Chemistry

An Introduction for Medical and Health Sciences

Alan Jones

Formerly Head of Chemistry and Physics Nottingham Trent University

Chemistry

An Introduction for Medical and Health Sciences

Chemistry

An Introduction for Medical and Health Sciences

Alan Jones

Formerly Head of Chemistry and Physics Nottingham Trent University

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Jones, Alan, 1941-

Chemistry: an introduction for medical and health sciences / Alan Jones

Includes bibliographical references and index. ISBN 0-470-09288-2 (cloth) – 0-470-09289-0

1. Biochemistry. 2. Chemistry. 3. Pharmaceutical chemistry. II. Title

QP514.2.J66 2005 612'.015–dc22 2004029124

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 470 09288 2 hardback ISBN 0 470 09289 0 paperback

Typeset in 11/14pt Times by Thomson Press (India) Limited, New Delhi Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

ref	ace		ix
ntr	oduct	ion	1
Н	ow to	use the book	1
1	Star	ting Chemistry	3
	1.1	Terminology and processes used in drug manufacture	4
	1.2	Atoms and things	9
		Chemical reactions and the periodic table	11
2	Cova	alent Compounds and Organic Molecules	15
	2.1	How to make stable molecules	18
	2.2	Covalent compounds	18
	2.3	General Properties of Covalent Compounds	22
	2.4	Characteristic shapes and bond angles within covalent	
		molecules	23
	2.5	Some covalent bonds with slight ionic character	24
	2.6	Double-bonded carbon compounds or 'unsaturated' carbon bonds	25
	2.7	Some further compounds of carbon	27
	2.8	The carbon cycle	28
	2.9	Isomerism: some different arrangements of atoms within	
		a molecule	29
		Naming organic compoundsif you really want to know!	33
		Ring structures	36
		Compounds of carbon containing other groups	37
	2.13	Some further examples with explanations	37
3		anic Compounds Containing Carbon, Hydrogen and Oxygen:	
	Alco	hols and Ethers	43
	3.1	Alcohols, $C_nH_{2n+1}OH$	45
	3.2	Properties of alcohols: monohydric alcohols with one OH group	46
	3.3	Other alcohols: di- and tri-hydric alcohols	48
	3.4	Aromatic OH compounds: phenol	49
	3.5	Ethers are isomers of alcohols	50
4	Carl	oonyl Compounds: Compounds Containing C=O Groups	55
	4.1	Simple aldehydes and ketones: carboxylic acids and esters	56
	4.2	Carbohydrates, monosaccharides and sugars	58

•	
V1	CONTENTS

	4.3	Disaccharides	60
	4.4		61
	4.5	More about sugars – if you really need to know!	62
	4.6	Carboxylic acids: another set of CHO compounds	
		containing C=O groups	63
	4.7	Salts and esters	63
		Lipids or fats	65
	4.9		67
		Chemicals in food	68
	4.11	Soaps and detergents	69
5	Orga	anic Compounds Containing Nitrogen	73
	5.1	Amines and amino acids	75
	5.2	Amino acids	76
	5.3	Peptide formation and protein synthesis	77
	5.4	Hydrolysis (action of water) of peptides	78
	5.5	Other properties of amino acids	79
	5.6	Protein metabolism	79
	5.7	Nucleic acids, DNA and RNA	80
6	Vita	mins, Steroids, Hormones and Enzymes	85
	6.1	Vitamins	86
	6.2	Steroids and hormones	94
	6.3	Enzymes	96
7	Ions	, Electrolytes, Metals and Ionic Bonding	103
	7.1	Introduction to ionic bonding	105
	7.2	Some common properties of ions and ionic bonds	107
	7.3	Electrolytes and ions of the body	109
	7.4	Major cations (positive ions) in the body: sodium,	
		potassium and calcium ions	110
	7.5	Balance between fluids	113
	7.6	Essential elements present in small quantities: micronutrients	
		and minerals	114
	7.7	Cancer treatments and chemotherapies that use metal compounds	115
8	Wat	er	119
	8.1	Introduction. What makes water so unique?	121
	8.2	Chemical reactions in aqueous solution	123
	8.3	Dissolving and solubility: water is a great solvent	124
	8.4	Osmosis	126
	8.5	Dialysis	127
	8.6	Colloids	128
	8.7	Water, washing and detergents	129

