PULSED LASER DEPOSITION OF THIN FILMS APPLICATIONS-LED GROWTH OF FUNCTIONAL MATERIALS

Edited by

Robert Eason Optoelectronics Research Centre University of Southampton, UK

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION

PULSED LASER DEPOSITION OF THIN FILMS

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

Dun

WILLIAM J. PESCE PRESIDENT AND CHIEF EXECUTIVE OFFICER

PETER BOOTH WILEY CHAIRMAN OF THE BOARD

PULSED LASER DEPOSITION OF THIN FILMS APPLICATIONS-LED GROWTH OF FUNCTIONAL MATERIALS

Edited by

Robert Eason Optoelectronics Research Centre University of Southampton, UK

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at 877-762-2974, outside the United States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Pulsed laser deposition of thin films:applications-led growth of functional materials/ edited by Robert Eason.
p. cm.
"A Wiley-Interscience publication."
Includes bibliographical references and index.
ISBN-13: 978-0-471-44709-2
ISBN-10: 0-471-44709-9
1. Thin films. 2. Laser beams–Industrial applications. I. Eason, Robert, 1953-

TA418.9T45P85 2006 621.3815'2-dc22

2006044264

Printed in the United States of America

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Dedication

I would like to dedicate this book to my mother, Mrs. Helena Eason, and to my daughters, Katie Alice, Emily Beth, and Jessica Rosanna. I do not know if they are devotees of PLD and all its varied possibilities, but if not, then there is always time to change track, I believe.

I would further like to thank all the authors for their patience and resilience in the face of adversity, and the editorial time dilation phenomenon that has somehow extended the due date for publication. Mea culpa to all.

Finally, many thanks to Doug Chrisey who was an editor on PLD1 and with whom I have had many discussions concerning PLD2. Although in the end he does not appear as a co-editor, in the early stages he was a guiding light in steering this book to completion. Doug, many thanks.

CONTENTS

PRI	PREFACE			
CO	CONTRIBUTORS			
SEC	СТІО	N 1	1	
1.	Puls	ed Laser Deposition of Complex Materials:		
	Prog	gress Toward Applications	3	
	Davi	d P. Norton		
	1.1	Introduction	3	
	1.2	What Is PLD?	4	
	1.3	Where Is Pulsed Laser Deposition Being Applied?	9	
		1.3.1 Complex Oxide Film Growth	9	
		1.3.2 Epitaxial Interface and Superlattice Formation	10	
		1.3.3 Superconducting Electronic Devices	11	
	1.4	Exploring Novel Oxide Devices Concepts	14	
		1.4.1 Tunable Microwave Electronics	15	
		1.4.2 Wide Bandgap Electronics	17	
	1.5	Thin-Film Optics	20	
	1.6 1.7	Oxide Sensor Devices Protecting Contings and Parriage	21 23	
	1./	Protective Coatings and Barriers		
	1.0	1.7.1 Biocompatible Coatings	24	
	1.8 1.9	Nanomaterial Synthesis Polymer and Organic Thin Films	25 26	
	1.9			
	1 10	1.9.1 Biological Thin-Film Materials	27	
		Summary	28 28	
	Rele	rences	28	
SEC	CTIO	ON 2	33	
2.	Reso	onant Infrared Pulsed Laser Ablation and Deposition		
_,		hin Polymer Films	35	
		el-Dennis McAlevy Bubb and Richard F. Haglund, Jr.		
	2.1 2.2	Technological Significance of Organic Thin-Film Deposition Laser-Based Methods for Deposition of Polymer	36	
		Thin Films: An Overview	37	
		2.2.1 Pulsed Laser Deposition with UV Lasers2.2.2 Matrix-Assisted Pulsed Laser Evaporation	37 37	

