Smart Material Systems and MEMS: Design and Development Methodologies

Vijay K. Varadan University of Arkansas, USA

K. J. Vinoy Indian Institute of Science, Bangalore, India

S. Gopalakrishnan Indian Institute of Science, Bangalore, India

Smart Material Systems and MEMS

Smart Material Systems and MEMS: Design and Development Methodologies

Vijay K. Varadan University of Arkansas, USA

K. J. Vinoy Indian Institute of Science, Bangalore, India

S. Gopalakrishnan Indian Institute of Science, Bangalore, India

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09361-0 (HB) ISBN-10 0-470-09361-7 (HB)

Typeset in 9/11 pt Times by Thomson Digital

Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Prefa	Preface	
About the Authors		
PAR	T 1: FUNDAMENTALS	1
	roduction to Smart Systems	3
1.1	Components of a smart system	3
	1.1.1 'Smartness'	6
	1.1.2 Sensors, actuators, transducers	7
	1.1.3 Micro electromechanical systems (MEMS)	7
	1.1.4 Control algorithms	9 10
	1.1.5 Modeling approaches 1.1.6 Effects of scaling	10
	1.1.7 Optimization schemes	10
12	Evolution of smart materials and structures	10
	Application areas for smart systems	13
	Organization of the book	13
	References	15
2 Pro	ocessing of Smart Materials	17
2.1	Introduction	17
2.2	Semiconductors and their processing	17
	2.2.1 Silicon crystal growth from the melt	19
	2.2.2 Epitaxial growth of semiconductors	20
	Metals and metallization techniques	21
2.4	Ceramics	22
	2.4.1 Bulk ceramics	22
	2.4.2 Thick films	23
25	2.4.3 Thin films	25
	Silicon micromachining techniques Polymers and their synthesis	26 26
2.0	2.6.1 Classification of polymers	20 27
	2.6.2 Methods of polymerization	27
27	UV radiation curing of polymers	31
2.1	2.7.1 Relationship between wavelength and radiation energy	31
	2.7.2 Mechanisms of UV curing	31
	2.7.3 Basic kinetics of photopolymerization	33

2.8 Deposition techniques for polymer thin films	35
2.9 Properties and synthesis of carbon nanotubes	35
References	40
PART 2: DESIGN PRINCIPLES	43
3 Sensors for Smart Systems	45
3.1 Introduction	45
3.2 Conductometric sensors	45
3.3 Capacitive sensors	46
3.4 Piezoelectric sensors	48
3.5 Magnetostrictive sensors	48
3.6 Piezoresistive sensors	50
3.7 Optical sensors	51
3.8 Resonant sensors	53
3.9 Semiconductor-based sensors	53
3.10 Acoustic sensors	57
3.11 Polymeric sensors3.12 Carbon nanotube sensors	58 59
References	61
References	01
4 Actuators for Smart Systems	63
4.1 Introduction	63
4.2 Electrostatic transducers	64
4.3 Electromagnetic transducers	68
4.4 Electrodynamic transducers4.5 Piezoelectric transducers	70 73
4.5 Flezoelectric transducers	73
4.7 Magnetostrictive transducers	78
4.8 Electrothermal actuators	80
4.9 Comparison of actuation schemes	82
References	83
5 Design Examples for Sensors and Actuators	85
5.1 Introduction	85
5.2 Piezoelectric sensors	85
5.3 MEMS IDT-based accelerometers	88
5.4 Fiber-optic gyroscopes	92
5.5 Piezoresistive pressure sensors	94
5.6 SAW-based wireless strain sensors	96
5.7 SAW-based chemical sensors	97
5.8 Microfluidic systems	100
References	102
PART 3: MODELING TECHNIQUES	103
6 Introductory Concepts in Modeling	105
6.1 Introductory concepts in Modering 6.1 Introduction to the theory of elasticity	105
6.1.1 Description of motion	105
6.1.2 Strain	105
	10,

