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PREFACE

I have been teaching population genetics for 30 years, and during that time the importance
and centrality of this field to modern biology have increased dramatically. Population genet-
ics has always played a central role in evolutionary biology as it deals with the mechanisms
by which evolution occurs within populations and species, the ultimate basis of all evolu-
tionary change. However, as molecular genetics matured into genomics, population genetics
was transformed from a discipline receiving new techniques from molecular genetics into a
discipline providing the basic analytical methods for many aspects of genomics. Moreover,
an increasing number of students are interested in the problems of species extinction and
of environmental degradation and change. Population genetics offers many basic tools for
conservation biology as well. As a result, the audience for population genetics has increased
substantially, and I have witnessed a sixfold increase in the enrollment in my population
genetics course over the past several years. This book is written with this expanded audi-
ence in mind. Many examples are given from conservation biology, human genetics, and
genetic epidemiology, yet the focus of this book remains on the basic microevolutionary
mechanisms and how they interact to create evolutionary change. This book is intended
to provide a solid basis in population genetics both for those students primarily interested
in evolutionary biology and genetics as well as for those students primarily interested in
applying the tools of population genetics, particularly in the areas of conservation biology,
human genetics, and genomics. Without a solid foundation in population genetics, the ana-
lytical tools emerging from population genetics will frequently be misapplied and incorrect
interpretations can be made. This book is designed to provide that foundation both for fu-
ture population and evolutionary geneticists and for those who will be applying population
genetic concepts and techniques to other areas.

One theme throughout this book is that many important biological phenomena emerge
from the interactions of two or more factors. As a consequence, evolution must be viewed
with a multidimensional perspective, and it is insufficient to examine each evolutionary
force one by one. Two highly influential mentors strengthened this theme in my work:
Charles Sing and Hampton Carson. Charlie was my Ph.D. advisor and continues to be a
mentor, collaborator, and friend. Charlie always stressed the importance of interactions in
biology and genetics, and he was and is concerned with the “big picture” questions. I cannot
thank Charlie enough for his continuing intellectual challenges and for his friendship.

Hamp Carson also stressed the importance of interacting forces in evolution and genetics.
Hamp was both my undergraduate research mentor and my postdoctoral advisor, as well as
a long-time collaborator and friend. Hamp died at the age of 91 as this book was nearing
completion. He lived a full and highly productive life, and I dedicate this book in his memory
to honor his life and accomplishments.

ix
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x PREFACE

Many of my graduate students, both current and former, contributed significantly to this
book. Indeed, the impetus for writing this book came largely from two former graduate stu-
dents, Delbert Hutchison and Keri Shingleton. When Delbert and Keri were at Washington
University as graduate students, they also served as teaching assistants in my population
genetics course. My lectures did not follow any of the existing textbooks, so first Delbert,
and then Keri, wrote out detailed lecture notes to help the students. These notes also formed
the backbone of this book, and both Delbert and Keri strongly urged me to take their notes
and transform them into a book. This is the book that resulted from that transformation.

Many of my graduate students read drafts of the chapters and offered many suggestions
that were incorporated into the book. I thank the following graduate students for their
valuable input: Corey Anderson, Jennifer Brisson, Nicholas Griffin, Jon Hess, Keoni Kauwe,
Rosemarie Koch, Melissa Kramer, Taylor Maxwell, Jennifer Neuwald, James Robertson,
and Jared Strasburg. In addition, many of my former graduate students and colleagues read
drafts of this book and often used these drafts in teaching their own courses in population
genetics. They also provided me with excellent feedback, both from themselves and from
their students, so I wish to thank Reinaldo Alves de Brito, Keith Crandall, Delbert Hutchison,
J. Spencer Johnston, and Eric Routman. I also want to thank three anonymous reviewers for
their comments and suggestions on the first six chapters of this book. Finally, I used drafts
of this book as my text in my population genetics class at Washington University. Many
of the students in this class, both graduate and undergraduate, provided me with valuable
feedback, and I thank them for their help.
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1
SCOPE AND

BASIC PREMISES OF
POPULATION GENETICS

Population genetics is concerned with the origin, amount, and distribution of genetic varia-
tion present in populations of organisms and the fate of this variation through space and time.
The kinds of populations that will be the primary focus of this book are populations of sexu-
ally reproducing diploid organisms, and the fate of genetic variation in such populations will
be examined at or below the species level. Variation in genes through space and time consti-
tute the fundamental basis of evolutionary change; indeed, in its most basic sense, evolution
is the genetic transformation of reproducing populations over space and time. Population
genetics is therefore at the very heart of evolutionary biology and can be thought of as the
science of the mechanisms responsible for microevolution, evolution within species. Many
of these mechanisms have a great impact on the origin of new species and on evolution
above the species level (macroevolution), but these topics will not be dealt with in this book.

BASIC PREMISES OF POPULATION GENETICS

Microevolutionary mechanisms work upon genetic variability, so it is not surprising that
the fundamental premises that underlie population genetic theory and practice all deal
with various properties of deoxyribonucleic acid (DNA), the molecule that encodes genetic
information in most organisms. [A few organisms use ribonucleic acid (RNA) as their
genetic material, and the same properties apply to RNA in those cases.] Indeed, the theory
of microevolutionary change stems from just three premises:

1. DNA can replicate.

2. DNA can mutate and recombine.

3. Phenotypes emerge from the interaction of DNA and environment.

The implications of each of these premises will now be examined.

Population Genetics and Microevolutionary Theory, By Alan R. Templeton
Copyright C© 2006 John Wiley & Sons, Inc.

1
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2 SCOPE AND BASIC PREMISES OF POPULATION GENETICS

DNA Can Replicate

Because DNA can replicate, a particular kind of gene (specific set of nucleotides) can be
passed on from one generation to the next and can also come to exist as multiple copies in
different individuals. Genes therefore have an existence in time and space that transcends
the individuals that temporarily bear them. The biological existence of genes over space
and time is the physical basis of evolution.

The physical manifestation of a gene’s continuity over time and through space is a
reproducing population of individuals. Individuals have no continuity over space or time;
individuals are unique events that live and then die and cannot evolve. But the genes that
an individual bears are potentially immortal through DNA replication. For this potential to
be realized, the individuals must reproduce. Therefore, to observe evolution it is essential
to study a population of reproducing individuals. A reproducing population does have
continuity over time as one generation of individuals is replaced by the next. A reproducing
population generally consists of many individuals, and these individuals collectively have a
distribution over space. Hence, a reproducing population has continuity over time and space
and constitutes the physical reality of a gene’s continuity over time and space. Evolution is
therefore possible only at the level of a reproducing population and not at the level of the
individuals contained within the population.

The focus of population genetics must be upon reproducing populations to study mi-
croevolution. However, the exact meaning of what is meant by a population is not fixed but
rather can vary depending upon the questions being addressed. The population could be a
local breeding group of individuals found in close geographic proximity or it could be a
collection of local breeding groups distributed over a landscape such that most individuals
only have contact with other members of their local group but that on occasion there is some
reproductive interchange among local groups. Alternatively, a population could be a group
of individuals continuously distributed over a broad geographical area such that individuals
at the extremes of the range are unlikely to ever come into contact, or any other grouping
of individuals up to and including the entire species. Within this hierarchy of populations
found within species, much of population genetics focuses upon the local population, or
deme, a collection of interbreeding individuals of the same species that live in sufficient
proximity that they share a system of mating. Systems of mating will be discussed in more
detail in subsequent chapters, but for now the system of mating refers to the rules by which
individuals pair for sexual reproduction. The individuals within a deme share a common
system of mating. Because a deme is a breeding population, individuals are continually
turning over as births and deaths occur, but the local population is a dynamic entity that can
persist through time far longer than the individuals that temporarily comprise it. The local
population therefore has the attributes that allow the physical manifestation of the genetic
continuity over space and time that follows from the premise that DNA can replicate.

Because our primary interest is on genetic continuity, we will make a useful abstraction
from the deme. Associated with every local population of individuals is a corresponding
local population of genes called the gene pool, the set of genes collectively shared by the
individuals of the deme. An alternative and often more useful way of defining the gene pool
is that the gene pool is the population of potential gametes produced by all the individuals
of the deme. Gametes are the bridges between the generations, so defining a gene pool as a
population of potential gametes emphasizes the genetic continuity over time that provides
the physical basis for evolution. For empirical studies, the first definition is primarily used;
for theory, the second definition is preferred.
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The gene pool associated with a local population is described by measuring the numbers
and frequencies of the various types of genes or gene combinations in the pool. At this
lowest meaningful biological level of a deme, evolution is defined as a change through
time of the frequencies of various types of genes or gene combinations in the gene pool.
This definition is not intended to be an all-encompassing definition of evolution. Rather,
it is a narrow and focused definition of evolution that is useful in much of population
genetics precisely because of its narrowness. This will therefore be our primary definition
of evolution in this book. Since only a local population at the minimum can have a gene pool,
only populations can evolve under this definition of evolution, not individuals. Therefore,
evolution is an emergent property of reproducing populations of individuals that is not
manifested in the individuals themselves. However, there can be higher order assemblages
of local populations that can evolve. In many cases, we will consider collections of several
local populations that are interconnected by dispersal and reproduction, up to and including
the entire species. However, an entire species in some cases could be just a single deme or
it could be a collection of many demes with limited reproductive interchange. A species is
therefore not a convenient unit of study in population genetics because species status itself
does not define the reproductive status that is so critical in population genetic theory. We
will always need to specify the type and level of reproducing population that is relevant for
the questions being addressed.

DNA Can Mutate and Recombine

Evolution requires change, and change can only occur when alternatives exist. If DNA repli-
cation were always 100% accurate, there could be no evolution. A necessary prerequisite for
evolution is genetic diversity. The ultimate source of this genetic diversity is mutation. There
are many forms of mutation, such as single-nucleotide substitutions, insertions, deletions,
transpositions, duplications, and so on. For now, our only concern is that these mutational
processes create diversity in the population of genes present in a gene pool. Because of
mutation, alternative copies of the same homologous region of DNA in a gene pool will
show different states.

Mutation occurs at the molecular level. Although many environmental agents can in-
fluence the rate and type of mutation, one of the central tenets of Darwinian evolution is
that mutations are random with respect to the needs of the organism in coping with its
environment. There have been many experiments addressing this tenet, but one of the more
elegant and convincing is replica plating, first used by Joshua and Esther Lederberg (1952)
(Figure 1.1). Replica plating and other experiments provide empirical proof that mutation,
occurring on DNA at the molecular level, is not being directed to produce a particular pheno-
typic consequence at the level of an individual interacting with its environment. Therefore,
we will regard mutations as being random with respect to the organism’s needs in coping
with its environment.

Mutation creates allelic diversity. Alleles are simply alternative forms of a gene. In some
cases genetic surveys focus on a region of DNA that may not be a gene in a classical sense;
it may be a DNA region much larger or smaller than a gene or a noncoding region. We
will use the term haplotype to refer to an alternative form (specific nucleotide sequence)
among the homologous copies of a defined DNA region, whether a gene or not. The allelic or
haplotypic diversity created by mutation can be greatly amplified by the genetic mechanisms
of recombination and diploidy. In much of genetics, recombination refers to meiotic crossing



JWDD020-01 JWDD020-Templeton August 17, 2006 1:49 Char Count= 0

4 SCOPE AND BASIC PREMISES OF POPULATION GENETICS

Plate 1. Bacteria
grown in absence
of streptomycin

Sterile plate pressed
on imprinted velvet

Plate 2. Sterile
plate with

streptomycin

Only one colony 
grows on 

streptomycin

Each bacterial colony on plate 1
is isolated and tested for growth 

on a plate with streptomycin: 
Only one colony grows

Bacterial colonies
imprinted on velvet

Bacterial plate
pressed on

velvet

Figure 1.1. Replica plating. A suspension of bacterial cells is spread upon a Petri dish (plate 1) such
that each individual bacterium should be well separated from all others. Each bacterium then grows into
a colony of genetically identical individuals. Next, a circular block covered with velvet is pressed onto the
surface of plate 1. Some bacteria from each colony stick to the velvet, so a duplicate of the original plate
is made when the velvet is pressed onto the surface of a second Petri dish (plate 2), called the replica
plate. The medium on the replica plate contains streptomycin, an antibiotic that kills most bacteria from
the original strain. In the example illustrated, only one bacterial colony on the replica plate can grow on
streptomycin, and its position on plate 2 identifies it as the descendant of a particular colony on plate
1. Each bacterial colony on plate 1 is then tested for growth on a plate with the antibiotic streptomycin.
If mutations were random and streptomycin simply selected preexisting mutations rather than inducing
them, then the colonies on plate 1 that occupied the positions associated with resistant colonies on plate
2 should also show resistance, even though these colonies had not yet been exposed to streptomycin.
As shown, this was indeed the case.

over, but we use the term recombination in a broader sense as any genetic mechanism that
can create new combinations of alleles or haplotypes. This definition of recombination
encompasses the meiotic events of both independent assortment and crossing over and also
includes gene conversion and any nonmeiotic events that create new gene combinations that
can be passed on through a gamete to the next generation. Sexual reproduction and diploidy
can also be thought of as mechanisms that create new combinations of genes.