		2.2.4	Photosensitized Ablation and Deposition Resonant Infrared Pulsed Laser Deposition	38 39
	2.3		Summary of Techniques ition, Ablation, and Characterization of Selected Polymers	41 41
	2.3	-	Characterization of Deposited Material	41 41
			Choice of Polymers for Early Studies	41
			Polyethylene Glycol	44
		2.3.4	Polystyrene	47
		2.3.5	Deposition of Application-Oriented Polymers by RIR-PLD	49
	2.4		nism of Resonant Infrared Laser Ablation	56
	2.5		for Infrared Laser Ablation and Deposition	58
		Conclu erences	usions	59 60
	Kele	tences		00
3.	Dep	osition	of Polymers and Biomaterials Using the	
			isted Pulsed Laser Evaporation (MAPLE) Process	63
	Albe	rto Pique	6	
	3.1	Introd	uction	63
	3.2	Limita	tions of PLD for the Growth of Organic Thin Films	64
	3.3	Funda	mentals of the MAPLE Process	64
		3.3.1		68
		3.3.2	Growth of Biomaterial Thin Films	72
	3.4		t Status of MAPLE: Challenges and Opportunities	75
	3.5 3.6	Summ	of MAPLE	79 82
		rences	al y	82 82
4.	In S	itu Dia	gnostics by High-Pressure RHEED During PLD	85
	Guus	s Rijnder	s and Dave H. A. Blank	
	4.1	Introd	uction	85
			Principles	85
	4.3	-	Pressure RHEED	87
			Geometry and Basic Principles of RHEED	87
		4.3.2 4.3.3	Utility of RHEED: Surface Properties Utility of RHEED: Monitoring Thin-Film Growth	90 92
	4.4		Pressure RHEED Setup	92
	4.5	Conclu	•	95 96
		erences		97
5.			and Ablation and Ellar Denerition	
			aser Ablation and Film Deposition	99
			amaly, Andrei V. Rode, and Barry Luther-Davies	99
	Euge 5.1	ene G. G Introd	amaly, Andrei V. Rode, and Barry Luther-Davies	99 99
	Euge	ene G. G Introd	amaly, Andrei V. Rode, and Barry Luther-Davies	
	Euge 5.1	ene G. G. Introdu Ablati 5.2.1	amaly, Andrei V. Rode, and Barry Luther-Davies uction on by Short Independent Laser Pulses and Deposition of Films Short-Pulse Laser-Matter Interaction	99 101 101
	Euge 5.1	ne G. G. Introdu Ablati 5.2.1 5.2.2	amaly, Andrei V. Rode, and Barry Luther-Davies uction on by Short Independent Laser Pulses and Deposition of Films Short-Pulse Laser–Matter Interaction Ablation Mechanisms	99 101 101 105
	Euge 5.1	ne G. G. Introdu Ablati 5.2.1 5.2.2 5.2.3	amaly, Andrei V. Rode, and Barry Luther-Davies uction on by Short Independent Laser Pulses and Deposition of Films Short-Pulse Laser–Matter Interaction Ablation Mechanisms Ablation Thresholds	99 101 101 105 107
	Euge 5.1	ne G. G. Introdu Ablati 5.2.1 5.2.2	amaly, Andrei V. Rode, and Barry Luther-Davies uction on by Short Independent Laser Pulses and Deposition of Films Short-Pulse Laser–Matter Interaction Ablation Mechanisms	99 101 101 105

5.3	Cumulative Ablation of Solids by High-Repetition-Rate Short-Pulse Lasers	117
	5.3.1 Dwell Time and Number of Pulses per Focal Spot	118
	5.3.2 Smoothing of the Evaporation Conditions on the Surface	119
	5.3.3 Ablation in Air and in Vacuum	119
5.4	Experimental Results: Deposition of Thin Films by Short-Pulse	
	MHz Repetition Rate Laser	121
	5.4.1 Deposition of Amorphous Carbon Films	121
	5.4.2 Deposition of Chalcogenide Glass Films	122
5.5	Short-Pulse High-Repetition-Rate Laser Systems	123
	5.5.1 Table-top 50-W Solid-State Ultrafast Laser System	124
	5.5.2 Free-Electron Laser	125
5.6	Concluding Remarks	126
Ref	erences	127
	ss-Beam PLD: Metastable Film Structures	
	n Intersecting Plumes	131
And	ré Gorbunoff	
6.1	Introduction	131
	6.1.1 Energetic Particles in PLD	131
	6.1.2 Origin of Metastable Film Structures in PLD	134
6.2	Technique of Cross-Beam PLD	137
	6.2.1 Basic Idea and Instrumentation	137
	6.2.2 Spatio-energetical Characteristics of the Plume in CBPLD	139
6.3	Nanoscale Multilayer Deposition	144
	6.3.1 Morphological and Compositional Roughness in PLD	145
	6.3.2 Determination of the Compositional Profile	145
6.4	Abnormal Phase Formation in Co-deposited Alloys	149
	6.4.1 Amorphous Fe–Al Alloys	149
	6.4.2 Paramagnetic Fe–Cr Alloys	151
	Conclusions	156
Ref	erences	158
	nbinatorial Pulsed Laser Deposition	161
7.1		161
7.2		162
7.3		163
7.4	Synthesis Technique Using Thin-Film Precursors	163
7.5	High-Throughput Thin-Film Deposition	166
7.6	Combinatorial Laser Molecular Beam Epitaxy	168
7.7	Composition Spreads and Combinatorial Materials Science	171
7.8 Ref	Conclusion erences	175 175
Kei	eletices	175
	with Kinetics During Pulsed Laser Deposition as Rijnders and Dave H. A. Blank	177
8.1	Introduction	177
8.2	Growth Modes at Thermodynamic Equilibrium	177
5.2		1 / /