6.1.3 Strain-displacement relationship	109
6.1.4 Governing equations of motion	113
6.1.5 Constitutive relations	114
6.1.6 Solution procedures in the linear theory of elasticity	117
6.1.7 Plane problems in elasticity	119
6.2 Theory of laminated composites	120
6.2.1 Introduction	120
6.2.2 Micromechanical analysis of a lamina	121
6.2.3 Stress-strain relations for a lamina	123
6.2.4 Analysis of a laminate	126
6.3 Introduction to wave propagation in structures	128
6.3.1 Fourier analysis	129
6.3.2 Wave characteristics in 1-D waveguides	134
References	144
7 Introduction to the Finite Element Method	145
7.1 Introduction	145
7.2 Variational principles	147
7.2.1 Work and complimentary work	147
7.2.2 Strain energy, complimentary strain energy and kinetic energy	148
7.2.3 Weighted residual technique	149
7.3 Energy functionals and variational operator	151
7.3.1 Variational symbol	153
7.4 Weak form of the governing differential equation	153
7.5 Some basic energy theorems	154
7.5.1 Concept of virtual work	154
7.5.2 Principle of virtual work (PVW)	154
7.5.3 Principle of minimum potential energy (PMPE)	155
7.5.4 Rayleigh–Ritz method	156
7.5.5 Hamilton's principle (HP)	156
7.6 Finite element method	158
7.6.1 Shape functions	159
7.6.2 Derivation of the finite element equation	162
7.6.3 Isoparametric formulation and numerical integration	164
7.6.4 Numerical integration and Gauss quadrature	167
7.6.5 Mass and damping matrix formulation	168
7.7 Computational aspects in the finite element method	171
7.7.1 Factors governing the speed of the FE solution	172
7.7.2 Equation solution in static analysis	173
7.7.3 Equation solution in dynamic analysis	174
7.8 Superconvergent finite element formulation	178
7.8.1 Superconvergent deep rod finite element	179
7.9 Spectral finite element formulation	182
References	184
8 Modeling of Smart Sensors and Actuators	187
8.1 Introduction	187
8.2 Finite element modeling of a 3-D composite laminate with embedded piezoelectric sensors and actuators	189
8.2.1 Constitutive model	189
8.2.2 Finite element modeling	191

8.2.3 2-D Isoparametric plane stress smart composite fini	te element 192
8.2.4 Numerical example	192 194
8.3 Superconvergent smart thin-walled box beam element	194
8.3.1 Governing equation for a thin-walled smart compos	
8.3.2 Finite element formulation	199
8.3.3 Formulation of consistent mass matrix	201
8.3.4 Numerical experiments	201
8.4 Modeling of magnetostrictive sensors and actuators	202
8.4.1 Constitutive model for a magnetostrictive material (
8.4.2 Finite element modeling of composite structures wi	
magnetostrictive patches	205
8.4.3 Numerical examples	203
8.4.4 Modeling of piezo fibre composite (PFC) sensors/ac	
8.5 Modeling of micro electromechanical systems	212 212
8.5.1 Analytical model for capacitive thin-film sensors	215
8.5.2 Numerical example	210
	210
8.6 Modeling of carbon nanotubes (CNTs)	
8.6.1 Spectral finite element modeling of an MWCNT References	222 229
References	229
9 Active Control Techniques	231
9.1 Introduction	231
9.2 Mathematical models for control theory	232
9.2.1 Transfer function	232
9.2.2 State-space modeling	232
9.3 Stability of control system	237
9.4 Design concepts and methodology	239
9.4.1 PD, PI and PID controllers	239
9.4.2 Eigenstructure assignment technique	240
9.5 Modal order reduction	241
9.5.1 Review of available modal order reduction techniqu	
9.6 Active control of vibration and waves due to broadband ex	
9.6.1 Available strategies for vibration and wave control	247
9.6.2 Active spectral finite element model (ASEM) for br	
References	253
PART 4: FABRICATION METHODS AND APPLICATIONS	255
10 Silicon Entrication Techniques for MEMS	257
10 Silicon Fabrication Techniques for MEMS 10.1 Introduction	257
10.2 Fabrication processes for silicon MEMS	257
10.2.1 Lithography	257
10.2.2 Resists and mask formation	257
10.2.2 Resists and mask formation 10.2.3 Lift-off technique	258
10.2.4 Etching techniques	259 260
10.2.5 Wafer bonding for MEMS	
	261 263
10.3 Deposition techniques for thin films in MEMS 10.3.1 Metallization techniques	203 264
10.3.2 Thermal oxidation for silicon dioxide	264 265
10.3.3 CVD of dielectrics	
	266