As an illustration of the genetic diversity that can be generated by the joint effects of mu-
tation and recombination, consider the MHC complex (major histocompatibility complex,
also known in humans as HLA, human leukocyte antigen) of about 100 genes on the same
chromosome. Table 1.1 shows the number of alleles found at 20 of these loci as of 1997 in
human populations (Bodmer and Bodmer 1999). As can be seen, mutational changes at these
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Table 1.1. Numbers of Alleles Known in 1997 at 20
Loci within Human MHC (HLA) Region

Locus Number of Alleles

MHC-1 83
MHC-B 186
MHC-C 42
MHC-E 5
MHC-G 7
MHC-DRA 2
MHC-DRB1 184
MHC-DRB3 11
MHC-DRB4 9
MHC-DRB5 12
MHC-DQA1 18
MHC-DQB1 31
MHC-DOB 1
MHC-DMA 4
MHC-DMB 5
MHC-DNA 1
MHC-DPA1 10
MHC-DPB1 77
TAP1 5
TAP2 4

Total 698

loci have generated from 1 to 186 alleles per locus with a total of 698 alleles over all 20 loci.
However, these loci can and do recombine. Hence, recombination has the potential of
combining these 698 alleles into 1.71 × 1021 distinct gamete types (obtained by multiplying
the allele numbers at each locus). Sexual reproduction has the potential of bringing together
all pairs of these gamete types in a diploid individual, resulting in over 1042 genotypes and
over 1033 distinct possible antigenic phenotypes (Bodmer and Bodmer 1999). And this is
only from 20 loci in one small region of one chromosome of the human genome! Given that
there are only about 6 × 109 humans in the world, everyone on the world (with the exception
of identical twins) will have a unique MHC genotype when these 20 loci are considered
simultaneously. But of course, humans differ at many more loci than just these 20. As of
2004, about 6 million polymorphic nucleotides were known in the human genome. Assum-
ing that most of these are biallelic, each polymorphic nucleotide defines three genotypes,
so collectively the number of possible genotypes defined by these known polymorphic sites
is 36,000,000 = 102,862,728 genotypes. To put this number into perspective, the mass of our
entire galaxy in grams is 1.9 × 1044 (Weinberg 1977), a number far smaller than the number
of potential genotypes that are possible in humanity just with the known genetic variation.
Hence mutation and recombination can generate truly astronomical levels of genetic
variation.

The distinction between mutation and recombination is often blurred because recombi-
nation can occur within a gene and thereby create new alleles or haplotypes. For example,
71 individuals from three human populations were sequenced for a 9.7-kb region within
the lipoprotein lipase locus (LPL) (Nickerson et al. 1998). This represents just about a third
of this one locus. Eighty-eight variable sites were discovered, and 69 of these sites were
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used to define 88 distinct haplotypes or alleles. These 88 haplotypes arose from at least
69 mutational events (a minimum of one mutation for each of the 69 variable nucleotide
sites) coupled with about 30 recombination per gene conversion events (Templeton et al.
2000a). Thus, intragenic recombination and mutation have together generated 88 haplo-
types as inferred using only a subset of the known variable sites in just a third of a single
gene in a sample of 142 chromosomes. These 88 haplotypes in turn define 3916 possible
genotypes—a number considerably larger than the sample size of 71 people!

Studies such as those mentioned above make it clear that mutation and recombination
can generate large amounts of genetic diversity at particular loci or chromosomal regions,
but they do not address the question of how much genetic variation is present within species
in general. How much genetic variation is present in natural populations was one of the
defining questions of population genetics up until the mid-1960s. Before then, most of
the techniques used to define genes required genetic variation to exist. For example, many of
the early important discoveries in Mendelian genetics were made in the laboratory of Thomas
Hunt Morgan during the first few decades of the twentieth century. This laboratory used
morphological variation in the fruitfly Drosophila melanogaster as its source of material to
study. Among the genes identified in this laboratory was the locus that codes for an enzyme
in eye pigment biosynthesis known as vermillion in Drosophila. Morgan and his students
could only identify vermillion as a genetic locus because they found a mutant that coded
for a defective enzyme, thereby producing a fly with bright red eyes. If a gene existed with
no allelic diversity at all, it could not even be identified as a locus with the techniques
used in Morgan’s laboratory. Hence, all observable loci had at least two alleles in these
studies (the “wildtype” and “mutant” alleles in Morgan’s terminology). As a result, even
the simple question of how many loci have more than one allele could not be answered
directly. This situation changed dramatically in the mid-1960s with the first applications
of molecular genetic surveys (first on proteins, later on the DNA directly; see Appendix 1,
which gives a brief survey of the molecular techniques used to measure genetic variation).
These new molecular techniques allowed genes to be defined biochemically and irrespective
of whether or not they had allelic variation. The initial studies (Harris 1966; Johnson et al.
1966; Lewontin and Hubby 1966), using techniques that could only detect mutations causing
amino acid changes in protein-coding loci (and only a subset of all amino acid changes at
that), revealed that about a third of all protein-coding loci were polymorphic (i.e., a locus
with two or more alleles such that the most common allele has a frequency of less than 0.95
in the gene pool) in a variety of species. As our genetic survey techniques acquired greater
resolution (Appendix 1), this figure has only gone up.

These genetic surveys have made it clear that many species, including our own, have liter-
ally astronomically large amounts of genetic variation. The chapters in Part I of this book will
examine how premises 1 and 2 combine to explain great complexity at the population level
in terms of the amount of genetic variation and its distribution in individuals, within demes
among demes, and over space and time. Because it is now clear that many species have vast
amounts of genetic variation, the field of population genetics has become less concerned
with the amount of genetic variation and more concerned with its phenotypic and evolu-
tionary significance. This shift in emphasis leads directly into our third and final premise.

Phenotypes Emerge from Interaction of DNA and Environment

A phenotype is a measurable trait of an individual (or as we will see later, it can be gen-
eralized to other units of biological organization). In Morgan’s day, genes could only be
identified through their phenotypic effects. The gene was often named for its phenotypic
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effect in a highly inbred laboratory strain maintained under controlled environmental con-
ditions. This method of identifying genes led to a simple-minded equation of genes with
phenotypes that still plagues us today. Almost daily, one reads about “the gene for coronary
artery disease,” “the gene for thrill seeking,” and so on. Equating genes with phenotypes is
reinforced by metaphors appearing in many textbooks and science museums to the effect
that DNA is the “blueprint” of life. However, DNA is not a blueprint for anything; that
is not how genetic information is encoded or processed. For example, the human brain
contains about 1011 neurons and 1015 neuronal connections (Coveney and Highfield 1995).
Does the DNA provide a blueprint for these 1015 connections? The answer is an obvious
“no.” There are only about three billion base pairs in the human genome. Even if every
base pair coded for a bit of information, there is insufficient information storage capacity in
the human genome by several orders of magnitude to provide a blueprint for the neuronal
connections of the human brain. DNA does not provide phenotypic blueprints; instead the
information encoded in DNA controls dynamic processes (such as axonal growth patterns
and signal responses) that always occur in an environmental context. There is no doubt that
environmental influences have an impact on the number and pattern of neuronal connections
that develop in mammalian brains in general. It is this interaction of genetic information
with environmental variables through developmental processes that yield phenotypes (such
as the precise pattern of neuronal connections of a person’s brain). Genes should never be
equated to phenotypes. Phenotypes emerge from genetically influenced dynamic processes
whose outcome depends upon environmental context.

In this book, phenotypes are always regarded as arising from an interaction of genotype
with environment. The marine worm Bonellia (Figure 1.2) provides an example of this
interaction (Gilbert 2000). The free-swimming larval forms of these worms are sexually

Figure 1.2. Sexes in Bonellia. The female has a walnut-sized body that is usually buried in the mud
with a protruding proboscis. The male is a ciliated microorganism that lives inside the female. Adapted
from Fig. 3.18 from Genetics, 3rd Edition, by Peter J. Russell. Copyright c© 1992 by Peter J. Russell.
Reprinted by permission of Pearson Education, Inc.

Proboscis

Mouth

Uterus
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undifferentiated. If a larva settles alone on the normal mud substrate, it becomes a female
with a long (about 15-cm) tube connecting a proboscis to a more rounded part of the body
that contains the uterus. On the other hand, the larva is attracted to females, and if it can
find a female, it differentiates into a male that exists as a ciliated microparasite inside the
female. The body forms are so different they were initially thought to be totally different
creatures. Hence, the same genotype, depending upon environmental context, can yield
two drastically different body types. The interaction between genotype and environment in
producing phenotype is critical for understanding the evolutionary significance of genetic
variability, so the chapters in Part II will be devoted to an exploration of the premise that
phenotypes emerge from a genotype-by-environment interaction.

As a prelude to why the interaction of genotype and environment is so critical to evolution,
consider the following phenotypes that an organism can display:

� Being alive versus being dead: the phenotype of viability (the ability of the individual
to survive in the environment)

� Given being alive, having mated versus not having mated; the phenotype of mating
success (the ability of a living individual to find a mate in the environment)

� Given being alive and mated, the number of offspring produced; the phenotype of
fertility or fecundity (the number of offspring the mated, living individual can produce
in the environment)

The three phenotypes given above play an important role in microevolutionary theory
because collectively these phenotypes determine the chances of an individual passing on its
DNA in the context of the environment. The collective phenotype produced by combining
these three components required for passing on DNA is called reproductive fitness. Fitness
will be discussed in detail in Part III. Reproductive fitness turns premise 1 (DNA can
replicate) into reality. DNA is not truly self-replicating. DNA can only replicate in the context
of an individual surviving in an environment, mating in that environment, and producing
offspring in that environment. Hence, the phenotype of reproductive fitness unites premise
3 (phenotypes are gene-by-environment interactions) with premise 1. This unification of
premises implies that the probability of DNA replication is determined by how the genotype
interacts with the environment. In a population of genetically diverse individuals (arising
from premise 2 that DNA can mutate and recombine), it is possible that some genotypes will
interact with the environment to produce more or fewer acts of DNA replication than other
genotypes. Hence, the environment influences the relative chances for various genotypes of
replicating their DNA. As we will see in Part III, this influence of the environment (premise
3) upon DNA replication (premise 1) in genetically variable populations (premise 2) is
the basis for natural selection and one of the major emergent features of microevolution:
adaptation to the environment, which refers to attributes and traits displayed by organisms
that aid them in living and reproducing in specific environments. Adaptation is one of the
more dramatic features of evolution, and indeed it was the main focus of the theories of
Darwin and Wallace. Adaptation can only be understood in terms of a three-way interaction
among all of the central premises of population genetics.

This book uses these three premises in a progressive fashion: Part I utilizes premises 1
and 2, which are molecular in focus, to explain the amount and pattern of genetic variation
under the assumption that the variation has no phenotypic significance. Part II focuses upon
premise 3 and considers what happens when genetic variation does influence phenotype.
Finally, Part III considers the emergent evolutionary properties that arise from the
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interactions of all three premises and specifically focuses upon adaptation through nat-
ural selection. In this manner, we hope to achieve a thorough and integrated theory of
microevolutionary processes.

METHODOLOGICAL APPROACHES IN POPULATION GENETICS

Evolutionary processes have produced an immense array of biological diversity on this
planet, with species displaying complex and intricate adaptations to their environments.
Understanding this diversity and complexity, its origins, and its implications ranging from
the molecular through ecological levels is a daunting challenge. To meet this challenge,
the study of population genetics requires an appreciation of a broad range of scientific
approaches. We will make use of four approaches in this book:

� Reductionism
� Holism
� Comparative analysis
� Monitoring of natural populations

Reductionism

At one end of the above range of methodologies is the reductionist approach. Reductionism
seeks to break down phenomena from a complex whole into simpler, more workable parts
to find underlying rules, laws, and explanations. The reductionist approach is based upon
the assumption that many complex features of a system can be explained in terms of a
few components or rules contained within the system itself; that is, the explanation for
the observed complexity lies within the content of the system. In this manner, simplicity
(the parts contained within the system) generates complexity (the attributes of the whole
system). Reductionism seeks necessary and sufficient explanations for the phenomenon
under study. Such content-oriented explanations based upon reductionism are said to be
proximate causes for the phenomenon of interest.

For example, why do people die? A reductionist approach would look at each instance
of death and attempt to describe why that particular person died at that particular time in
terms of the status of that individual’s body at the time of death. One would get different
answers for different individuals, and one would not need to look beyond the health status
of a particular individual to obtain the proximate answer. Death is explained exclusively in
terms of the content of the individual’s body and nothing external to the body is considered.
Taking such a reductionist approach, the three leading proximate causes of death in the year
2000 in the United States are (1) heart disease (29.6% of all deaths that year), (2) cancer
(23%), and (3) cerebrovascular disease (7%) (Mokdad et al. 2004).

Much of population genetic theory and practice are reductionist in approach. One of the
primary tools for implementing the reductionist approach is the controlled experiment in
which all potential variables save one are ideally fixed, thereby allowing strong inference
about how the single remaining variable factor causes effects of interest in the system under
study. The controlled experiment fixes the context to allow inference about the content of a
system varying with respect to a single factor. The experimental approach has been widely
applied in population genetics and has proven to be a powerful tool in elucidating causal
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factors in microevolution. Note, however, that the strong inferences made possible by this ap-
proach are limited by the fixed contexts of the experiment, so generalizations outside of that
context need to be made with great caution. Moreover, potential interactions with variables
that have been experimentally fixed lie outside the domain of inference of the experimental
approach. Indeed, in the ideal controlled experiment in which only a single factor is vary-
ing, all interaction effects are eliminated from the domain of inference, so some potentially
important biological phenomena are not amenable to inference in a controlled experiment.

