Charge Transport in Disordered Solids with Applications in Electronics

Edited by

Sergei Baranovski Philipps University Marburg, Germany

Charge Transport in Disordered Solids with Applications in Electronics

Wiley Series in Materials for Electronic and Optoelectronic Applications

Series Editors

Dr Peter Capper, SELEX Sensors and Airborne Systems Infrared Ltd, Southampton, UK Professor Safa Kasap, University of Saskatchewan, Canada Professor Arthur Willoughby, University of Southampton, Southampton, UK

Published Titles

Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Edited by P. Capper Properties of Group-IV, III–V and II–VI Semiconductors, S. Adachi Optical Properties of Condensed Matter and Applications, Edited by J. Singh

Forthcoming Titles

Thin Film Solar Cells: Fabrication, Characterization and Applications, Edited by J. Poortmans and V. Arkhipov

Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, Edited by P. Capper and M. Mauk

Dielectric Films for Advanced Microelectronics, Edited by K. Maex, M. R. Baklanov and M. Green.

Charge Transport in Disordered Solids with Applications in Electronics

Edited by

Sergei Baranovski Philipps University Marburg, Germany

Copyright © 2006

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Charge transport in disordered solids with applications in electronics / edited by Sergei Baranovski. p. cm. – (Wiley series in materials for electronic and optoelectronic applications)

- p. cm. (wiley series in materials for electronic a Includes bibliographical references and index.
- ISBN-13: 978-0-470-09504-1 (cloth : alk. paper)
- ISBN-10: 0-470-09504-0 (cloth : alk. paper)
- 1. Amorphous semiconductors-Electric properties. 2. Solids-Electric properties.
- Semiconductros–Materials. I. Baranovski, Sergei. II. Series. TK7871.99.A45C53 2006 621.3815'2–dc22

2006014686

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09504-1 (HB) ISBN-10 0-470-09504-0 (HB)

Typeset in 10/12 pt Times by SNP Best-set Typesetter Ltd., Hong Kong Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Series Preface	xiii
Preface	XV
1 Charge Transport via Delocalized States in Disordered Materials Igor Zvyagin	1
1.1 Introduction	2
1.2 Transport by Electrons in Extended States Far from the Mobility Edges	4
1.2.1 Weak-scattering theories	4
1.2.2 Weak localization	10
1.2.3 Interaction effects	12
1.3 Scaling Theory of Localization	14
1.3.1 Main ideas of the scaling theory of localization	14
1.3.2 The main equations of one-parameter scaling	15
1.3.3 Model solutions	18
1.3.4 Some predictions of the scaling theory	22
1.3.5 Minimum metallic conductivity	24
1.4 Extended-state Conduction in Three Dimensions	26
1.4.1 Activated conduction	26
1.4.2 Extended-state conduction near the metal-insulator transition	28
1.5 Apparent Mobility Edge and Extended-state Conduction in	
Two-dimensional Systems	33
1.5.1 Experimental studies of the mobility edge in low-mobility	
two-dimensional systems	33
1.5.2 Evidence for a true metal-insulator transition in high-mobility	
two-dimensional systems	34
1.5.3 Evidence against a true metal-insulator transition in	
two-dimensional systems	37
1.5.4 Temperature-dependent charge carrier scattering	38
1.6 Conclusions	43
References	44
2 Description of Charge Transport in Amorphous Semiconductors Sergei Baranovski and Oleg Rubel	49
2.1 Introduction	49
2.2 General Remarks on Charge Transport in Disordered Materials	51