CON	TENTS	vii
	8.8 Water vapour	130
	8.9 Evaporation from skin	131
	8.10 Solid water	132
	8.11 Hydrolysis	133
9	Acids and Bases	135
	9.1 Acids	137
	9.2 Bases and alkali	140
	9.3 Bases containing nitrogen	141
	9.4 Amino acids and zwitterions	142
	9.5 Salts	142
	9.6 Neutralization	143
	9.7 Buffer solutions	143
	9.8 Buffers in the body	144
	9.9 Digestion and acid attack	145
	9.10 Acids in the environment	146
10	Oxidation and Reduction	149
	10.1 Definitions of oxidation and reduction	150
	10.2 Burning and oxidation	153
	10.3 Some applications of redox reactions to metabolic processes	153
	10.4 Nitric oxide, NO or N(II)O	154
	10.5 Oxygen gas	156
11	Analytical Techniques	159
	11.1 The need for analysis	160
	11.2 Mass spectroscopy	162
	11.3 Chromatography	165
	11.4 Spectroscopy of various types	168
	11.5 Electron microscopes and scanning electron microscopy (SEM)	170
	11.6 Magnetic resonance spectroscopy (MRS) or magnetic	
	resonance imaging (MRI)	173
	11.7 General conclusions	174
12	Radioactivity	177
	12.1 Introduction to the effects of radiation	178
	12.2 Isotopes and radioactivity	179
	12.3 Splitting the nuclei of atoms	181
	12.4 Properties of alpha, beta and gamma radiation	182
	12.5 Half-life	185
	12.6 Radiation everywhere	186
	12.7 Conclusion	188

viii			CONTENTS

13	Rates of Reaction	191
	13.1 Effect of temperature on reactions and metabolism	193
	13.2 Why does a chemical reaction slow down on cooling?	194
	13.3 Free radicals	197
	13.4 Effect of concentration on chemical reactions	197
	13.5 Catalysts and enzymes	198
	13.6 How catalysts and enzymes work	199
	13.7 Application of chemical reactions to drug use	201
14	Overview of Chemicals Fighting Diseases	205
	14.1 Drugs ancient and modern	205
	14.2 Cancer treatments	210
	14.3 Pain killers	213
	14.4 Stopping attack by 'aliens' on our bodies: viruses and bacteria	214
	14.5 AIDS and HIV	215
	14.6 Gene therapy	217
	14.7 Some changes of use of existing drugs	217
15	Numbers and Quantities	221
	15.1 Standard notation, powers of 10	223
	15.2 Moles	223
	15.3 Powers of numbers and logs	224
	15.4 Moles in formulae and equations	228
	15.5 Moles in solution	229
	15.6 Concentration in ppm, parts per million	230
	15.7 Dilutions	230
	15.8 Percentage by mass	231
App	pendix 1: Alphabetical List of the Common Elements	235
App	pendix 2: Periodic Classification of the Common Elements	237
Glo	ssary	239
Bib	liography	253
Ind	ex	257

Preface

Recent years have seen significant changes in the practice, education and training of doctors, medical, nursing and healthcare professionals. Pieces of paper are required to show competency in a wide range of skills. There is also a requirement for continuing professional development in order that people increase their knowledge and skills. The United Kingdom Central Council for Nursing, Midwifery and Health Visiting publication *Fitness for Practice* notes that there will be: 'greater demands upon nurses and midwives for technical competence and scientific rationality'.

The daily use of chemicals in the form of medicines and drugs means that there is a need for a basic understanding of chemistry. Do not be put off by this, as you will not be expected to be a chemical expert, but you will need to have some knowledge of the various chemicals in common medical use. You will not be expected to write complicated formulae or remember the structures of the drugs you administer, but it will be of use to know some of their parameters. Modern healthcare is becoming increasingly scientific, so there is a necessity to have a good introduction to chemical concepts. Scientific and chemical understanding leads to better informed doctors, nurses and healthcare workers.