	8.3	Growth	h Kinetics	178
		8.3.1	Homoepitaxial Growth Modes	179
		8.3.2	Homoepitaxial Growth Study of SrTiO ₃	180
	8.4	Pulsed	Laser Interval Deposition	187
	8.5		isions	189
	Refe	rences		190
9.	Large-Area Commercial Pulsed Laser Deposition			
	9.1	Introdu		191
			ces in Large-Area PLD Films with Scale-Up for PLD	192 195
	9.5		Intelligent Windows	193
			Substrate Heaters	197
			Heaters for Coated Conductors	202
		9.3.4	Target Size and Manipulation	205
		9.3.5	Target Manipulation for Coated Conductors	206
		9.3.6	Deposition Rate Monitors	209
			ercial Systems	210
			ercial Components	212
		Conclu	ISIONS	213
	Refe	rences		213
SE	CTIO	N 3		215
10.	Coat	ting Pov	wders for Drug Delivery Systems	
			d Laser Deposition	217
			on, Barbel Eppler, Margaret I. Davis, Andrew L. Mercado, Fitz-Gerald	
	10.1	Introc	luction	217
	10.2	Backg	ground	218
		10.2.1	1 Wet Powder Coating Techniques	219
			2 Dry Powder Coating Techniques	219
		10.2.3	1 5	220
	10.3		-Assisted Methods of Coating Particles	221
			1 Experimental Configurations	222
			2 Polymeric Coating Materials	223
	10.4		3 Particle Fluidization	223
	10.4		pencapsulated Pharmaceutical Formulations	224
		10.4.1	1 5	224
	10.5	10.4.2		230
	10.5 10.6		and Scaleup	234 235
		rences	nary	233
				230
11.	Transparent Conducting Oxide Films Heungsoo Kim			
	11.1	Introc	luction	239

	11.2	Unique	Properties of TCO Films	240
	11.2	11.2.1	-	240
		11.2.1	1	240
	11.3		ages of PLD for TCO Films	241
	11.4		Im PLD Conditions for TCO Films	242
		11.4.1		242
		11.4.2		243
			Film Thickness	244
		11.4.4	Other Laser Conditions	244
	11.5	Laser-E	Deposited TCO Films	245
		11.5.1	ITO Films	245
		11.5.2	Undoped and Doped ZnO Films	250
		11.5.3	Other <i>n</i> -Type TCO Films	251
		11.5.4	<i>p</i> -Type TCO Films	251
	11.6	Applica	ations of TCO Films	253
		11.6.1	Display Devices	253
			Photovoltaic Devices	256
		11.6.3	Transparent Thin-Film Field-Effect Transistor (FET)	257
	11.7		sion and Future Directions	258
	Refer	ences		258
12.	ZnO	and Zn(O-Related Compounds	261
			e, Eric Millon, and Valentin Craciun	
	12.1	Introdu	ation	261
			hin-Film Growth by PLD: General Features	261
	12.2		Historical Background	262
			Surface Morphology and Texture	262
			Control of the Stoichiometry	265
			Recent Applications and Developments	267
	12.3		pitaxial Thin Films	268
		-	ZnO Epitaxial Growth on Sapphire	269
			ZnO Epitaxial Growth on Other Substrates	273
		12.3.3	Epitaxial Growth of ZnO-Related Compounds	274
		12.3.4	Main Applications of Epitaxial ZnO Films	275
	12.4	ZnO N	anocrystalline Films	278
		12.4.1	Nanosecond PLD under High Oxygen Pressure	279
		12.4.2	Femtosecond PLD	281
		12.4.3	Applications of Nanocrystalline ZnO Films	282
	12.5		sions and Future Perspectives	284
	Refer	ences		285
13.	Grou	p III Nit	tride Growth	291
	Donagh O'Mahony and James G. Lunney			
	13.1	Introdu	ction	291
	13.2	Propert	ies of Group III Nitrides and Group III Metals	292
		13.2.1	Group III Nitrides	292
		13.2.2	Thermal Decomposition of Group III Nitrides	292

