AN INTRODUCTION TO COMMUNICATION NETWORK ANALYSIS

George Kesidis

Pennsylvania State University

WILEY-INTERSCIENCE A John Wiley & Sons, Inc., Publication

AN INTRODUCTION TO COMMUNICATION NETWORK ANALYSIS

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

WILLIAM J. PESCE

PRESIDENT AND CHIEF EXECUTIVE OFFICER

PETER BOOTH WILEY CHAIRMAN OF THE BOARD

AN INTRODUCTION TO COMMUNICATION NETWORK ANALYSIS

George Kesidis

Pennsylvania State University

WILEY-INTERSCIENCE A John Wiley & Sons, Inc., Publication Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.


Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data:

```
Kesidis, George.
An introduction to communication network analysis / George Kesidis.
p. cm.
ISBN 978-0-471-37141-0 (cloth)
1. Telecommunication—Traffic—Textbooks. 2. Network performance
(Telecommunication)—Textbooks. 3. Switching theory—Textbooks. 1. Title.
TK5102.985.K47 2007
621.382'1—dc22 2007002535
```

Printed in the United States of America.

CONTENTS

Pt	Preface		
1	Review of Elementary Probability Theory		
	1.1	Sample space, events, and probabilities	1
	1.2	Random variables	3
	1.3	Cumulative distribution functions, expectation, and moment generating	
		functions	3
	1.4	Discretely distributed random variables	5
		1.4.1 The Bernoulli distribution	5
		1.4.2 The geometric distribution	6
		1.4.3 The binomial distribution	6
		1.4.4 The Poisson distribution	7
		1.4.5 The discrete uniform distribution	8
	1.5	Continuously distributed random variables	9
		1.5.1 The continuous uniform distribution	10
		1.5.2 The exponential distribution	11
		1.5.3 The gamma distribution	11
		1.5.4 The Gaussian (or normal) distribution	11
	1.6	Some useful inequalities	12
	1.7	Joint distribution functions	14
		1.7.1 Joint PDF	14

		1.7.2 Marginalizing a joint distribution	15
	1.8	Conditional expectation	15
	1.9	Independent random variables	18
		1.9.1 Sums of independent random variables	18
	1.10	Conditional independence	20
	1.11	A law of large numbers	20
	1.12	First-order autoregressive estimators	22
	1.13	Measures of separation between distributions	23
	1.14	Statistical confidence	24
		1.14.1A central limit theorem	24
		1.14.2Confidence intervals	25
		1.14.3Recursive formulas and a stopping criterion	28
	1.15	Deciding between two alternative claims	29
		Problems	30
2	Mai	kov Chains	35
	2.1	Memoryless property of the exponential distribution	36
		Finite-dimensional distributions and stationarity	37
		The Poisson (counting) process on \mathbb{R}^+	38
		Continuous-time, time-homogeneous Markov processes with countable state	
		space	41
		2.4.1 The Markov property	41
		2.4.2 Sample path construction of a time-homogeneous, continuous-time	
		Markov chain	42
		2.4.3 The transition rate matrix and transition rate diagram	45
		2.4.4 The Kolmogorov equations	47
		2.4.5 The balance equations for the stationary distribution	52
		2.4.6 Transience and recurrence	54
		2.4.7 Convergence in distribution to steady state	56
		2.4.8 Time reversibility and the detailed balance equations	56
	2.5	Birth-death Markov chains	59
		2.5.1 Birth-death processes with finite state space	60
		2.5.2 Birth-death processes with infinite state space	61
		2.5.3 Applications of the forward equations	63
		Modeling time-series data using a Markov chain	65
		Simulating a Markov chain	70
		Overview of discrete-time Markov chains	72
	2.9	Martingales adapted to discrete time Markov chains	78
		Problems	78
3	Inti	roduction to Queueing Theory	83