The reductionist approach is used in both experimental and theoretical population ge-
netics. In modeling microevolution, the complexity of an evolving population is often
simplified by reducing the number of variables and ignoring many biological details. With
such simplification, laws and complex evolutionary patterns can be elucidated from a few
components or factors that are contained within the population itself. Part I uses a reduction-
ist approach to explain the fates and patterns of genetic diversity observed in populations
in terms of simple attributes of the population itself. This reductionist approach yields an
explanation of many important microevolutionary phenomena, often confirmed by appro-
priate controlled experiments. However, reductionism alone is insufficient to understand all
of microevolution.

Holism

As a complement to the reductionist approach that simplicity generates complexity, the
holistic approach is based upon the assumption that simple patterns exist in nature that
emerge when underlying complex systems are placed into a particular context (simplicity
emerges from complexity). The explanation of these emergent patterns often depends not
upon knowing the detailed content of the component systems but rather upon the context
in which these components are placed in a higher level interacting whole. These context-
dependent explanations that do not depend upon detailed content reveal what is commonly
called ultimate causation.

For example, why do people die? A holistic approach would look at multiple variables
that define the health context of a population of individuals. One would not be trying to
explain why a particular individual died at a particular time, but rather one would be trying
to access the importance of context variables as predictors of death at the level of the
whole population. Taking such a holistic approach, the three leading ultimate causes of
death in the year 2000 in the United States are (1) tobacco consumption (18.1%), (2) being
overweight (poor diet and physical inactivity, 16.6%), and (3) alcohol consumption (3.5%)
(Mokdad et al. 2004). The ultimate explanation of causes of death does not depend upon
the cause of death of any particular individual. The ultimate answers as to why people die
also depend not upon the state of their bodies at the time of death (content) but rather upon
the environmental context (tobacco, diet, physical activity, alcohol) into which their bodies
have been placed.

It is critical to note that reductionist and holistic approaches are complementary, not
antagonistic. Both approaches provide answers that are meaningful, albeit at different bio-
logical levels. A practicing physician would be most concerned with the particular health
status of his or her patients. Such a physician would be prescribing specific treatments for
specific individuals based on studies and knowledge of proximate causation. However, a
public health official would focus more on ultimate causation and would try to augment
the health of the U.S. population by encouraging less tobacco use and reducing the number
of overweight people. Both answers to why people die are valid and both answers can be
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used in making health-related decisions. The reductionist and holistic answers each lead to
insights and details that are not addressed by the other.

Moreover, reductionist and holistic approaches can converge. A controlled experiment
can allow two or more factors to vary, not just one, and can be designed to look at the
interactions of the variables. This allows one to study the effect of one variable in the context
of another variable. Similarly, a holistic study can be designed that controls (fixes) some
variables, resulting in ultimate answers that focus on the content defined by the remaining
variables. For example, one can do “case–control” studies by assembling two groups of
people, say one group of smokers and one group of nonsmokers, who are matched on several
other variables (age, gender, etc.). Such studies have revealed that smoking increases the
risk of individuals developing heart disease, cancer, and cerebrovascular disease, thereby
forging a link between the studies on ultimate and proximate causations of death in the
U.S. population. In this manner, the gap between reductionism and holism and between
proximate and ultimate causation can often be narrowed.

All too often, reductionism and holism are presented as alternative, antagonistic ap-
proaches in biology. This legacy is particularly true for studies on the inheritance of traits,
which has often been phrased as a debate between nature (content) and nurture (context).
As discussed earlier in this chapter, this is a false dichotomy. Premise 3 tells us that traits
emerge from the interaction of genotypes with environments, and modern studies on trait
variation often seek to examine both content (the genes affecting trait variation) and context
(the environments in which the genes are expressed). As soon as we deal with the phenotypic
significance of genetic variation in Part II, an exclusively molecular, reductionist focus is
no longer appropriate. Rather we must take an organismal, holistic focus in the context of
an environment.

Of the traits that emerge from the interaction of genotypes with environment are those
traits related to the ability of an individual to reproduce and pass on genes to the next genera-
tion. As already discussed in this chapter and in detail in Part III, the evolutionary mechanism
of natural selection emerges from the interaction of genotypes with environments. Many
explanations of ultimate causation in evolutionary biology depend upon natural selection.
Again and again, the traits expressed by particular individuals or in particular populations
or species are explained in the ultimate sense in terms of arguments of how particular en-
vironmental contexts result in natural selection favoring the trait. Population genetics deals
in part with the mechanism of natural selection (Part III), and hence population genetics is
an essential component of any explanation of ultimate causation based upon evolutionary
change induced by natural selection. However, the population genetic approach to mecha-
nisms such as natural selection explicitly uses both reductionism and holism simultaneously.
For example, in population genetics natural selection is discussed in terms of the specific
genes contained within the organisms being selected and the mapping of these genes to
phenotype in the context of an environment, with the evolutionary response modulated by
the other evolutionary forces contained within the population as discussed in Part I. Such
an integrated reductionist/holistic approach will be the emphasis in Parts II and III.

Comparative Analysis

An evolutionary process occurs over time; therefore evolving populations (and the genes
contained within those populations) have a history. The comparative approach to biolog-
ical science makes active use of this history. This is a scientific method used extensively
in biology, mostly at the species level and above. Traditionally, an evolutionary tree is
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constructed for a group of species. Then other data about these organisms (anatomy, devel-
opmental pathways, behavior, etc.) are overlaid upon the evolutionary tree. In this manner,
it is possible to infer how many evolutionary transitions occurred in characters of interest,
the locations of transitions within the evolutionary tree, and patterns of evolutionary associ-
ations among characters. Contrasts between those organisms on either side of a transitional
branch are those that are most informative about the character of interest because the shar-
ing of evolutionary history for all other traits is maximized by this contrast. A comparative
contrast bears some similarity to a controlled experiment in reductionist empirical science
because the contrast is chosen to minimize confounding factors.

For example, Darwin’s finches comprise a group of 14 species of songbirds living on
the Galápagos Islands and Cocos Island off the coast of Equador that were collected by
Charles Darwin and other members of the Beagle expedition in 1835. These 14 species have
drawn the attention of many evolutionary biologists because of the remarkable diversity in
the shape and size of their beaks, which range from sharp and pointed to broad and deep
(Figure 1.3). Why do these 14 species show such remarkable diversity in beak shape and
size? Both the proximate and ultimate answers to this question have been studied using
the comparative method. Petren et al.(1999) estimated an evolutionary tree of these finches
from molecular genetic differences, with the resulting tree shown in Figure 1.3. Abzhanov
et al. (2004) compared beak development in the six species of the genus Geospiza from this
evolutionary tree and also compared the expression patterns of a variety of growth factors
that are known to influence avian craniofacial development. By overlaying these data upon
the molecular genetic tree, they produced evolutionary contrasts that separated out the effects
of beak size and beak shape. Most of the growth factors they examined showed no significant
pattern of change on this evolutionary tree. The expression patterns of bone morphogenetic
proteins 2 and 7, coded for by the Bmp2 and Bmp7 genes, respectively, correlated with beak
size but not with beak shape. The expression patterns of bone morphogenetic factor 4, coded
for by the Bmp4 gene, strongly correlated with beak shape changes on this evolutionary
tree. Because the comparative study implicated Bmp4 expression as being an important
proximate cause of beak shape diversity, Abzhanov et al. (2004) next performed controlled
experiments to test this hypothesis within a reductionist framework. They attached the
chicken Bmp4 gene to a viral vector and infected developing cells with this virus to alter
the expression of the Bmp4 gene. In this manner, they were able to alter the beak shape of
chick embryos in a manner that mimicked the types of changes observed in the evolution
of Darwin’s finches.

This work on Bmp4 expression does not, however, provide the ultimate answer as to why
Darwin’s finches show much diversity in beak size and shape. The comparative approach can
also be used to address the ultimate question of what environmental factors, if any, caused
this beak diversity and underlying patterns of Bmp4 expression to have evolved through
natural selection. Perhaps this beak diversity evolved on the South American mainland, and
the Galápagos Islands were simply colonized by finches with preexisting beak diversity. In
this case, the ultimate answer would lie in evolution in the mainland and have little to do
with the context of being on the Galápagos Islands. Alternatively, if all 14 species evolved
on the Galápagos Islands, then the ultimate answer would lie specifically in the context of
the Galápagos Islands. The evolutionary tree in Figure 1.3 shows that all 14 species evolved
on the Galápagos Islands, so the ultimate answer should lie in the environments found on
these islands. This shows that just having an evolutionary tree allows some hypothesis about
ultimate causation to be tested directly. The comparative analysis clearly indicates that the
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Figure 1.3. Evolutionary tree of 14 species of Darwin’s finches estimated from molecular genetic data.
Modified from Fig. 3 in Petren et al. (1999). Copyright C©1999 by the Royal Society of London.

ultimate explanation lies in the environments found on the Galápagos Islands and not on
the mainland.

Because beaks are used to procure and process food, diet is a logical environmental
factor for studies on how natural selection may have shaped beak diversity in these finches.
Fieldwork has revealed much about the ecology of Darwin’s finches (Grant 1986), including
their diets. Different species eat items of different sizes, an example of which is shown
in Figure 1.4. This dietary data can also be overlaid upon the evolutionary tree of the
finches, and it reveals a strong correlation in shifts of diet with transitions in beak size and
shape. Note that this comparative analysis reveals a strong association between content (the
beak size and shape of individual species) and context (the dietary environment). Such a



JWDD020-01 JWDD020-Templeton August 17, 2006 1:49 Char Count= 0

14 SCOPE AND BASIC PREMISES OF POPULATION GENETICS

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 1

Seed depth (mm)

P
ro

po
rt

io
n 

of
 d

ie
t

Figure 1.4. Proportions of various seed sizes in diet of three of Darwin’s finches: Geospiza magnirostris
(solid bars), Geospiza fortis (open bars), and Geospiza fuliginosa (gray bars). Redrawn with permission
from Fig. 35 in P. R. Grant, Ecology and Evolution of Darwin’s Finches (1986). Copyright C©1986 by
Princeton University Press.

content–context association in evolutionary history suggests the hypothesis that the beak
diversity is being shaped by natural selection as adaptations for different diets.

These studies on Darwin’s finches reveal that the comparative approach can be used to
test and formulate hypotheses of both proximate and ultimate causation. One of the more ex-
citing developments in population genetics during the last part of the twentieth century was
the development of molecular techniques that have allowed the application of comparative
approaches within species. As illustrated above, it is now possible to trace the evolutionary
history of species through molecular genetic studies. However, this evolutionary history can
often be inferred for the genetic variation found within a species as well. In this manner,
population genetic studies on genetic variation within a species can now include the evo-
lutionary history of that genetic variation. This opens the door to comparative approaches
within species. Such intraspecific comparative approaches are used throughout this book,
and they represent a particularly powerful way of uniting reductionism and holism within
population genetics.
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Monitoring Natural Populations

Many hypotheses in population genetics can be tested by monitoring natural populations.
One of the simplest types of monitoring is a one-time sample of individuals of unknown
relationship coupled with some sort of genetic survey (using one or more of the techniques
described in Appendix 1). Such simple genetic surveys allow one to estimate and test most
of the evolutionary forces described in Part I. Just as genetic surveys of present-day species
can allow an evolutionary tree of those species to be estimated (e.g., Figure 1.3), so can
a genetic survey of present-day genes and/or populations allow an evolutionary history of
those genes and/or populations to be estimated. Moreover, the genetic survey data can be
overlaid with phenotypic data to test hypothesis about how genetic variation influences
phenotypic variation, as will be shown in Part II. Finally, Part III shows that many tests for
the presence or past operation of natural selection are possible from such genetic survey data.

The monitoring of natural populations can be extended beyond a simple one-time survey
of genetic variation of individuals of unknown relationship. For example, one can sample
families (parents and offspring) instead of individuals or follow a population longitudi-
nally through time to obtain multigeneration data. Such designs allow more hypotheses to
be tested. For example, Boag (1983) sampled parents and offspring of the Darwin finch
Geospiza fortis and plotted the beak depth of the offspring against the average beak depth
of their two parents (Figure 1.5). As will be shown in Part II, such data can be used to
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Figure 1.5. Relationship between beak depth of offspring and average beak depth of their parents
(midparent beak depth) in medium ground finch, G. fortis, as measured in two years, 1976 and 1978.
The lines show a fitted least-squares regression to these data (Appendix 2). As will be explained in
Chapter 9, the nearly identical, positive slopes of these lines indicate that genetic variation in these
populations contribute in a major way to variation in beak depth. From Fig. 1 in Boag (1983). Copyright
C©1983 by The Society for the Study of Evolution.
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estimate the contribution of genetic variation to variation in the trait of beak depth even in
the absence of a molecular genetic survey. In this case, the plots shown in Figure 1.5 reveal
that the intraspecific variation observed in beak depth in G. fortis is strongly influenced by
genetic variation within this population.