			Group III Elements: Al, Ga, and In Target Preparation	294 295
	12.2		lation of Group III Nitrides and Group III Metals	295 295
	15.5		General Characteristics of the Ablation Process in PLD	293 295
			Characteristics of the Ablation Process in Vacuum	295 296
			Plume–Background Gas Interaction	298
	13.4		es for Film Growth	300
		13.4.1	Setting the Growth Parameters	300
			Film Growth in N ₂	301
			Film Growth in Other Atmospheres	301
			Substrates and Growth Temperature	302
	13.5	Selective Grown by	Review of the Properties of AlN, GaN, and InN Films y PLD	302
		-	Structural Properties	302
			Electronic Properties	304
		13.5.3	Optical Properties	304
	13.6	Novel Ar	reas of Research	305
			Composites for Electronic and Optoelectronic Applications	305
			Magnetic Doping: Diluted Magnetic Semiconductors	201
			for Spin Electronics	306
	13.7 Refer	-	v and Outlook	307 308
	Kelei	chees		500
14.	Pulse	d Laser D	eposition of High-Temperature	
	-	rconductii	ng Thin Films and Their Applications	313
	Bernd	Schey		
		2	ion	313
	Bernd 14.1 14.2	Introduct		313
	14.1	Introduct High-Ten	ion nperature Superconductor Devices for Electronic ical Applications	313 314
	14.1	Introduct High-Ten and Medi	nperature Superconductor Devices for Electronic	
	14.1	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics	314 314 318
	14.1	Introduct High-Ten and Medi 14.2.1 1 14.2.2 1 14.2.3 5	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems	314 314 318 320
	14.1	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy	314 314 318 320 323
	14.1 14.2	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 A	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors	314 314 318 320 323 323
	14.1 14.2	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 A 14.3.2 (nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development	314 314 318 320 323 323 323
	14.1 14.2 14.3	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 I 14.3.2 (14.3.3 I	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends	314 314 318 320 323 323 324 326
	14.1 14.2 14.3	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 I 14.3.2 (14.3.3 I Potential	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development	314 314 318 320 323 323 324 326 326
	14.1 14.2 14.3	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 I 14.3.2 (14.3.3 I Potential	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends	314 314 318 320 323 323 324 326
15.	14.1 14.2 14.3 14.4 Refer Diam	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 A 14.3.2 (14.3.3 I Potential ences ond-Like	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications	314 314 318 320 323 323 324 326 326
15.	14.1 14.2 14.3 14.4 Refer Diam	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 I 14.3.2 (14.3.3 I Potential ences	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications	314 314 318 320 323 323 324 326 326 327
15.	14.1 14.2 14.3 14.4 Refer Diam	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 A 14.3.2 C 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion	314 314 318 320 323 323 324 326 326 327
15.	14.1 14.2 14.3 14.4 Refer <i>Diam</i> <i>Roger</i> 15.1 15.2	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 A 14.3.2 O 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon	314 314 318 320 323 324 326 326 326 327 333 333
15.	14.1 14.2 14.3 14.4 Refer <i>Diam</i> <i>Roger</i> 15.1	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 A 14.3.2 G 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical Pulsed La	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon aser Deposition of DLC	314 314 318 320 323 324 326 326 326 327 333 333 333 333
15.	14.1 14.2 14.3 14.4 Refer <i>Diam</i> <i>Roger</i> 15.1 15.2	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 A 14.3.2 C 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical Pulsed L 15.3.1 I	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon aser Deposition of DLC Effect of Wavelength and Fluence	314 314 318 320 323 324 326 326 327 333 333 333 335 335
15.	14.1 14.2 14.3 14.4 Refer <i>Diam</i> <i>Roger</i> 15.1 15.2 15.3	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 A 14.3.2 G 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical Pulsed La 15.3.1 I 15.3.2 I	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon aser Deposition of DLC Effect of Wavelength and Fluence Effect of Substrate Temperature and Vacuum	314 314 318 320 323 324 326 326 326 327 333 333 333 335 335 336
15.	14.1 14.2 14.3 14.4 Refer 15.1 15.2 15.3 15.4	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric H 14.3.1 A 14.3.2 G 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical Pulsed La 15.3.1 I 15.3.2 I Modificat	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon aser Deposition of DLC Effect of Wavelength and Fluence Effect of Substrate Temperature and Vacuum tions to the Pulsed Laser Deposition Technique	314 318 320 323 324 326 326 327 333 333 333 335 335 336 338
15.	14.1 14.2 14.3 14.4 Refer <i>Diam</i> <i>Roger</i> 15.1 15.2 15.3	Introduct High-Ten and Medi 14.2.1 I 14.2.2 I 14.2.3 S Electric I 14.3.1 A 14.3.2 G 14.3.3 I Potential ences ond-Like <i>J. Narayan</i> Introduct Physical Pulsed La 15.3.1 I 15.3.2 I Modificat Growth o	nperature Superconductor Devices for Electronic ical Applications High-Temperature Superconductor Communication Digital Electronics SQUID Systems Power and Energy Applications of Coated Conductors Coated Conductors: State of Development Future Trends of PLD in the Commercialization of HTS Carbon: Medical and Mechanical Applications ion and Chemical Properties of Carbon aser Deposition of DLC Effect of Wavelength and Fluence Effect of Substrate Temperature and Vacuum	314 314 318 320 323 324 326 326 326 327 333 333 333 335 335 336