		10.3.4 Polysilicon film deposition	268
		10.3.5 Deposition of ceramic thin films	268
	10.4	Bulk micromachining for silicon-based MEMS	268
		10.4.1 Wet etching for bulk micromachining	269
		10.4.2 Etch-stop techniques	269
		10.4.3 Dry etching for micromachining	271
	10.5	Silicon surface micromachining	271
		10.5.1 Material systems in sacrificial layer technology	273
	10.6	Processing by both bulk and surface micromachining	274
		LIGA process	274
		References	278
11	-	meric MEMS Fabrication Techniques	281
		Introduction	281
	11.2	Microstereolithography	282
		11.2.1 Overview of stereolithography	282
		11.2.2 Introduction to microstereolithography	284
		11.2.3 MSL by scanning methods	285
		11.2.4 Projection-type methods of MSL	287
	11.3	Micromolding of polymeric 3-D structures	289
		11.3.1 Micro-injection molding	290
		11.3.2 Micro-photomolding	291
		11.3.3 Micro hot-embossing	291
		11.3.4 Micro transfer-molding	291
		11.3.5 Micromolding in capillaries (MIMIC)	292
	11.4	Incorporation of metals and ceramics by polymeric processes	293
		11.4.1 Burnout and sintering	293
		11.4.2 Jet molding	293
		11.4.3 Fabrication of ceramic structures with MSL	294
		11.4.4 Powder injection molding	295
		11.4.5 Fabrication of metallic 3-D microstructures	296
		11.4.6 Metal-polymer microstructures	300
	11.5	Combined silicon and polymer structures	300
		11.5.1 Architecture combination by MSL	300
		11.5.2 MSL integrated with thick-film lithography	301
		11.5.3 AMANDA process	301
		References	302
12		gration and Packaging of Smart Microsystems	307
	12.1	Integration of MEMS and microelectronics	307
		12.1.1 CMOS first process	307
		12.1.2 MEMS first process	307
		12.1.3 Intermediate process	308
		12.1.4 Multichip module	308
	12.2	MEMS packaging	310
		12.2.1 Objectives in packaging	311
		12.2.2 Special issues in MEMS packaging	313
		12.2.3 Types of MEMS packages	314
	12.3	Packaging techniques	315
		12.3.1 Flip-chip assembly	315
		12.3.2 Ball-grid array	316

	12.3.3 Embedded overlay	316
10	12.3.4 Wafer-level packaging	317
	4 Reliability and key failure mechanisms	319
12.:	5 Issues in packaging of microsystems	321
	References	322
13 Fab	rication Examples of Smart Microsystems	325
	1 Introduction	325
13.2	2 PVDF transducers	325
	13.2.1 PVDF-based transducer for structural health monitoring	325
	13.2.2 PVDF film for a hydrophone	328
	3 SAW accelerometer	332
13.4	4 Chemical and biosensors	336
	13.4.1 SAW-based smart tongue	337
12	13.4.2 CNT-based glucose sensor	339
13.	5 Polymeric fabrication of a microfluidic system	342
	References	344
14 Stru	actural Health Monitoring Applications	347
	1 Introduction	347
14.2	2 Structural health monitoring of composite wing-type structures using	
	magnetostrictive sensors/actuators	349
	14.2.1 Experimental study of a through-width delaminated beam specimen	350
	14.2.2 Three-dimensional finite element modeling and analysis	352
	14.2.3 Composite beam with single smart patch	353
	14.2.4 Composite beam with two smart patches	355
14	14.2.5 Two-dimensional wing-type plate structure	357
	Assessment of damage severity and health monitoring using PZT sensors/actuators	358 364
	Actuation of DCB specimen under Mode-II dynamic loading Wireless MEMS–IDT microsensors for health monitoring of structures and systems	365
14.,	14.5.1 Description of technology	367
	14.5.2 Wireless-telemetry systems	368
	References	374
15 Vib	ration and Noise-Control Applications	377
	1 Introduction	377
	2 Active vibration control in a thin-walled box beam	377
10.	15.2.1 Test article and experimental set-up	378
	15.2.2 DSP-based vibration controller card	378
	15.2.3 Closed-loop feedback vibration control using a PI controller	380
	15.2.4 Multi-modal control of vibration in a box beam using eigenstructure assignment	383
15.	3 Active noise control of structure-borne vibration and noise in a helicopter cabin	385
	15.3.1 Active strut system	387
	15.3.2 Numerical simulations	387
	References	394
Index		397

