discover 16 novel edited genes in Drosophila
and one novel site in humans. Several different groups subsequently conducted
database searches for finding novel edited human genes, taking into account this
conservation between species as well as the established cis-sequence preferences of
ADARs (39, 40). This led to the discovery of four novel human genes edited within
the coding region.

Moreover, the total of known edited targets in Drosophila recently doubled by
using D. melanogaster genomic and cDNA databases in a computational screen for
A-to-G discrepancies, leading to the identification of 27 edited genes (38).

All of the above-describedmethods haveproven to be effective for the discovery
of novel edited genes. However, often already known substrates have beenmissed and
there are a high number of false positives detected in each study. The methods for
finding novel ADAR substrates still have to be optimized and developed further to
allow for the identification of all recoding sites of editing.
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