		CONTENTS	ix
	3.1	Arrivals, departures, and queue occupancy	83
		Lossless queues	85
		3.2.1 No waiting room	86
		3.2.2 Single-server queue	87
		3.2.3 Single server and constant service times	88
		3.2.4 Single server and general service times	91
	3.3	A queue described by an underlying Markov chain	91
	3.4	Stationary queues	92
		3.4.1 Point processes and queues on \mathbb{R}	93
		3.4.2 Stationary and synchronous versions of a marked point process	94
		3.4.3 Poisson arrivals see time averages	96
		3.4.4 Little's result	100
	3.5	Erlang's blocking formula for the $M/M/K/K$ queue	104
	3.6	Overview of discrete-time queues	105
		Problems	107
4	Loc	cal Multiplexing	111
	4.1	Internet router architecture	111
		4.1.1 Big picture of an IP (layer 3) router	112
		4.1.2 Ingress linecard	112
		4.1.3 Switch fabric	115
		4.1.4 Egress linecard	118
	4.2	Token (leaky) buckets for packet traffic regulation	119
	4.3	Multiplexing flows of variable-length packets	122
		4.3.1 Multiplexing with a single FIFO queue	124
		4.3.2 Strict priority	124
		4.3.3 Deficit round-robin	124
		4.3.4 Shaped VirtualClock	126
	4.4	Service curves	128
	4.5	Connection multiplexing on a single trunk	129
	4.6	A game-theoretic framework for multiplexing packet flows	132
	4.7	Discussion: Local medium access control of a single wireless channel	137
		Problems	137
5	Qu	eueing networks with static routing	141
	5.1	Loss Networks	141
		5.1.1 Fixed-route arrival rates	143
		5.1.2 Exact expression for connection blocking	145
		5.1.3 Fixed-point iteration for approximate connection blocking	146
	5.2	Stable open networks of queues	147
		5.2.1 Flow balance equations	148

X CONTENTS

		5.2.2 Open Jackson networks	150
		Problems	153
6	Dyr	namic Routing and Routing with Incentives	157
	6.1	General routing issues	157
		6.1.1 Discussion: IP forwarding	159
		6.1.2 Discussion: MPLS	160
	6.2	Unconstrained optimization	161
	6.3	Revenue maximization for loss networks	163
	6.4	Constrained optimization and duality	164
	6.5	A distributed pricing and resource management framework	166
	6.6	Discussion: Joint scheduling and routing in multihop wireless networks	169
	6.7	Multipath load balancing	170
		Problems	174
7	Pee	er-to-Peer File Sharing with Incentives	177
	7.1	Summary of query resolution	178
		Unstructured query resolution	179
		7.2.1 A centralized approach to search	179
		7.2.2 A decentralized approach to search: Limited-scope flooding and	
		reverse-path forwarding	179
		7.2.3 A partially centralized approach to search	180
		7.2.4 An example of search by random walk	181
	7.3	Structured query resolution	182
		7.3.1 A structured P2P framework using Voronoi cells	183
		7.3.2 Specific approaches using Voronoi cells	184
		7.3.3 Variations in the design of search, including Chord	187
		7.3.4 The Kademlia example	190
		7.3.5 Discussion: Spatial neighbor-to-neighbor graphs	191
	7.4	Discussion: Security issues	192
		7.4.1 The querying process	192
		7.4.2 The downloading process	193
	7.5	Incentives for cooperation when uploading	193
		7.5.1 Rule-based incentives of BitTorrent-like swarms	194
		7.5.2 A cumulative reputation system to observe the level of peer cooperation	195
		7.5.3 Modeling trust groups	198
		7.5.4 Discussion: Game-theoretic models of P2P systems	199
		Problems	200
A	ppe	ndix A: Additional Background on Routing	203
	A.1	Network graph terminology	203

	CONTENTS	ХÍ	
A.2 Link state algorithms		207	
A.3 Distance vector algorithms		209	
Appendix B: Solutions or References for Selected Problems		213	
References		221	

PREFACE

This book was the basis of a single graduate course on the general subject of "performance" of communication networks for students from a broad set of backgrounds in electrical engineering, computer science, or computer engineering. The student was assumed to have basic familiarity with networking concepts as discussed in introductory texts on the subject, e.g., [139, 172, 220]. Also the student was assumed to have undergraduate courses in probability theory and linear (matrix) algebra.

Background material on probability and statistics is reviewed in Chapter 1. Graduate courses on probability and stochastic processes in electrical and computer engineering tend to focus on wide-sense stationary processes, typically in order to study the effects of noise in communication and control systems. In two successive chapters this book covers Markov chains and introduces the topic of queueing. Though the continuous-time context is stressed (to facilitate the queueing material), the discrete-time context is covered at the end of each chapter.

The remaining chapters pertain more directly to networking. Chapter 4 is on the subject of traffic shaping and multiplexing using a localized bandwidth resource. The next chapter describes queueing networks with static routing in the rather classical contexts of loss networks and open Jackson networks. Chapter 6 is on dynamic routing and routing with incentives including a game-theoretic model. The final chapter is a discussion of peer-to-peer networking systems, specifically those for the purposes of file sharing.

In general, problems at the end of each chapter review the described concepts and cover more specialized related material that may be of interest to the networking researcher. Worked solutions or references for certain problems are given in an appendix.

The length of the book allows time for about two weeks of lectures on material of specific interest to the instructor. The amount of instructor discretionary time can be increased by,