vi CONTENTS

	2.3	Hopping Charge Transport in Disordered Materials via	
		Localized States	55
		2.3.1 Nearest-neighbor hopping	57
		2.3.2 Variable-range hopping	60
	2.4	Description of Charge-carrier Energy Relaxation and Hopping	
		Conduction in Inorganic Noncrystalline Materials	63
		2.4.1 Dispersive transport in disordered materials	64
		2.4.2 The concept of the transport energy	69
	2.5	Einstein's Relationship for Hopping Electrons	73
		2.5.1 Nonequilibrium charge carriers	73
		2.5.2 Equilibrium charge carriers	75
	2.6	Steady-state Photoconductivity	76
		2.6.1 Low-temperature photoconductivity	77
		2.6.2 Temperature dependence of the photoconductivity	81
	2.7	Thermally Stimulated Currents—a Tool to Determine DOS?	83
	2.8	Dark Conductivity in Amorphous Semiconductors	87
	2.9	Nonlinear Field Effects	90
	2.10	Concluding Remarks	93
		References	93
3	Hvd	rogeneted Amorphous Silicon—Material Properties and Device	
3 Hydrogenated Amorphous Silicon—Material Properties and Device Applications <i>Walther Fuhs</i>			97
			71
		Introduction	97
		Preparation and Structural Properties of Amorphous Silicon	99
		Density of States Distribution in the Energy Gap	104
		3.3.1 Model of the density of states distribution	104
		3.3.2 Band-tail states	105
		3.3.3 Deep defect states	105
		Optical Properties	113
		Transport Properties	115
		Recombination of Excess Carriers	121
		3.6.1 Low-temperature regime $(T < 60 \text{ K})$	122
		3.6.2 High-temperature regime $(T > 60 \text{ K})$	127
		Device Applications	130
		3.7.1 Schottky barrier diodes	131
		3.7.2 $p-i-n$ diodes	132
		3.7.3 Thin-film transistors	134
	3.8 '	Thin-film Solar Cells	137
]	References	143
Л	4	lightions of Disordanad Comisondustans in Madarn Electronization	
4		lications of Disordered Semiconductors in Modern Electronics:	149
		c ted Examples Kasap, John Rowlands, Kenkichi Tanioka and Arokia Nathan	149
		*	1.40
		Perspectives on Amorphous Semiconductors	149
	47	Direct Conversion Digital X-ray Image Detectors	151

	4.3	X-ray Photoconductors	152
		Stabilized Amorphous Selenium (a-Se)	154
		Avalanche Multiplication and Ultra-high-sensitive HARP Video Tube	157
		Avalanche Multiplication in Amorphous Semiconductors	160
		Future Imaging Applications with a-Se HARP	165
		Hydrogenated Amorphous Silicon Thin-film Transistors	167
		TFT Backplanes for Organic Light-emitting Diode Displays and	
		Flat-panel X-ray Imagers	170
		4.9.1 Active matrix organic light-emitting diode displays	170
		4.9.2 Active pixel sensors for digital fluoroscopy	173
		References	175
5	The	e Investigation of Charge Carrier Recombination and Hopping	
	Tra	ansport with Pulsed Electrically Detected Magnetic Resonance	
	Тес	hniques	179
	Chr	ristoph Boehme and Klaus Lips	
	5.1	Introduction	180
	5.2	Spin-dependent Recombination	182
	5.3	Spin-dependent Hopping Transport	189
	5.4	The Theory of a pEDMR Experiment	194
		5.4.1 Rabi oscillation and the discrimination of spin coupling	195
		5.4.2 Recombination and hopping echoes and the determination of	
		transitions times	198
	5.5	Experimental Foundations of Pulsed EDMR	200
		5.5.1 Current detection	201
		5.5.2 Sample design	202
		5.5.3 Microwave-induced currents	204
		5.5.4 Limitations of pEDMR experiments	206
	5.6	PEDMR on Transport Channels Through <i>n</i> -a-Si:H	206
		5.6.1 Detection of transport transitions	207
		5.6.2 Observation of Rabi oscillation	209
		5.6.3 Coherence decay and hopping times	211
		Discussion of the Experimental Results	213
		Conclusions	215
	5.9	Summary	217
		References	218
6		scription of Charge Transport in Disordered Organic Materials	221
		gei Baranovski and Oleg Rubel	
		Introduction	222
	6.2	Characteristic Experimental Observations and the Model for	
	<i>.</i> -	Charge Carrier Transport in Random Organic Semiconductors	224
	6.3	Energy Relaxation of Charge Carriers in a Gaussian DOS.	
		Transition from Dispersive to Nondispersive Transport	228
	6.4	Theoretical Treatment of Charge Carrier Transport in Random Organic	
		Semiconductors	230