Preface

'Smart technology' is a term extensively used in all branches of science and engineering due to its immense potential in application areas of very high significance to mankind. This technology has already been used in addressing several remaining challenges in aerospace, automotive, civil, mechanical, biomedical and communication engineering disciplines. This has been made possible by a series of innovations in developing materials which exhibit features such as electromechanical/ magnetomechanical coupling. In other words, these materials could be used to convert one form of energy (say electrical) to another (mechanical, e.g. force, vibration, displacement, etc.). Furthermore, this phenomenon is found to be reciprocal, paving the way for fabricating both sensors and actuators with the same materials. Such a system will also include a control mechanism that responds to the signals from the sensors and determines the responses of the actuators accordingly.

Researchers the world over have devised various ways to embed these components in order to introduce 'smartness' in a system. Originally introduced in larger systems in the bulk form, this science is increasingly leaning towards miniaturization with the popularization of micro electromechanical systems (MEMS). One of the reasons for this is the stringent lightweight constraints imposed on the system design. Although there have been sporadic efforts on various facets of the technology, to the best of these authors' knowledge, there is currently no single book dealing with diverse aspects such as design, modeling and fabrication of both bulk sensors and actuators and MEMS.

The use of MEMS in smart systems is so intensely intertwined that these technologies are often treated as two 'faces of the same coin'. The engineering of smart systems and MEMS are areas for multidisciplinary research, already laden with myriad technological issues of their own. Hence, the books presently available in the literature tend to separate the basic smart concepts, design and modeling of sensors and actuators and MEMS design and fabrication. Evidently, the books presently available do not address modeling of smart systems as a whole. With smart systems technology branching towards several newer disciplines, it is essential and timely to consolidate the technological advances in selected areas.

In this present book, it is proposed to give a unified treatment of the above concepts 'under a single umbrella'. This book can be used as a reference material/textbook for a graduate level course on Smart Structures and MEMS. It should also be very useful to practicing researchers in all branches of science and engineering and interested in possible applications where they can use this technology. The book will present unified schemes for the design and modeling of smart systems, address their fabrication and cover challenges that may be encountered in typical application areas.

Material for this book has been taken from several advanced short courses presented by the authors in various meetings throughout the world. Valuable comments from the participants of these courses have helped in evolving the contents of this text and are greatly appreciated. We are also indebted to various researchers for their valuable contributions cited in this book. We would like to indicate that this text is a compilation of the work of many people. We cannot be held responsible for the designs and development methods that have been published but are still under further research investigation. It is also difficult to always give proper credit to those who are the originators of new concepts and the inventors of new methods. We hope that there are not too many such errors and will appreciate it if readers could bring the errors that they discover to our attention. We are also grateful to the publisher's staff for their support, encouragement and willingness to give prompt assistance during this book project.