This book starts each chapter with a self-test to check on chemical understanding, and then proceeds to move through the subject matter, always within the context of current practice. Anyone able to pass well on the self-test can move onto the next chapter. I hope you will find the Glossary a useful reference source for a number of chemical terms.

Finally, I would like to thank Mike Clemmet for his valuable contributions to earlier versions of the book, also Dr Sheelagh Campbell of the University of Portsmouth who reviewed the draft manuscript, and Malcolm Lawson-Paul for drawing the cartoons. Perhaps he has learned a little more about chemistry along the way!

Alan Jones

Introduction

This book is intended to introduce some of the basic chemistry for the medical and healthcare professions. The material is suitable for any such course or as a refresher for people returning to the profession. It is designed to give a basic introduction to chemical terms and concepts and will develop the relevant chemistry of drugs and medicines in common use in later chapters.

It can be used as a self-teaching book since it contains diagnostic questions at the beginning of each chapter together with the answers, at the end of the chapter.

It can also be used to supplement the chemistry done on any suitable course. It is not a compendium or list of current drugs and their contents. It is also suitable for people who have a limited chemical knowledge as it starts with the basic concepts at the start of each chapter.

How to use the book

Read Chapter 1. Just read it through quickly. Do not worry about total understanding at this stage. Use it as an introduction or refresher course for chemical terminology Take in the 'feeling' of chemistry' – and begin to understand the basic principles. Think, but do not stop to follow up any cross-references yet. Just read it through. That will take about twenty minutes.

When you've read this section through once, and thought about it, read it through again, a few days later, but this time take it more slowly. If you are unclear about the chemical words used in Chapter 1 and the others Chapters, use the Glossary at the end of the book for clarification. After reading the whole of Chapter 1 you will be ready for a more detailed study of the relevant areas of chemistry in later chapters.

At the start of each chapter there are some diagnostic questions. If you get more than 80 % of the questions right (the answers are given at the end of each chapter),

2 INTRODUCTION

you probably understand the principles. Be honest with yourself. If you really feel that you do not understand it, talk to someone. Start with a fellow student. Then, if the two of you cannot sort it out, ask your lecturer/tutor – that is what they get paid for! You can always read the chapter again a little later. Sometimes familiarity with the words and concepts from a previous reading helps when you read it a second time. Remember this is a study book for your own professional development not a novel where it does not matter if you cannot remember the characters' names.

It will also be helpful, whenever needed or as an aid to your memory, to check on things by looking up words, concepts and definitions in the Glossary. Keep a notebook handy to jot down useful items to remember later.

Throughout the book, as you would expect, there are formulae and structures of chemical compounds. You need not remember these but they are included to show the principles being covered. You are not expected to work out the names of these compounds or balance equations but after a while some might stick in your memory.

In each of the later chapters there are 'scene setters' for the concepts covered in the chapters. The chapters start up with basic ideas and lead onto more detailed chemistry and applications.

Anyway, here we go! Enjoy it! I did when I wrote it and even later when I re-read it. Excuse my sense of humour; I feel it is needed when studying chemistry.

1 Starting Chemistry

Learning objectives

- To introduce some of the most relevant and commonly used chemical concepts, processes and naming systems.
- To show some of the background upon which medicinal chemistry is based.

Diagnostic test

Try this short test. If you score more than 80% you can use the chapter as a revision of your knowledge. If you score less than 80% you probably need to work through the text and test yourself again at the end using the same test. If you still score less than 80% then come back to the chapter after a few days and read it again.

- 1. What is the main natural source of drug material for research? (1)
- 2. What charge has each of the following particles: proton, neutron, electron? (3)
- 3. Covalent bonding gains its stability by what process? (1)
- 4. Ionic bonding gains its stability by what process? (1)