Population genetics is concerned with the fate of genes over space and time within a
species, and this fate can be observed or estimated by monitoring populations over space and
time. Such monitoring over space and time also allows population geneticists to make use
of natural experiments. For example, natural selection arises out of how individuals interact
with their environment, but environments themselves often change over space and time.
Although not a controlled experiment in the strict reductionist sense, spatial and temporal
environmental contrasts can sometimes provide a similar inference structure. To see how,
consider again Darwin’s finches. The comparative method implied that the variation in
beak size and shape reflected adaptations to dietary differences. However, this answer of
ultimate causation raises yet other questions about ultimate causation: Why did some or
all of the current species evolve a different diet from that of the common ancestral finch
and why do the current species display such a variety of diets? These questions of ultimate
causation can be addressed through the use of natural experiments involving environmental
contrasts in time and space. For example, in 1977 the Galápagos Islands suffered a severe
drought. By monitoring both the finch populations and the environment in which they
live, it was discovered that this drought had a major impact on both the abundance of the
seeds eaten by these finches and the characteristics of the seeds. For example, there was
a dramatic shift from small and soft seeds to large and hard seeds during the drought for
the seeds eaten by the medium ground finch, G. fortis (Figure 1.6). The inference from the
comparative method that beak size and shape are adaptive to diet leads to the prediction that
this drought-induced shift in diet would result in natural selection on the beaks in G. fortis.
This prediction is testable by monitoring the population before and after the drought. There
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Figure 1.6. Characteristics of average seed available as food to medium ground finches (G. fortis)
before, during, and after 1977 drought. Reprinted from Fig. 1 in P. T. Boag and P. R. Grant, Science 214:
82–85(1981). Copyright C©1981 by the AAAS.
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Figure 1.7. Frequency distributions of beak depth in G. fortis on island of Daphne Major before (1976)
and after (1978) a drought. Dashed lines indicate the mean beak depths in 1976 and 1978. Redrawn with
permission from Fig. 59 in P. R. Grant, Ecology and Evolution of Darwin’s Finches (1986). Copyright C©
1986 by Princeton University Press.

was a significant shift upward in beak depth in the survivors of the drought relative to the
predrought population (Figure 1.7), a shift consistent with the hypothesis that increased
beak depth is an adaptation to the larger and harder seeds that were available during the
drought. Given that variation in beak depth is strongly influenced by genetic variation in
this population (Figure 1.5), another prediction is that natural selection operated on this
population to cause evolution in this population in response to the drought. This prediction
can also be tested by looking at the beak depths of the finches hatched in the years before
and after the drought, and indeed the predicted genetic shift is observed (Figure 1.8).

Subsequent environmental changes confirmed that changes in seed availability induce
selection on beak shape and size (Grant and Grant 1993, 2002). Even though the subsequent
environmental shifts were different from those induced by a drought, this environmental
heterogeneity over time did replicate the testable prediction that beak shape and size are
subject to natural selection due to interactions with the available seed environment. These
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Figure 1.8. Beak depth in G. fortis hatched year before drought (1976) versus year after drought (1978).
Dashed lines indicate the mean beak depth for the finches born before and after the drought.

natural experiments from monitoring populations reinforce the inference made from the
comparative method that beak size and shape are adaptations to diet. Moreover, these
temporal natural experiments suggest that beak size and shape would not remain static
once an ancestral finch colonized these islands but rather would evolve because the seed
environment is subject to change over time. Moreover, the seed environment varies from
island to island, so this selective hypothesis could also explain some of the diversity of beak
size and shape between finch species that primarily live on different islands.

These studies on Darwin’s finches illustrate that the monitoring of natural populations
can be a powerful method of inference in population genetics. Note that studies on Darwin’s
finches have utilized reductionist controlled experiments, reductionist comparative studies,
holistic comparative studies, and monitoring of natural populations. The best studies in
population genetics tend to integrate multiple methods of inference that are complementary
and reinforcing to one another.
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2

MODELING EVOLUTION AND
THE HARDY–WEINBERG LAW

Throughout this book we will construct models of reproducing populations to investigate
how various factors can cause evolutionary changes. In this chapter, we will construct some
simple models of an isolated local population. These models use a reductionistic approach to
eliminate many possible features in order to focus our inference upon one or a few potential
microevolutionary factors. The models will also provide insights that have been historically
important to the acceptance of the neo-Darwinian theory of evolution at the beginning of the
twentieth century and are of increasing importance to the application of genetics to human
health and other contemporary problems at the beginning of the twenty-first century.

HOW TO MODEL MICROEVOLUTION

Given our definition that evolution is a change over time in the frequency of alleles or allele
combinations in the gene pool, any model of evolution must include at the minimum the
passing of genetic material from one generation to the next. Hence, our fundamental time unit
will be the transition between two consecutive generations at comparable stages. We can then
examine the frequencies of alleles or allelic combinations in the parental versus offspring
generation to infer whether or not evolution has occurred. All such transgenerational models
of microevolution have to make assumptions about three major mechanisms:

� Mechanisms of producing gametes
� Mechanisms of uniting gametes
� Mechanisms of developing phenotypes.

In order to specify how gametes are produced, we have to specify the genetic architecture.
Genetic architecture refers to the number of loci and their genomic positions, the number

Population Genetics and Microevolutionary Theory, By Alan R. Templeton
Copyright C© 2006 John Wiley & Sons, Inc.
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of alleles per locus, the mutation rates, and the mode and rules of inheritance of the genetic
elements. For example, the first model we will develop assumes a genetic architecture of a
single autosomal locus with two alleles with no mutation. The genetic architecture provides
the information needed to specify how gametes are produced. For a single-locus, two-allele
autosomal model with no mutation, we need only to use Mendel’s first law of inheritance
(the law of equal segregation of the two alleles in an individual heterozygous at an autosomal
locus) to specify how genotypes produce gametes. Other single-locus genetic architectures
can display different modes of inheritance, including X-linked loci (with a haplo–diploid,
sex-linked mode of inheritance), Y chromosomal loci (with a haploid, unisexual paternal
mode of inheritance in humans), or mitochondrial DNA (with a haploid, maternal mode
of inheritance in humans). We can also examine genetic architectures that depend upon
more than one locus, in which case mixed modes of inheritance are possible and in which
Mendel’s second law (independent assortment) and/or recombination frequencies of linked
loci may enter into the rules by which gametes are produced. We can even have deviations
from the standard rules of inheritance. For example, we may specify that a locus is subject
to deviations from Mendel’s first law of 50–50 segregation in the production of gametes
from heterozygotes. In a multilocus model we may specify that unequal crossing over
can occur, thereby producing variation in the number of genes transmitted to the gametes.
The assumptions about genetic architecture that we make obviously limit the types of
evolutionary processes that we can model. Hence, the specification of genetic architecture
is a critical first step in any model of microevolution.

Because our focus is upon sexually reproducing diploid organisms, the transition from
one generation to the next involves not only the production of gametes but also the pairing of
gametes to form new diploid zygotes. Hence, we need to specify the mechanisms or rules by
which gametes are paired together in the reproducing population. These mechanisms of unit-
ing gametes are called population structure. Population structure includes the following:

� System of mating of the population
� Size of the population
� Presence, amount, and pattern of genetic exchange with other populations
� Age structure of the individuals within the population

All of these factors can have an impact on which gametes are likely to be paired and trans-
mitted to the next generation through newly formed zygotes. As with genetic architecture,
we can make assumptions about population structure that vary from the simple to the
complex, depending upon the types of phenomena we wish to examine for evolutionary
impact. The system of mating can be simply a random pairing of individuals or can be
influenced by degrees of biological relatedness or other factors. We can choose to ignore
the impact of population size by assuming size to be infinite or we can examine small pop-
ulations in which the population size has a major impact on the probability of two gametes
being united in a zygote. We can model a single deme in which all uniting gametes come
from that deme or we can allow gametes from outside the deme to enter at some specified
rate or probability, which in turn could be a function of geographical distance, ecological
barriers, and so on. We can assume discrete generations in which all individuals are born
at the same time and then reproduce at the same time followed by complete reproductive
senescence or death. Alternatively, we can assume that individuals can reproduce at many
times throughout their life and can mate with individuals of different ages and offspring
can coexist with their parents. Until we specify these parameters of population structure,
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we cannot model microevolution because the uniting of gametes is a necessary step in the
transmission of genes from one generation to the next in sexually reproducing organisms.

In most species, the zygote that results from uniting gametes is not capable of immediate
reproduction but rather must grow, develop, survive, and mature reproductively. All of
this takes place in an environment or suite of environments. From premise 3 in Chapter 1
(phenotypes are gene-by-environment interactions), we know that actual DNA replication
depends upon the phenotypes of the individuals bearing the DNA. Hence, we also need
to specify phenotypic development, that is, the mechanisms that describe how zygotes
acquire phenotypes in the context of the environment. Assumptions can range from the
simple (the genetic architecture has no impact on phenotype under any of the environments
encountered by individuals in the population) to the complex (phenotypes are dynamic
entities constantly changing as the external environment changes and/or as the individual
ages with changing patterns of epistasis and pleiotropy throughout).

All models of microevolution must make assumptions about the mechanisms of produc-
ing gametes, uniting gametes, and developing phenotypes. Without such assumptions, it is
impossible to specify the genetic transition from one generation to the next. Quite often,
models are presented that do not explicitly state the assumptions being made about all three
mechanisms. This does not mean that assumptions are not being made; rather, they are being
made in an implicit fashion. Throughout this book an effort is made to state explicitly the
assumptions being made about all three of these critical components of transferring DNA
from one generation to the next in a reproducing population. We will do this now for our
first and simplest model of evolution, commonly called the Hardy–Weinberg model.

HARDY–WEINBERG MODEL

One of the simplest models of population genetics is the Hardy–Weinberg model, named
after two individuals who independently developed this model in 1908 (Hardy 1908; Wein-
berg 1908). Although this model makes several simplifying assumptions that are unrealistic,
it has still proven to be useful in describing many population genetic attributes and will serve
as a useful base model in the development of more realistic models of microevolution. Hardy
was an English mathematician, and his development of the model is mathematically sim-
pler but yields less biological insight than the more detailed model of Weinberg, a German
physician. Both derivations will be presented here because each has advantages over the
other for particular problems that will be addressed later in this book.

Both derivations start with a common set of assumptions, as summarized in Table 2.1.
We now discuss each of the assumptions given in that table. Concerning the mechanisms of
producing gametes, both men assumed a single autosomal locus with two alleles and with
no mutation. Meiosis was assumed to be completely normal and regular, so that Mendel’s
first law of equal segregation could predict the gametes produced by any genotype. There
are also no maternal or paternal effects of any sort, so it makes no difference which parent
contributes a gamete bearing a specific allele.

Concerning the mechanisms of uniting gametes, both men assumed a single population
that has no genetic contact with any other populations; that is, an isolated population. Within
this closed population, Hardy assumed the individuals are monoecious (each individual is
both a male and a female) and self-compatible; Weinberg allowed the sexes to be separate
but assumed that the sex of the individual has no impact on any aspect of inheritance or
genetic architecture. The system of mating in both derivations is known as random mating
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Table 2.1. Assumptions of Hardy–Weinberg Model

Mechanisms of producing gametes (genetic architecture) One autosomal locus,
two alleles,
no mutation,
Mendel’s first law

Mechanisms of uniting gametes (population structure)
System of mating Random
Size of population Infinite
Genetic exchange None (one isolated population)
Age structure None (discrete generations)

Mechanisms of developing phenotypes All genotypes have identical
phenotypes with respect to
their ability for replicating
their DNA

and means that the probability of two genotypes being mates is simply the product of the
frequencies of the two genotypes in the population. Note that random mating is defined
solely in terms of the genotypes at the locus of interest; there is no implication in this
assumption that mating is random for any other locus or set of loci or for any phenotypes
not associated with the locus of interest. For example, humans do not mate at random for a
number of phenotypes (gender, skin color, height, birthplace, etc.), but as long as the genetic
variation at the locus of interest has no impact on any of these phenotypes, the assumption
of random mating can still hold. Hence, random mating is an assumption that is specific to
the genetic architecture of interest and that does not necessarily generalize to other genetic
systems found in the same organisms.

Concerning the other aspects of population structure, both derivations make the assump-
tion that the population is of infinite size, thereby eliminating any possible effects of finite
population size upon the probability of uniting gametes. Both men ignored the effects of
age structure by assuming discrete, nonoverlapping generations. Finally, concerning the
mechanisms of developing phenotypes, nothing was explicitly assumed, but implicitly both
derivations require that under the range of environments in which the individuals of the
population are living and reproducing there is no phenotypic variation for viability, mating
success, and fertility. In terms of their ability to replicate DNA, all genotypes have identical
phenotypes. This means that all genotypes have the same reproductive fitness, so there is
no natural selection in this model.

To examine the population genetic implications of these assumptions upon a reproducing
population, we need to go through a complete generation transition. In both derivations, we
will start with a population of reproductively mature adults. The essence of this model (and
many others in population genetics) is to follow the fate of genes from this population of
adults through producing gametes, mating to unite gametes (zygote production), and then
zygotic development to the adults of the next generation. We will then examine the gene
pools associated with these two generations of adults to see if any evolution has occurred.