vii

		6.4.1 Averaging of hopping rates	230
		6.4.2 Percolation approach	233
		6.4.3 Transport energy for a Gaussian DOS	233
		6.4.4 Calculations of $\tau_{\rm rel}$ and μ	235
		6.4.5 Saturation effects	241
	6.5	Theoretical Treatment of Charge Carrier Transport in One-dimensional	
		Disordered Organic Systems	243
		6.5.1 General analytical formulas	245
		6.5.2 Drift mobility in the random-barrier model	246
		6.5.3 Drift mobility in the Gaussian disorder model	248
		6.5.4 Mesoscopic effects for the drift mobility	251
		6.5.5 Drift mobility in the random-energy model with correlated	
		disorder (CDM)	253
		6.5.6 Hopping in 1D systems: beyond the nearest-neighbor	
		approximation	254
	6.6	On the Relation Between Carrier Mobility and Diffusivity in Disordered	
		Organic Systems	255
	6.7	On the Description of Coulomb Effects caused by Doping in Disordered	
		Organic Semiconductors	258
	6.8	Concluding remarks	262
		References	263
7		vice Applications of Organic Materials zabeth von Hauff, Carsten Deibel and Vladimir Dyakonov	267
		Introduction	267
		Charge Transport in Disordered Organic Semiconductors	268
	/	7.2.1 Electrical conduction in carbon-based materials	269
		7.2.2 Hopping transport	270
		7.2.3 Injection into organic semiconductors	270
		7.2.4 Space-charge-limited currents	272
		7.2.5 Charge carrier mobility	273
	7.3	Experimental Characterization of Charge Transport Properties	275
		7.3.1 Time-of-flight transient photoconductivity	276
		7.3.2 Charge extraction by linearly increasing voltage	278
		7.3.3 Current–voltage measurements	279
		7.3.4 Field-effect transistor measurements	280
	7.4	Advances in Organic Electronics	285
		7.4.1 Device fabrication	285
		7.4.2 Organic light-emitting diodes	286
		7.4.3 Organic field-effect transistors	288
		7.4.3 Organic field-effect transistors7.4.4 Organic memory	288 290
		7.4.4 Organic memory	
			290
	7.5	7.4.4 Organic memory7.4.5 Organic photovoltaics	290 291

8	Generation, Recombination and Transport of Nonequilibrium Carriers	
	in Polymer–Semiconductor Nanocomposites	307
	H.E. Ruda and Alexander Shik	
	8.1 Introduction	307
	8.2 Basic Features of Polymer–Semiconductor Nanocomposites	308
	8.3 Energy Band Diagram and Optical Absorption	309
	8.4 Excitons	312
	8.5 Potential Relief at High Excitation Level	314
	8.6 Photoconductivity	318
	8.7 Photoluminescence	319
	8.7.1 Luminescence spectrum and Stokes shift	319
	8.7.2 Exciton capture by NCs	320
	8.8 Diode Nanocomposite Structures	325
	8.9 Carrier Capture by Nanocrystals in an External Electric Field	326
	8.10 Theory of Nanocomposite Light Emitters	328
	8.10.1 Basic equations	328
	8.10.2 Current–voltage characteristic	329
	8.10.3 Quantum yield of NC electroluminescence	330
	8.11 Electro–Luminescence vs Photoluminescence	333
	8.12 Polymer–Dielectric Nanocomposites	334
	8.13 Concluding Comments	334
	References	335
9	AC Hopping Transport in Disordered Materials	339
	Igor Zvyagin	
	9.1 Introduction	339
	9.2 Universality and Scaling	343
	9.3 Phononless AC Conductivity	346
	9.4 Phonon-assisted AC Conductivity in the Pair Approximation	350
	9.4.1 Model	350
	9.4.2 AC conductivity for noninteracting electrons in the pair	
	approximation	353
	9.4.3 Pair approximation for interacting electrons	355
	9.4.4 Crossover from phonon-assisted to phononless regime	356
	9.4.5 Different tunneling mechanisms	356
	9.5 Multiple Hopping Regime	357
	9.5.1 Frequency-dependent cluster construction	357
	9.5.2 AC current and conductivity	359
	9.5.3 Frequency range for the multiple hopping regime	360
	9.6 Classical hopping	363
	9.6.1 Pike's model	363
	9.6.2 Random barrier models for ionic conduction	365
	9.6.3 Nearly constant loss	368
	9.7 Conclusions	369
	Appendix 9.1 Frequency Response of a Finite Isolated Cluster	371