	15.7	Hydrog	enated and Hydrogen-Free DLC	344
	15.8	Propert	ies of DLC	346
	15.9	DLC A	pplications	347
		15.9.1	Medical Applications	347
		15.9.2	Mechanical and Tribological Applications	352
	15.10	Closing	g Remarks	355
	Refere	-	,	355
16.	Pulse	d Laser	Deposition of Metals	363
	Hans-	Ulrich Kr	ebs	
	16.1	Introdu		363
	16.2	Deposit	tion Technique	363
		16.2.1	51 1	363
			Droplet Reduction	364
	16.3	Energet	tic Particles	365
		16.3.1	Formation of Energetic Particles	365
		16.3.2	Influence on Film Growth	367
	16.4	Deposit	tion in Ultrahigh Vacuum	368
			Deposition Rate and Angular Distribution	368
			Stoichiometry Transfer	369
		16.4.3	Homogeneity of Alloy Films	369
		16.4.4	Improved Film Growth	369
		16.4.5	Small Grain Size	371
			Internal Stress	371
			Defect Formation	371
			Interface Mixing	372
			Interface Roughness	372
			Metastable Phase Formation at Interfaces	372
			Resputtering Effects	373
	16.5	-	tion in Inert Gas Atmosphere	373
			Reduction of Implantation and Resputtering	373
			Changes in the Deposition Rate	373
		16.5.3	Changes of Film Properties	374
	16.6	Potentia	al for Applications	375
			Nonequilibrium Phases	375
		16.6.2	Giant Magnetoresistance	376
		16.6.3	e	376
			X-ray Mirrors	378
		16.6.5	Compound Materials	378
		Conclu	sions	379
	Refere	ences		380
SE	CTION	14		383
17.	Robert	W. Eason	eguide Growth and Applications n, Stephen J. Barrington, Christos Grivas, p-Smith, and David P. Shepherd	385
	17.1 Introduction			385
	17.1		Im Waveguide Fabrication Methods	386
	11.4		-	386
		17.2.1	Waveguide Growth on an Existing Substrate	580