Because we are dealing with a single autosomal locus with two alleles (say A and a) and
no additional mutation, adult individuals are of three possible genotypes: AA, Aa, and aa.
We will characterize the adult population by their genotypes and the frequencies of these
genotypes in the total population (see Figure 2.1). Let these three genotype frequencies
be G AA, G Aa , and Gaa, where the subscript indicates the genotype associated with each
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Figure 2.1. Derivation of Hardy–Weinberg law for single autosomal locus with two alleles, A and a. In
going from adults to gametes, solid lines represent Mendelian transition probabilities for homozygotes,
and dashed lines represent Mendelian transition probabilities for heterozygotes. In going from gametes
to zygotes, solid lines represent gametes bearing the A allele, and dashed lines represent gametes
bearing the a allele.

frequency. Because these three genotypes represent a mutually exclusive and exhaustive set
of possible genotypes, these three genotype frequencies define a probability distribution over
the genotypes found in the adult population (see Appendix 2 for a discussion of probability
distributions). This means that G AA + G Aa + Gaa = 1. This probability distribution of
genotype frequencies represents our fundamental description of the adult population.

At this point, the derivations of Hardy and of Weinberg diverge. We will first follow
Hardy’s and then return to Weinberg’s. The population of adult individuals can produce
gametes. As discussed in Chapter 1, the population of potential gametes produced by these
individuals defines the gene pool (Figure 2.1). Because of our assumptions about genetic
architecture and no mutation, all we need is Mendel’s first law to predict the frequencies of
the various haploid genotypes (gametes) found in the gene pool from the frequencies of the
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diploid adult genotypes. Two and only two haploid gametic types are possible: A and a. The
frequencies of these gametes (which for a one-locus model are called allele frequencies)
also define a probability distribution over the gamete types found in the gene pool. This
probability distribution of gamete frequencies represents our fundamental description of
the gene pool. We will let p be the frequency of gametes bearing the A allele in the gene
pool and q the frequency of gametes bearing the a allele in the gene pool. Because p and
q define a probability distribution over the gene pool, p + q = 1, or q = 1 − p. Hence,
we need only one number, say p, to completely characterize the gene pool in this model.
A critical question is: Can we predict the allele (gamete) frequencies from the genotype
frequencies? Under our assumptions of the mechanisms for producing gametes, the answer
is “yes” and all we need to use is Mendel’s first law of equal segregation. Under Mendel’s
law, the probability of an AA genotype producing an A gamete is 1 and the probability of
an AA genotype producing an a gamete is 0. Similarly, the probability of an aa genotype
producing an A gamete is 0 and the probability of an aa genotype producing an a gamete is
1 under standard Mendelian inheritance. Finally, Mendel’s first law predicts that the proba-
bility of an Aa genotype producing an A gamete is 1

2 and the probability of an Aa genotype
producing an a gamete is 1

2 . These Mendelian probabilities are transition probabilities
that describe how one goes from adult genotypes to gamete types. Hence, the transition
from the adult population to the gene pool is determined completely by these transmission
probabilities (our mathematical descriptor of the mechanisms of producing gametes). As
can be seen from Figure 2.1, these transition probabilities from diploidy to haploidy allow
us to predict the gene pool state completely from the adult population genotype state. In
particular, all we have to do is multiply each transmission probability by the frequency of the
genotype with which it is associated and then sum over all genotypes for each gamete type.
Thus, 1 × G AA is the frequency of A gametes coming from AA individuals, 1

2 × G Aa is the
frequency of A gametes coming from Aa individuals, and 0 × Gaa = 0 is the frequency of A
gametes coming from aa individuals. Hence, the total frequency of the A allele in the gene
pool is 1 × G AA + 1

2 × G Aa + 0 × Gaa = G AA + 1
2 G Aa = p. Similarly, the frequency

of the a allele in the gene pool is 0 × G AA + 1
2 × G Aa + 1 × Gaa = Gaa + 1

2 G Aa =
q = 1 − (G AA + 1

2 G Aa) = 1 − p (see Figure 2.1). Note that the Mendelian transmission
probabilities (the 0’s, 1’s, and 1

2 ’s used above) and the genotype frequencies (the G’s)
completely determine the allele frequencies in the gene pool. In general, gamete frequencies
can always be calculated from genotype frequencies given a knowledge of the mechanisms
of producing gametes. Letting g j be the frequency of gamete type j in the gene pool (either
an allele for a single-locus genetic architecture or a multiallelic gamete for a multilocus
genetic architecture), the general formula for calculating a gamete frequency is

g j =
∑

genotypes

probability (genotype k producing gamete j) × (frequency of genotype k)

(2.1)

where “genotype k” is simply a specific genotype possible under the assumed genetic
architecture. The equations previously used to calculate p and q are special cases of
equation 2.1 for a single autosomal locus with two alleles. This equation makes it clear
that two types of information are needed to calculate gamete frequencies:

� Information about the mechanisms of producing gametes which determine the proba-
bility of a specific genotype producing a specific gamete type

� Genotype frequencies of the population of interest
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Figure 2.2. Different adult populations sharing a common gene pool.

It is always possible to calculate the gamete frequencies from the genotype frequencies
given a knowledge of the mechanisms of producing gametes. Is it also possible to
calculate the genotype frequencies from the gamete frequencies given a knowledge of
the mechanisms of producing gametes? The answer is “no.” To see this, consider a
population of adults consisting only of Aa individuals (Figure 2.2a). In this population,
G AA = 0, G Aa = 1, and Gaa = 0. Hence, p = G AA + 1

2 × G Aa = 0 + 1
2 × 1 = 0.5. Now,

consider a population with G AA = 0.25, G Aa = 0.5, and Gaa = 0.25 (Figure 2.2b). For this
population, p = G AA + 1

2 × G Aa = 0.25 + 1
2 × 0.5 = 0.5. Now consider the population

shown in Figure 2.2c, in which G AA = 0.5, G Aa = 0, and Gaa = 0.5. In this population,
p = G AA + 1

2 × G Aa = 0.5 + 1
2 × 0 = 0.5. Hence, three very different populations of
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adults all give rise to identical gene pools! This shows that there is no one-to-one mapping
between genotype frequencies and gamete frequencies. Although gamete frequencies
can always be calculated from genotype frequencies given a knowledge of the rules of
inheritance, genotype frequencies are not uniquely determined by gamete frequencies and
the rules of inheritance. Obviously, we need additional information to predict genotype
frequencies from gamete frequencies. This is where population structure comes in.

Hardy and Weinberg made assumptions about population structure that remove as po-
tential evolutionary factors mutation, genetic contact with other populations, population
size, and age structure. All that is left in their simplified model is system of mating. Under
Hardy’s formulation, random mating means that two gametes are randomly and indepen-
dently drawn from the gene pool and united to form a zygote. By a random draw, Hardy
meant that the probability of a gamete being drawn is the same as its frequency in the gene
pool. Hence, if the proportion of the gametes bearing the A allele is p, then the probability
of choosing a gamete with an A allele is p. Similarly, the probability of drawing an a gamete
is q . Individuals are monoecious in Hardy’s model, and every individual contributes equally
to both male and female gametes. Hence, although the second gamete drawn from the gene
pool must be from the opposite sex of the first, all individuals are still equally likely to be the
source of the second gamete. Moreover, Hardy regarded the number of gametes that could
be produced by an individual as effectively infinite, so that drawing the first gamete from
the gene pool has no effect upon drawing the second. The assumption of random mating
also stipulates that this second gamete is drawn independently from the gene pool, which
means that the probabilities are identical on the second draw and that the joint probability
of both gametes is simply the product of their respective allele frequencies. Table 2.2 shows
how these gamete frequencies are multiplied to yield zygotic genotype frequencies. Note,
in calculating the frequency of the Aa genotype, there are two ways of creating a heterozy-
gous zygote; the A allele could come from the paternal parent and a from the maternal or
vice versa. The Hardy–Weinberg assumptions imply that parental origin of an allele has no

Table 2.2. Multiplication of Allele Frequencies to Yield Zygotic Genotypic Frequencies under
Hardy–Weinberg Model of Random Mating

Male gametes

Allele A a
Frequency p q

Allele Frequency

Female A p
gametes a q

AA Aa
p × p = p2 p × q = pq

a A aa
q × p = qp q × q = q2

Summed frequencies in zygotes:
AA: G ′

AA = p2

Aa: G ′
Aa = pq + qp = 2pq

aa: G ′
aa = q2

Note: The zygotic genotype frequencies are indicated by G ′
k
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effect. Hence, the two types of heterozygotes, each with frequency pq, are pooled together
into a single Aa class with frequency 2pq.

As the zygotes develop and mature into adults capable of contributing genes to the next
generation, there is no change in their relative frequencies because of the implicit assumption
of no phenotypic variation in viability, mating success, or fertility. Hence, Hardy showed that
the genotype frequencies of the next generation could be predicted from allele frequencies
given knowledge of the system of mating. From Figure 2.1 or Table 2.2, these predicted
genotype frequencies are

G ′
AA = p2 G ′

Aa = 2pq G ′
aa = q2

This array of genotype frequencies is known as the Hardy–Weinberg law.
We did not make any assumptions in this derivation about the initial genotypic frequen-

cies, for example, G AA. The initial adult population does not have to have Hardy–Weinberg
genotype frequencies for the zygotes to have Hardy–Weinberg frequencies; all that is re-
quired is random mating of the adults regardless of their genotype frequencies. Hence, it
takes only one generation of random mating to achieve Hardy–Weinberg genotype frequen-
cies regardless of the starting genotype frequencies.

Weinberg’s derivation differed from Hardy’s at the point of modeling uniting gametes.
To Weinberg, random mating meant that the probability of two genotypes being involved
in a mating event was simply the product of their respective genotype frequencies. Given
a mating, offspring genotypes would be produced according to standard Mendelian prob-
abilities. Hence, in Weinberg’s derivation, the mechanisms of producing gametes and the
mechanisms of gametic union are utilized in an integrated fashion, as shown in Table 2.3.
Note that this table makes an additional assumption not needed under the monoecious
version of Hardy, namely, that the genotype frequencies are identical in both sexes. With

Table 2.3. Weinberg’s Derivation of Hardy–Weinberg Genotype Frequencies

Mendelian Probabilities of
Offspring (Zygotes)

Mating Pair Frequency of Mating Pair AA Aa aa

AA × AA G AA × G AA = G2
AA 1 0 0

AA × Aa G AA × G Aa = G AAG Aa
1
2

1
2 0

Aa × AA G Aa × G AA = G AAG Aa
1
2

1
2 0

AA × aa G AA × Gaa = G AAGaa 0 1 0
aa × AA Gaa × G AA = G AAGaa 0 1 0
Aa × Aa G Aa × G Aa = G2

Aa
1
4

1
2

1
4

Aa × aa G Aa × Gaa = G Aa Gaa 0 1
2

1
2

aa × Aa Gaa × G Aa = G Aa Gaa 0 1
2

1
2

aa × aa Gaa × Gaa = G2
aa 0 0 1

Total offspring G ′
AA G ′

Aa G ′
aa

Summing zygotes over all mating types:

G ′
AA = G2

AA + 1
2 [2G AAG Aa] + 1

4 G2
Aa = [G AA + 1

2 G Aa]2 = p2

G ′
Aa = 1

2 [2G AAG Aa]+ 2G AAGaa + 1
2 G2

Aa + 1
2 [G Aa Gaa] = 2[G AA + 1

2 G Aa][Gaa + 1
2 G Aa] = 2pq

G ′
aa = 1

4 G2
Aa + 1

2 [2G Aa Gaa] +G2
aa = [Gaa + 1

2 G Aa]2 = q2
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this additional assumption, the end result of Weinberg’s derivation is the same as Hardy’s:
The zygotic genotype frequencies (and hence the adult genotype frequencies of the next
generation under the assumptions made here) are again given by G ′

AA = p2, G ′
Aa = 2pq,

and G ′
aa = q2.

We now address the important question of whether or not microevolution has occurred
in this model; that is, are the allele frequencies in the offspring generation different or the
same as the allele frequencies of the parent generation. Given that the adults of the offspring
generation have the genotype frequencies G ′

AA = p2, G ′
Aa = 2pq, and G ′

aa = q2, the allele
frequencies in the pool of gametes they produce (say p′ for A and q ′ for a) are calculated
from equation 2.1 as

p′ = p2 + 1

2
(2pq) = p2 + pq = p(p + q) = p (2.2)

and q ′ = q (also shown in Figure 2.1). The allele frequencies p and p′ make a contrast at
comparable stages in two successive generations (here at the stage of producing gametes),
and this contrast allows us to see if evolution has occurred. Because p = p′, by definition
there has been no evolution. Hence, the Hardy–Weinberg model predicts that allele frequen-
cies are stable over time and that no evolution is occurring under this set of assumptions.
Because of this stability over time, Hardy–Weinberg genotype frequencies are often called
the Hardy–Weinberg equilibrium. As noted earlier, it takes only one generation of random
mating to achieve Hardy–Weinberg frequencies, and once achieved the population will re-
main in this state until one or more assumptions of the Hardy–Weinberg model are violated.