There are many people to whom we owe our sincere thanks for helping us to prepare this book. However, space dictates that only a few of them can receive formal acknowledgement. However, this should not be taken as a disparagement of those whose contributions remain anonymous. Our foremost appreciation goes to Dr V.K. Aatre, Former Scientific Advisor to the Defence Minister, Defence Research and Development Organization (DRDO), India and to Dr S. Pillai, Chief Controller of Research and Development, DRDO, for their encouragement and support along the way. In addition, we wish to thank many of our colleagues and students, including K.A. Jose, A. Mehta, B. Zhu, Y. Sha, H. Yoon, J. Xie, T. Ji, J. Kim, R. Mahapatra, D.P. Ghosh, C.V.S. Sastry, A. Chakraboty, M. Mitra, S. Jose, O. Jayan and A. Roy for their contributions in preparing the manuscript for this book. We are very grateful to the staff of John Wiley & Sons, Ltd, Chichester, UK, for their helpful efforts and cheerful professionalism during this project.

Vijay K. Varadan K. J. Vinoy S. Gopalakrishnan

About the Authors

Vijav K. Varadan currently holds the 21st Century Endowed Chair in Nano- and Biotechnologies and Medicine and is Distinguished Professor of Electrical Engineering and Distinguished Professor of Biomedical Engineering (College of Engineering) and Neurosurgery (College of Medicine) at the University of Arkansas. USA. He is also the Director of the Institute for Nano-, Micro- and Neuroelectronics, Sensors and Systems and the Director of the High-Density Electronics Center. He has concentrated on the design and development of various electronic, acoustic and structural composites, smart materials, structures and devices, including sensors, transducers, Micro Electromechanical Systems (MEMS), plus the synthesis and large-scale fabrication of carbon nanotubes, Nano Electromechanical Systems (NEMS), microwave, acoustic and ultrasonic wave absorbers and filters. He has developed neurostimulators, wireless microsensors and systems for the sensing and control of Parkinson's disease, epilepsy, glucose in the blood and Alzhiemer's disease. He is also currently developing both silicon- and organic-based wireless sensor systems with radio frequency identification (RFID) for human gait analysis and sleep disorders and various neurological disorders. He is an editor of the Journal of Wave-Material Interaction and the Editorin-Chief of the Journal of Smart Materials and Structures, as well as being an Associate Editor of the Journal of Microlithography, Microfabrication and Microsystems. In addition, he also serves on the editorial board of the International Journal of Computational Methods. He has published more than 500 journal papers and 11 books. He holds 12 patents pertinent to conducting polymers, smart structures, smart antennas, phase shifters, carbon nanotubes, implantable devices for Parkinson's patients, MEMS accelerometers and gyroscopes.

K. J. Vinoy is an Assistant Professor in the Department of Electrical Communication Engineering at the Indian Institute of Science, Bangalore, India. He received

an M.Tech degree in Electronics from the Cochin University of Science and Technology, India and a Ph.D. degree in Engineering Science and Mechanics from the Pennsylvania State University, USA, in 1993 and 2002, respectively. From 1994 to 1998, he worked at the National Aerospace Laboratories, Bangalore, India. Following this, he was a research assistant at the Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD) at the Pennsylvania State University from 1999 to 2002. He continued there to carry out postdoctoral research from 2002 to August 2003. His research interests include several aspects of microwave engineering, RF-MEMS and smart material systems. He has published over 50 papers in technical journals and conference proceedings. His other publications include two books, namely Radar Absorbing Materials: From Theory to Design and Characterization, and RF-MEMS and their Applications. He also holds one US patent.

S. Gopalakrishnan received his Master's Degree in Engineering Mechanics from the Indian Institute of Technology, Madras, Chennai, India and his Ph.D. degree from the School of Aeronautics and Astronautics, Purdue University, USA. He joined the Department of Aerospace Engineering at the Indian Institute of Science, Bangalore, India in November 1997 as Assistant Professor and is currently an Associate Professor in the same department. His areas of interest include structural dynamics, wave propagation, computational mechanics, smart structures, MEMS and nanocomposite structures. He is a Fellow of the Indian National Academy of Engineering and a recipient of the 'Satish Dhawan Young Scientist Award' for outstanding contributions in Aerospace Sciences from the Government of Karnataka, India. He serves on the editorial board of three prime international computational mechanics journals and has published 70 papers in international journals and 45 conference papers.