ix

	Appe	endix 9.2 Size Distribution of Finite Clusters	374
	Ι	References	375
10	Mec	nanisms of Ion Transport in Amorphous and Nanostructured	
		erials	379
	Bern	hard Roling	
	10.1	Introduction	380
		Prerequisites for Ionic Conduction in Solids	381
		Glasses	382
		10.3.1 Spatial extent of subdiffusive ion dynamics	382
		10.3.2 Dynamic heterogeneities probed by multidimensional NMR	
		techniques	384
		10.3.3 New information about ion transport pathways from reverse	
		Monte Carlo modeling and bond valence calculations	384
		10.3.4 New information about empty sites and transport mechanisms	
		from molecular dynamics simulations	385
		10.3.5 Field-dependent conductivity of thin glass samples	386
	10.4	Amorphous Polymer Electrolytes	388
		10.4.1 Salt-in-polymer electrolytes	388
		10.4.2 Gel electrolytes	390
		10.4.3 Polymer-in-salt electrolytes	390
		10.4.4 'Hairy-rod' polymer electrolytes	391
	10.5	Nanocrystalline Materials and Composites	392
	10.6	Heterostructures	393
	10.7	Nano- and Mesostructured Glass Ceramics	393
	10.8	Nanocomposite and Nanogel Electrolytes	396
	10.9	Hybrid Electrolytes	398
	10.10	Summary and Conclusions	398
		References	400
11	Annl	ications of Ion Transport in Disordered Solids: Electrochemical	
11		o-ionics	403
		ppe Vinatier and Yohann Hamon	100
		Introduction	403
		Materials and Ionic Conductivity	405
	11.2	11.2.1 Glasses	405
		11.2.2 Ionic conductivity in glasses	403
		11.2.3 Thin-film preparation	409
	11.3	Lithium-ion-conducting Oxide Glasses in Micro-sources of Power	411
	11.5	11.3.1 Principle of lithium microbatteries and related systems	411
		11.3.2 Requirements of thin-film electrolytes for electrochemical	711
		microsystems	413
		11.3.3 Electrolyte materials used in electrochemical microsystems	414
		11.3.4 Resulting devices	417
	114	Silver-ion-conducting Chalcogenide Glasses in Solid-state Ionic	71/
	11.7	Memories and Sensors	418
			110

х

11.4.1 Solid-state ionic memory	418
11.4.2 Sensors	422
11.5 Conclusions	426
References	426
12 DNA Conduction: the Issue of Static Disorder, Dynamic Fluctuations	
and Environmental Effects	433
Rafael Gutiérrez, Danny Porath and Gianaurelio Cuniberti	
12.1 Introduction	433
12.2 Charge Transport Experiments in DNA Oligomers	436
12.2.1 Single-molecule transport experiments	438
12.2.2 Transport experiments on bundles and networks	449
12.3 Theoretical Aspects of DNA Conduction	453
12.3.1 Static disorder	453
12.3.2 Dynamical disorder	454
12.3.3 Environmental effects	456
12.4 Conclusions	459
References	460

Index

465

Series Preface

WILEY SERIES IN MATERIALS FOR ELECTRONIC AND OPTOELECTRONIC APPLICATIONS

This book series is devoted to the rapidly developing class of materials used for electronic and optoelectronic applications. It is designed to provide much-needed information on the fundamental scientific principles of these materials, together with how these are employed in technological applications. The books are aimed at postgraduate students, researchers and technologists, engaged in research, development and the study of materials in electronics and photonics, and industrial scientists developing new materials, devices and circuits for the electronic, optoelectronic and communications industries.

The development of new electronic and optoelectronic materials depends not only on materials engineering at a practical level, but also on a clear understanding of the properties of materials, and the fundamental science behind these properties. It is the properties of a material that eventually determine its usefulness in an application. The series therefore also includes such topics as electrical conduction in solids, optical properties, thermal properties, etc., all with applications and examples of materials in electronics and optoelectronics. The characterization of materials is also covered within the series in as much as it is impossible to develop new materials without the proper characterization of their structure and properties. Structure–property relationships have always been fundamentally and intrinsically important to materials science and engineering.

Materials science is well known for being one of the most interdisciplinary sciences. It is the interdisciplinary aspect of materials science that has led to many exciting discoveries, new materials and new applications. It is not unusual to find scientists with a chemical engineering background working on materials projects with applications in electronics. In selecting titles for the series, we have tried to maintain the interdisciplinary aspect of the field, and hence its excitement to researchers in this field.

> PETER CAPPER SAFA KASAP ARTHUR WILLOUGHBY