EXAMPLE OF HARDY–WEINBERG LAW

As an illustration of the application of this model, consider a human population of Pueblo
Indians scored for genetic variation at the autosomal blood group locus MN (Figure 2.3).
This locus has two common alleles in most human populations, the M allele and the N allele.
Genetic variation at this locus determines your MN blood group type, with a very simple
genotype-to-phenotype mapping: MM genotypes have blood group M, MN genotypes have
blood group MN, and NN genotypes have blood group N. Hence, it is easy to characterize
the genotypes of all individuals in a population by determining their MN blood group type.
Figure 2.3 shows the number of individuals with each of the possible genotypes at this locus
in a sample of 140 Pueblo Indians (Boyd 1950). The first step in analyzing a population
is to convert the genotype numbers into genotype frequencies by dividing the number of
individuals of a given genotype by the total sample size. For example, 83 Pueblo Indians had
the MM genotype out of the total sample of 140, so the frequency of the MM genotype in that
sample is 83/140 = 0.593. Figure 2.3 then shows how the allele frequencies are calculated
in the pool of potential gametes, yielding p (the frequency of M in this case) = 0.757 and
q = 0.243. We can also apply the other definition of gene pool to this sample: The gene pool
is the population of genes collectively shared by all the individuals. Since this is a diploid
locus, the 140 Pueblo Indians collectively share 280 copies of genes at the MN locus. The
166 copies found in the 83 MM homozygotes are all M, and half of the 92 copies found in
the 46 MN heterozygotes are M . Hence, the total number of M alleles in this sample of 280
genes is 166 + 1

2 × 92 = 212. The frequency of the M allele is therefore 212/280 = 0.757.
As this shows, either way of conceptualizing the gene pool leads to the same answer.

Continuing with Figure 2.3, we can see that the zygotic frequencies should be 0.573 for
MM, 0.368 for MN, and 0.059 for NN if this population were randomly mating. Recall that
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Figure 2.3. Application of Hardy–Weinberg model to sample of Pueblo Indians scored for their geno-
types at autosomal MN blood group locus.

random mating in this case simply means that the individuals are choosing mates at random
with respect to their MN blood group types; it does not mean that mating is random for
every trait! For example, this population is evenly split between males and females, so the
frequency of the female genotype XX (where X designates the human X chromosome) is
0.5 and the frequency of the male genotype XY is 0.5 (where Y designates the human Y
chromosome). Because sex is determined by the X and Y chromosomes as wholes and these
chromosomes do not normally recombine, we effectively can treat gender as determined
by a single locus with two alleles, X and Y. The frequency of X gametes in the Pueblo
Indian gene pool is 0.5 + 1

2 (0.5) = 0.75 and the frequency of Y gametes is 1
2 (0.5) = 0.25.

Therefore, we would expect the Hardy–Weinberg genotype frequencies of

G X X = (0.75)2 = 0.5625 G XY = 2(0.75)(0.25) = 0.375

GY Y = (0.25)2 = 0.0625
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Obviously, this population is not at Hardy–Weinberg equilibrium for the X and Y chromo-
somes, and the reason is straightforward: Mating is not random for these genetic elements.
Instead, the only cross that can yield offspring is XX × XY, a gross deviation from the
Hardy–Weinberg model portrayed in Table 2.3. Because of this highly nonrandom system
of mating, the X and Y chromosomes can never achieve Hardy–Weinberg frequencies.
Hence, systems of mating can be locus specific and Hardy–Weinberg frequencies are only
for loci that have a random system of mating. Other genetic systems found in the same
individuals in the same population may deviate from Hardy–Weinberg because mating is
not random for that genetic system.

Recall that when the assumptions of Hardy–Weinberg are met, the population goes to
Hardy–Weinberg genotype frequencies in a single generation and remains at those frequen-
cies. Hence, if the Pueblo Indian population had been randomly mating for the MN blood
groups in the past and if the other assumptions of Hardy–Weinberg are at least approxi-
mately true, we would expect the adult genotype frequencies of the next generation shown in
Figure 2.3 to hold for the current adult population as well. This observation provides a basis
for testing the hypothesis that this, or any population, has Hardy–Weinberg frequencies.
The statistical details and a worked example of such a test are provided in Box 2.1.

IMPORTANCE OF HARDY–WEINBERG LAW

At first, the Hardy–Weinberg law may seem a relatively minor, even trivial, accomplishment.
Nevertheless, this simple model played an important role in the development of both genetics
and evolution in the early part of the twentieth century. Mendelian genetics had been
rediscovered at the start of the twentieth century, but many did not accept it. One of the
early proponents of Mendelian genetics was R. C. Punnett (of “Punnett square” fame).
Punnett made a presentation at a scientific meeting in which he argued that the trait of
brachydactyly (short fingers) was inherited as a Mendelian dominant trait in humans. Udny
Yule, a member of the audience, raised the objection that one would expect a 3 : 1 ratio
of people with brachydactyly to those without if the Mendelian model were true, and this
clearly was not the case. Punnett suspected that there was an error in this argument, but he
could not come up with a response at the meeting. Later Punnett explained the problem to
his mathematician friend, G. H. Hardy, who immediately proceeded to derive his version
of the Hardy–Weinberg law. Hardy’s derivation made it clear that Yule had confused the
family Mendelian ratio of 3 : 1 (which was for the offspring of a specific mating between
two heterozygotes for the dominant trait) with the frequency in a population. Suppose in
our earlier derivation that the A allele is dominant over a for some trait. Then the Hardy–
Weinberg law predicts that the ratio of frequencies of those with the dominant trait to those
with the recessive trait in a random-mating population should be p2 + 2pq : q2. There is
no constraint upon this ratio to be 3 : 1 or any of the other family ratios expected under
Mendelian inheritance. Rather, this population ratio can vary continuously as p varies from
0 to 1.

The predicted ratio of individuals with dominant to recessive traits also provided a
method for predicting the frequency of carriers for genetic disease. Many genetic diseases
in humans are recessive, so now let a be a recessive disease allele. Only two phenotypic
categories could be observed in these early Mendelian studies: the dominant phenotype,
associated with the genotypes AA and Aa, and the recessive, associated with the genotype
aa. Thus, there was seemingly no way to predict how many people were carriers (Aa) as
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BOX 2.1 TESTING TO SEE IF A POPULATION IS IN SINGLE-LOCUS
HARDY–WEINBERG

We first estimate the allele frequencies using either equation 2.1 or the gene-counting
method and then calculate the expected Hardy–Weinberg genotype frequencies. These
steps have already been done for the Pueblo Indians, as shown in Figure 2.3. Next,
we convert the expected Hardy–Weinberg genotype frequencies into expected genotype
numbers by multiplying each frequency by the total sample size, which is 140 in this
case. For example, the expected number of MM homozygotes under Hardy–Weinberg
for the Pueblo Indian sample is 0.573 × 140 = 80.22. Similarly, the expected numbers of
MN and NN genotypes are 51.52 and 8.26, respectively. Now we can calculate a standard
chi-square statistic (see Appendix 2):

∑
genotypes

[
Obs(i) − Exp(i)

]2

Exp(i)
= (83 − 80.22)2

80.22
+ (46 − 51.52)2

51.52
+ (11 − 8.26)2

8.26
= 1.59

(2.3)
where Obs(i) is the observed number of individuals with genotype i and Exp(i) is the
expected number of individuals with genotype i under Hardy–Weinberg (in this case i
can be MM, MN, or NN). If the null hypothesis of Hardy–Weinberg is true, we expect the
statistic calculated in equation 2.3 to have a value such that there is a high probability
of the statistic having that or a higher value when in fact the population is at Hardy–
Weinberg. To calculate this probability, we need the degrees of freedom associated with
the chi-square statistic. In general, the degree of freedom is the number of categories being
tested (three genotype categories in this case) minus 1 minus the number of independent
parameters that had to be estimated from the data being tested to generate the expected
numbers. In order to generate the Hardy–Weinberg expected values, we first had to
estimate the allele frequencies of M and N from the data being tested. However, recall that
q = 1 − p, so that once we know p, we automatically know q. This means that the data
are used to estimate only one independent parameter (the parameter p). Therefore, the
degree of freedom is 3 − 1 − 1 = 1. We can now look up the value of 1.59 with one degree
of freedom in a chi-square table or statistical calculator and find that the probability of
getting a value of 1.59 or larger if the null hypothesis of Hardy–Weinberg were true is
0.21. Generally, such probabilities have to be less than 0.05 before the null hypothesis is
rejected. Hence, we fail to reject the null hypothesis of Hardy–Weinberg for this sample
of Pueblo Indians scored for the MN locus. It would have been simpler to say that the
Pueblo Indian population is in Hardy–Weinberg, but we have not actually demonstrated
this. Our sample is relatively small, and perhaps with more extensive sampling we would
reject Hardy–Weinberg. Hence, all that we have really demonstrated is that we fail to
reject Hardy–Weinberg for our current sample. Statistical tests never prove that a null
hypothesis is true; the test either rejects or fails to reject the null hypothesis.

they could not be distinguished phenotypically from the AA homozygotes. However, if we
assume Hardy–Weinberg is true, then the frequency of individuals affected with the genetic
disease (which is observable) is q2. Hence, we can estimate q is this case as

q̂ =
√

Gaa (2.4)
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Given q̂ , the frequency of carriers of the genetic disease can be estimated as 2(1 − q̂)q̂.
Note, in this case, we cannot actually test the population for Hardy–Weinberg because we
only have two observable categories and we have estimated one parameter from the data
to be tested (equation 2.3). Therefore, the degrees of freedom are 2 − 1 − 1 = 0. Zero
degrees of freedom means we have insufficient information in the data to test the model
(Appendix 2). Equation 2.4 should never be used when all genotypic classes are observable
because it is valid only in the special case of Hardy–Weinberg genotype frequencies. In
contrast, equation 2.1 makes no assumptions about Hardy–Weinberg and is true for any set
of genotype frequencies. Therefore, when all genotypic classes are observable, equation 2.1
should be used instead of equation 2.4 because equation 2.1 will always give you the right
answer whereas equation 2.4 will only give the right answer in a specific special case.
Nevertheless, equation 2.4 played an important role throughout much of the twentieth
century in genetic counseling in predicting heterozygous carrier frequencies for autosomal
recessive genetic diseases when all genotypic classes were not observable.

The Hardy–Weinberg law also predicts no evolution; that is, the allele frequencies re-
main constant over time. At first this may also seem to be a rather uninteresting result, but
this observation was critical for the acceptance of the Darwin–Wallace concept of natural
selection. The publication of Darwin’s book The Origin of Species in 1859 strongly estab-
lished the concept of descent with modification within biology. However, Darwin’s (and
Wallace’s) explanation for the origin of adaptations via natural selection was less universally
accepted. Darwin felt that the Scottish engineer Fleeming Jenkin raised one of the most
serious objections to the theory of natural selection in 1867. At this time, the dominant idea
of inheritance was that of “blending inheritance” in which the traits of the father and mother
are blended together, much as mixing two different colors of paint together results in a new
color that represents equal amounts of the original colors. Jenkin pointed out that half of
the heritable variation would be lost every generation under blending inheritance; hence,
a population should quickly become homogeneous. Recall from Chapter 1 that heritable
variation is a necessary prerequisite for all evolution, so evolution itself would grind to a
halt unless mutation replenished this loss at the same rate. Darwin and Wallace had based
their theories of natural selection upon the tenet that mutation creates new variation at ran-
dom with respect to the needs of the organism in coping with its environment. It seemed
implausible that half of the genetic material could mutate at random every generation and
the organisms still survive. Hence, Jenkin’s argument seemed to imply that either genetic
variation would quickly vanish and all evolution halt or that natural selection required lev-
els of mutation that would result in extinction. This problem even led Darwin in his 1868
book The Variation of Animals and Plants under Domestication to speculate that mutation
might be directed by the environment. By the beginning of the twentieth century, many
neo-Lamarkian ideas based upon directed mutations were popular alternatives to natural
selection of random mutations.

Jenkin’s argument was finally put to rest by the Hardy–Weinberg law. The Hardy–
Weinberg model, by ignoring many potential evolutionary forces (Table 2.1), focuses our
attention upon the potential evolutionary impact of Mendelian inheritance alone. By demon-
strating that Mendelian inheritance results in a population with a constant allele frequency, it
was evident that Mendelian genetic variation is not rapidly lost from a population. Indeed,
under the strict assumptions of Hardy–Weinberg, genetic variation persists indefinitely.
Thus, even though the Hardy–Weinberg model is one of no evolution, this model was criti-
cal for the acceptance of natural selection as a plausible mechanism of evolutionary change
under Mendelian inheritance.
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In general, this book is concerned about evolutionary change. In modeling evolution,
Hardy–Weinberg is a useful null model of evolutionary stasis. Indeed, much of the rest of this
book is devoted to relaxing one or more of the assumptions of the original Hardy–Weinberg
model and seeing whether or not evolution can result. In this sense, Hardy–Weinberg serves
as a valuable springboard for the investigation of many forces of evolutionary change.
In the remainder of this chapter we consider just one slight deviation from the original
Hardy–Weinberg model, and we will investigate the evolutionary implications of this slight
change.

HARDY–WEINBERG FOR TWO LOCI

The original Hardy–Weinberg model assumed a genetic architecture of one autosomal locus
with two alleles. We will now consider a slightly more complicated genetic architecture of
two autosomal loci, each with two alleles (say A and a at locus 1 and B and b at locus 2).
Otherwise, we will retain all other assumptions of the original Hardy–Weinberg model.
However, there is one new assumption. Recall from Chapter 1 that our second premise is
that DNA can mutate and recombine. We will retain the Hardy–Weinberg assumption of no
mutation, but we will allow recombination (either independent assortment if the two loci
are on different autosomes or crossing over if they are on the same autosome).

Because our main interest is on whether or not evolutionary change occurs, we will start
with the gene pool and go to the next generation’s gene pool (Figure 2.4), rather than going
from adult population to adult population as in Figures 2.1 and 2.3. Given two loci with two
alleles each and the possibility of recombination between them, a total of four gamete types
are possible (AB, Ab, aB, and ab). The gene pool is characterized by four gamete frequencies
(Figure 2.4), symbolized by gxy , where x indicates the allele at locus 1 and y indicates the al-
lele at locus 2. Just as p and q sum to 1, these four gamete frequencies also sum to 1 because
they define a probability distribution over the gene pool. The transition from this gene pool
to the zygotes is governed by the same population structure (rules of uniting gametes) as
given in the single-locus Hardy–Weinberg. In particular, the assumption of random mating
means that gametes are drawn independently from the gene pool, with the probability of any
given gamete type being equal to its frequency. The probability of any particular genotype
is simply the product of its gamete frequencies, just as in the single-locus Hardy–Weinberg
model. In Figure 2.4 we are not keeping track of the paternal or maternal origins of any
gamete, so both types of heterozygotes are always pooled and therefore the product of the
gamete frequencies for heterozygous genotypes is multiplied by 2. For example, the fre-
quency of the genotype AB/Ab is 2gABgAb. Note that there are two types of double heterozy-
gotes, AB/ab (the cis double heterozygote with a random-mating frequency of 2gABgab)
and Ab/aB (the trans double-heterozygote with a random-mating frequency of 2gAbgaB).
Although the cis and trans double heterozygotes share the double-heterozygous genotype,
completely different gamete types produce the cis and trans double-heterozygosity. As
we will soon see, the cis and trans double-heterozygous genotypes contribute to the gene
pool in different ways. Hence, we will keep the cis and trans double-heterozygote classes
separate.

The rules for uniting gametes in the two-locus model are the same as for the single-locus
model, the only difference being that there are now 10 genotypic combinations. As with
the single-locus model, if we know the gamete frequencies and know that the mating is
at random (along with the other population structure assumptions of Hardy–Weinberg),
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we can predict the zygotic genotype frequencies. If we further assume that there are no
phenotypic differences that affect viability, mating success, or fertility, we can also predict
the next generation’s adult genotype frequencies from the gamete frequencies.

The similarities to the single-locus model end when we advance to the transition from
the next generation’s adult population to the gene pool of the next generation (Figure 2.4).
At this point, some new rules are encountered in producing gametes that did not exist
at all in the single-locus model (Figure 2.1). As before, homozygous genotypes can only
produce gametes bearing the alleles for which they are homozygous (this comes from the
assumptions of normal meiosis and no mutations). As before, genotypes heterozygous for
just one locus produce two gamete types, with equal frequency as stipulated by Mendel’s first
law. However, genotypes that are heterozygous for both loci can produce all four gamete
types, and the probabilities are determined by a combination of Mendel’s first law and
recombination (Mendel’s second law of independent assortment if the loci are on different
chromosomes or the recombination frequency if on the same chromosome). Hence, the
transition from genotypes to gametes requires a new parameter, the recombination frequency
r, which is 1

2 if the loci are on different chromosomes and 0 ≤ r ≤ 1
2 if the loci are on the

same chromosome.
The addition of recombination produces some qualitative differences with the single-

locus model. First, in the single-locus model, an individual could only pass on gametes of the
same types that the individual inherited from its parents. But note from Figure 2.4 that the cis
double heterozygote AB/ab, which inherited the cis AB and ab gamete types from its parents,
can produce not only the cis gamete types, each with probability 1

2 (1 − r ), but also the trans
gamete types Ab and aB, each with probability 1

2r . Similarly, the trans double heterozygote
can produce both cis and trans gamete types (Figure 2.4). Thus, recombination allows the
double heterozygotes to produce gamete types that they themselves did not inherit from
their parents. This effect of recombination is found only in the double-heterozygote class,
but this does not mean that recombination only occurs in double heterozygotes. Consider,
for example, the single heterozygote AB/Ab. If no recombination occurs in meiosis, this
genotype will produce the gamete types AB and Ab with equal frequency. Hence, the total
probability of gamete type AB with no recombination is 1

2 (1 − r ), and similarly it is
1
2 (1 − r ) for Ab. Now consider a meiotic event in which recombination did occur. Such a
recombinant meiosis also produces the gamete types AB and Ab with equal frequency, that
is, with probability 1

2r for each. However, in the recombinant AB gamete the A allele that is
combined with the B allele originally came from the Ab gamete that the AB/Ab individual
inherited from one of its parents. Hence, recombination has occurred, but because we
do not distinguish among copies of the A alleles, we see no observable genetic impact.
Hence, the total probability of an AB gamete, regardless of the source of the A allele, is
1
2 (1 − r ) + 1

2r = 1
2 , and the total probability of an Ab gamete, regardless of the source of

the A allele, is 1
2 (1 − r ) + 1

2r = 1
2 . Thus, recombination is occurring in all genotypes but

is observable only in double heterozygotes.
The qualitative difference from the single-locus model that causes some genotypes to

produce gamete types that they themselves did not inherit leads to yet another qualitative
difference: The two definitions of gene pool given in Chapter 1 are no longer equivalent. If
we define the gene pool as the shared genes of all the adult individuals, we obtain the gamete
frequencies from the pool of gametes produced by their parents (the gxy’s in Figure 2.4). On
the other hand, if we define the gene pool as the population of potential gametes produced
by all the adult individuals, the effects of recombination enter and we obtain the g′

xy’s in
Figure 2.4. To avoid any further confusion on this point, the term “gene pool” in this book
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will always refer to the population of potential gametes unless otherwise stated. The general
population genetic literature often does not make this distinction because in the standard
single-locus Hardy–Weinberg model it is not important. Quite frequently there is a time
difference of one generation among the models of various authors depending upon which
definition of gene pool they use (usually implicitly). Therefore, readers have to be careful in
interpreting what various authors mean by gene pool when dealing with multilocus models
or other models in which these two definitions may diverge.

The most important qualitative difference from the single-locus model involves the
potential for evolution. As seen before, the single-locus Hardy–Weinberg model goes to
equilibrium in a single generation of random mating and then stays at equilibrium, resulting
in no evolution. To see if this is the case for the two-locus model, we now use equation 2.1
to calculate the gamete frequency of the AB gamete using the weights implied by the arrows
in Figure 2.4 going from adults to gametes:

g′
AB = 1 · g2

AB + 1

2
(2gABgAb) + 1

2
(2gABgaB) + 1

2
(1 − r )(2gABgab) + 1

2
r (2gAbgaB)

= gAB [gAB + gAb + gaB + (1 − r )gab] + rgAbgaB

= gAB [gAB + gAb + gaB + gab] + rgAbgaB − rgABgab

= gAB + r (gAbgaB − gABgab) = gAB − rD

(2.5)

where D = (gABgab − gAbgaB). The parameter D is commonly known as linkage disequi-
librium. However, because it can exist for pairs of loci on different chromosomes that are
not linked at all, a more accurate but more cumbersome term is gametic-phase imbalance.
Because the term linkage disequilibrium dominates the literature, we will use it throughout
the book, but with the caveat that it can be applied to unlinked loci.

Similarly, the other three gamete types can be obtained from equation 2.1 as

g′
Ab = 1 · g2

Ab + 1

2
(2gABgAb) + 1

2
(2gAbgab) + 1

2
(1 − r )(2gAbgaB) + 1

2
r (2gABgab)

= gAb + rD

g′
aB = 1 · g2

aB + 1

2
(2gABgaB) + 1

2
(2gaBgab) + 1

2
(1 − r )(2gAbgaB) + 1

2
r (2gABgab)

= gaB + rD

g′
ab = 1 · g2

ab + 1

2
(2gAbgab) + 1

2
(2gaB gab) + 1

2
(1 − r )(2gAB gab) + 1

2
r (2gAbgaB)

= gab − rD (2.6)

At this point, we can now address our primary question: Is evolution occurring? Recall our
definition from Chapter 1 of evolution as a change in the frequencies of various types of
genes or gene combinations in the gene pool. As is evident from equations 2.5 and 2.6, as
long as r > 0 (that is, some recombination is occurring) and D �= 0 (there is some linkage
disequilibrium), gxy �= g′

xy : Evolution is occurring! Thus, a seemingly minor change from
one to two loci results in a major qualitative change of population-level attributes.

No evolution occurs in this model if r = 0. In that case, the two-locus model is equivalent
to a single-locus model with four possible alleles. Thus, some multilocus systems can
be treated as if they were a single locus as long as there is no recombination. On the
other hand, recombination can sometimes occur within a single gene. As mentioned in



JWDD020-02 JWDD020-Templeton August 17, 2006 1:58 Char Count= 0

HARDY–WEINBERG FOR TWO LOCI 39

Chapter 1, the genetic variation within a 9.7-kb segment of the lipoprotein lipase (LPL)
gene in humans was shaped in part by about 30 recombination events (Templeton et al.
2000a). Thus, in some cases the evolutionary potential created by recombination must be
considered even at the single-locus level. In the case of LPL, we are looking at two or more
different polymorphic nucleotide sites within the same gene and not, technically speaking,
at different loci. However, the qualitative evolutionary potential is still the same as long as
the polymorphic sites under examination can recombine, regardless of whether those sites
are single nucleotides within a gene or traditional loci.

No evolution also occurs in this model if D = 0. Here, D will equal zero when the two-
locus gamete frequencies are the product of their respective single-locus allele frequencies.
To see this, let pA be the frequency of the A allele at locus 1 and pB the frequency of the B
allele at locus 2. These single-locus allele frequencies are related to the two-locus gamete
frequencies by

pA = gAB + gAb pB = gAB + gaB (2.7)

Now consider the product of the A and B allele frequencies:

pA pB = (gAB + gAb) (gAB + gaB)

= g2
AB + gABgaB + gABgAb + gAbgaB

= gAB (gAB + gaB + gAb) + gAbgaB

= gAB (1 − gab) + gAbgaB

= gAB − gABgab + gAbgaB

= gAB − D

(2.8)

Solving equation 2.8 for D yields

D = gAB − pA pB (2.9)

and similar equations can be derived in terms of the other three gamete frequencies. Equation
2.9 suggests another biological interpretation of D; it is the deviation of the two-locus gamete
frequencies from the product of the respective single-locus allele frequencies. Equation 2.9
also makes it clear that D will be zero when the two-locus gamete frequency is given
by the product of the respective single-locus allele frequencies. This can also be seen by
evaluating the original formula for linkage disequilibrium under the assumption that the two-
locus gamete frequencies are given the product of their respective allele frequencies: D =
gABgab − gAbgaB = (pA pB)(pa pb) − (pA pb)(pa pB) = pA pB pa pb − pA pb pa pB = 0.

The two-locus gamete frequencies will be products of the single-locus allele frequencies
when knowing what allele is present at one locus in a gamete does not alter the probabilities
of the alleles at the second locus; that is, the probabilities of the alleles at the second locus
are simply their respective allele frequencies regardless of what allele occurs at the first
locus. When D �= 0, knowing which allele a gamete bears at one locus does influence the
probabilities of the alleles at the second locus. In statistical terms, D = 0 means that there is
no association in the population between variation at locus 1 with variation at locus 2. When
D = 0, equations 2.5 and 2.6 show that the gamete frequencies (and hence the genotype
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frequencies) are constant, just as they were in the single-locus Hardy–Weinberg model.
Thus, when D = 0 the population is at a nonevolving equilibrium, given the other standard
Hardy–Weinberg assumptions. We can now understand why D is called disequilibrium.
When D is not zero and there is recombination, the population is evolving and is not at
a two-locus Hardy–Weinberg equilibrium. The larger D is in magnitude, the greater this
deviation from two-locus equilibrium.

Evolution occurs when r > 0 and D �= 0, and we now examine the evolutionary process
induced by linkage disequilibrium in more detail. From Figure 2.4 or equations 2.5 and 2.6,
we see that linkage disequilibrium in the original gene pool (gABgab − gAbgaB) influences the
next generation’s gene pool. Similarly, the linkage disequilibrium in the next generation’s
gene pool will influence the subsequent generation’s gene pool. The linkage disequilibrium
in the next generation’s gene pool in Figure 2.4 is

D1 = [g′
ABg′

ab − g′
aBg′

Ab]

= [(gAB − r D)(gab − r D) − (gaB + r D)(gAb + r D)] (2.10)

= D(1 − r )

Using equation 2.10 recursively, we can see that D2 (the linkage disequilibrium in the gene
pool two generations removed from the original gene pool) is D(1 − r )2. In general, if we
start with some initial linkage disequilibrium, say D0, then Dt , the linkage disequilibrium
after t generations of random mating, is

Dt = D0(1 − r )t . (2.11)

Equation 2.11 reveals that the evolution induced by linkage disequilibrium is both gradual
and directional, as illustrated in Figure 2.5. Because r ≤ 1

2 , the quantity (1 − r )t goes to

Number of generations, t 

D
t

r=0.5

r=0.1

r = 0.01

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

r=0.05

r =0.001

Figure 2.5. Decay of linkage disequilibrium with time in generations as function of different recombina-
tion rates r starting with initial value of D0 = 0.25.
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zero as the number of generations (t) gets large. Hence, the direction of evolution is to dissi-
pate linkage disequilibrium and to move closer and closer to a two-locus Hardy–Weinberg
equilibrium in which the two-locus gamete frequencies are the products of the constituent
single-locus allele frequencies. The approach to this equilibrium is gradual, proceeding at an
exponential rate determined by 1 − r . The larger the value of r (i.e., the more recombination
occurs), the faster is the approach to equilibrium with D = 0 (Figure 2.5). Note, however,
that even for loci on different chromosomes that sort independently (r = 1

2 ), equilibrium
is not attained instantly (Figure 2.5), in great contrast to the single-locus Hardy–Weinberg
model. However, the approach to linkage equilibrium is quite rapid with unlinked loci. For
example, after just five generations of random mating, only a little more than 3% of the
original disequilibrium for unlinked loci remains (from equation 2.8). However, for linked
loci with r small, the linkage disequilibrium can persist and affect gene pool evolution
for many, many generations. For example, for two loci with r = 0.01 (1% recombination),
it takes 345 generations to reduce the initial linkage disequilibrium to the level achieved
in just 5 generations for unlinked loci. During this approach to linkage equilibrium, the
two single-locus systems that contribute to the two-locus genetic architecture will be at a
single-locus Hardy–Weinberg in just one generation of random mating, but the multilocus
system will be in disequilibrium and evolving (given initial linkage disequilibrium). There-
fore, recombination and linkage disequilibrium are sufficient conditions for evolution in a
multilocus system.

SOURCES OF LINKAGE DISEQUILIBRIUM

Given that some initial linkage disequilibrium is necessary before recombination can act
as an evolutionary force in a random-mating population, it is important to understand what
factors can create an initial disequilibrium. Many factors can create linkage disequilibrium,
including:

� Mutation
� Nonrandom mating
� Finite population size
� Gene flow
� Natural selection

Note that this list of factors that can generate linkage disequilibrium corresponds to the very
same factors that are assumed not to occur in the simple Hardy–Weinberg model (Table 2.1).

All of these factors will be considered in this book, but for now we focus only upon the
first: mutation. The impact of mutation is most easily seen by considering another measure
of linkage disequilibrium known as the normalized linkage disequilibrium D′, which is
the linkage disequilibrium divided by its theoretical maximum absolute value. Because two-
locus gamete frequencies cannot be negative or greater than the corresponding single-locus
allele frequencies (equation 2.7), we have that

0 ≤ gAB ≤ min (pA, pB) (2.12)
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Solving equation 2.9 for gAB and substituting the result into inequality 2.12 yield

−pA pB ≤ D ≤ min (pA − pA pB, pB − pA pB)
= min (pA(1 − pB), pB(1 − pA)) or − pA pB ≤ D ≤ min (pA pb, pa pB)

(2.13)
As noted above, equations similar to 2.9 can be derived with respect to the other gamete
frequencies, such as gab, so D also satisfies the inequality

−pa pb ≤ D ≤ min (pA pb, pa pB) (2.14)

Thus we have

D′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D

min (pA pB, pa pb)
D < 0

D

min (pA pb, pa pB)
D > 0

(2.15)

where D′ has a range of values from −1 to +1 for all pairs of loci irrespective of the
allele frequencies at the component loci (although D′ itself is still dependent on allele
frequencies). This is a great advantage when dealing with the impact of mutation on
linkage disequilibrium. When mutations first occur, they are inevitably rare, and this places
severe constraints on the magnitude of D (inequalities 2.13 and 2.14). In contrast, D′ or
|D′| is a better vehicle for investigating the impact of mutation upon linkage disequilibrium
because these measures are not constrained in their range of values by the rarity of a new
mutation.

Variation is needed at both loci before there is even any potential for linkage disequilib-
rium. Let us start with a population that has genetic variation only at the A locus, with two
alleles A and a at frequencies pA and pa , respectively. Suppose that there is no variation
at the B locus, with all copies of the B gene being of allelic state B (pB = 1). Therefore,
the initial gene pool can be described by the two-locus gamete frequencies gAB = pA and
gaB = pa . Now suppose that a mutational event occurs in one of the copies of the B allele
to create the b allele. This initial mutational event must occur either in an A-bearing gamete
or in an a-bearing gamete. Suppose this initial mutation occurred in an a-bearing gamete.
Such a mutation produces a third gamete type, ab. Let the initial frequency of this gamete
type be gab, which will normally be close to zero because of the recentness of the B-to-b
mutation. Note that the fourth potential type of gamete, Ab, does not exist in this gene
pool at all because, by assumption, the B-to-b mutation occurred on an a-bearing gamete.
Hence, after mutation the gene pool is characterized by gAB > 0, gaB > 0, gab > 0 but close
to 0, and gAb = 0. The initial linkage disequilibrium after mutation has created the third
gamete type is therefore D = gABgab. At the one-locus level, the gene pool after mutation
has pA = gAB, pa = gaB + gab, pB = gAB + gaB, and pb = gab. Therefore, after mutation
D = pA pb and D′ = 1. The other alternative is when the B-to-b mutation occurred on an
A-bearing gamete, in which case mutation creates the Ab gamete, and the gene pool after
mutation has gAB > 0, gaB > 0, gAb > 0 but close to 0, and gab = 0. The initial linkage
disequilibrium after mutation is now D = −gaBgAb = −pa pb and D′ = −1. Regardless of
whether the b mutation occurs on an a or A background, there will always be an initial link-
age disequilibrium that is maximal in magnitude. Hence, the very act of mutation creates
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maximal linkage disequilibrium, so multilocus genetic systems always begin with linkage
disequilibrium. As shown by equation 2.11, this initial linkage disequilibrium decays only
gradually with time and extremely slowly when recombination is rare. As a consequence,
the linkage disequilibrium created by the act of mutation can sometimes persist for long
periods of time after the original mutational event. This observation leads to an important
conclusion about evolution: The current state of a population’s gene pool and its ongoing
evolution are influenced by its past history. The past cannot be ignored in understanding
the present and predicting the future for biological systems subject to evolutionary change.

SOME IMPLICATIONS OF IMPACT OF EVOLUTIONARY HISTORY
UPON DISEQUILIBRIUM

The impact of the past as measured by D0 upon the present in multilocus systems can
be either a boon or a bane, depending upon the question being addressed. As a boon,
multilocus studies inherently contain information about the past history of present-day
genetic variation and its mutational origins. Parts of this history can often be inferred from
multilocus (or multi-nucleotide-site) studies and hence give us a window into the past. For
example, one important mutation in human genetics is the sickle cell mutation in the sixth
codon of the autosomal locus that codes for the β chain of adult hemoglobin. We will look
at the phenotypic and adaptive significance of this mutation later in this book. For now we
focus on the linkage disequilibrium patterns of this relatively new mutation in the human
gene pool with some genetic variation in surrounding loci. Figure 2.6 shows the genetic
state of some of these surrounding loci on chromosomes that contain the β S allele. As
will be detailed later in this book, the β S allele only recently became common in specific,
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Figure 2.6. Multilocus genetic backgrounds containing βS alleles at hemoglobin β-chain locus. Re-
striction site polymorphisms in or near several hemoglobin chain loci (β, ε, δ, Gγ , and Aγ ) and the
pseudogene ψβ are indicated, with “+,” meaning that the indicated restriction enzyme cuts the site on
that chromosomal type, and “−,” meaning that it does not cut. Data from Lapoumeroulie et al. (1992)
and Oner et al. (1992).
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geographically restricted human populations and globally is a rare allele. In contrast, the
restriction site polymorphisms (see Appendix 1) at nearby loci and in noncoding regions
between these loci are more widespread and common in human populations. As will be
discussed in Chapter 7, this pattern implies that the β S allele is more recent in origin than
the other genetic variants shown in Figure 2.6. As expected for a relatively new mutation
in a DNA region showing only low levels of recombination, the β S allele shows extensive
linkage disequilibrium with these restriction site polymorphisms. However, the βS allele
is found on not just one but at least five distinct chromosome backgrounds as defined by
multiple-restriction-site polymorphisms (Figure 2.6). This implies that the mutation at the
sixth codon that defines the β S allele occurred multiple times in recent human evolution,
at least four times in Africa and one in Asia (Lapoumeroulie et al. 1992; Oner et al. 1992).
Hence, by looking at patterns of linkage disequilibrium, we can make inferences about
the mutational history of this particular allele. As will be shown in Chapter 7, techniques
exist for extracting much historical information when linkage disequilibrium is present,
information that can be used to test a number of hypotheses about the history of the locus
under study.

As a bane, the lasting evolutionary effects of the initial linkage disequilibrium created
by mutation can also limit our abilities to make inference. When recombination rates are
on the order of mutation rates or less, then r has little meaning as a “rate” because recombi-
nation is a rare and sporadic event that may not have occurred even once in the subsequent
evolutionary history of the mutational gene lineage under study. Under these conditions,
D′

0 can persist with little or no diminution in magnitude for thousands of generations or
perhaps throughout the entire existence of the species. The condition of extremely low rates
of recombination is now commonly encountered in population genetic studies because in-
creasingly polymorphisms are scored by sequencing or restriction site mapping of small
stretches of DNA. These studies often reveal many polymorphic nucleotide sites in these
small DNA regions, as mentioned before with the LPL example. As with that example,
we are no longer talking about linkage disequilibrium between Mendelian loci, but rather
specific sites in the DNA, often within the same gene. Equation 2.11 emphasizes that link-
age disequilibrium dissipates with increased recombination. This has led to an expectation
that linkage disequilibrium is an inverse surrogate for recombination; that is, the higher the
magnitude of linkage disequilibrium, the closer two markers must be on the chromosome.
But when recombination is rare and sporadic, the magnitude and pattern of linkage dise-
quilibrium within the DNA region primarily reflect D0 in equation 2.11 and not r. Thus,
the pattern and amount of linkage disequilibrium within small regions of DNA usually are
more a reflection of history than of recombination. As a consequence, it is not surprising
that many studies of linkage disequilibrium have found little to no correlation between the
magnitude of D or D′ and the physical distance on the DNA molecule between polymorphic
sites in small DNA regions (Templeton 1999a).

For example, Figure 2.7 shows the pattern of statistically significant linkage disequi-
librium found within a small autosomal region of the human genome that contains three
loci coding for different apoproteins (these proteins combine with lipids and other fats to
form apolipoproteins, which can then be transported in the blood stream). Note that the two
polymorphic sites that are in closest physical proximity are an insertion/deletion polymor-
phism and a nearby polymorphic XmnI restriction site. The two most distant sites in this
study are the insertion/deletion polymorphic site and a polymorphic PvuII restriction site.
Yet, there is no significant linkage disequilibrium between the insertion/deletion site and
the XmnI site, whereas there is significant disequilibrium between the insertion/deletion site
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Indel

XmnI
TaqI PstI SstI PvuII

ApoAI ApoCIII ApoAIV

Significant linkage disequilibrium

Figure 2.7. Linkage disequilibrium in autosomal ApoAI, ApoCIII, ApoAIV gene region of human genome
between insertion/deletion polymorphism (indel) and five restriction sites. Data from Haviland et al.
(1991).

and the PvuII site. Hence, linkage disequilibrium in this DNA region is not a reliable guide
to physical proximity.

The example shown in Figure 2.7 illustrates that evolutionary history can obscure infor-
mation; in this case, we cannot infer relative positional information from the magnitude of
linkage disequilibrium. This has important implications in medical genetics. Many studies
will look at a few markers within a gene region and then look for disease associations.
The rationale for such studies is not that the markers being scored are actually causing the
disease; rather, the hope is that one or more of the markers will be in linkage disequilibrium
with the mutation that actually causes the disease or contributes to disease risk (this topic
will be discussed in more detail in Chapter 10). This approach has found many associa-
tions between markers and diseases in humans and illustrates just one practical application
of linkage disequilibrium. However, the causative mutation is not necessarily physically
closest to the marker showing the strongest disease association. As a hypothetical exam-
ple, suppose the three rather evenly spaced restriction site markers XmnI, SstI, and PvuII
were used to look for disease associations between the ApoAI, CIII, AIV region and coronary
artery disease (such associations do indeed exist). Suppose further that the insertion/deletion
polymorphism was a causative mutation by affecting, say, the expression of ApoAI. How-
ever, using these three markers, the effect of the insertion/deletion polymorphism would
be detected as an association through linkage disequilibrium with the PvuII site—the site
that is actually the most distant site from the hypothetical causative mutation among all the
markers surveyed! Hence, an investigator might be tempted to conclude that the causative
site is close to the ApoAIV locus and is not in the ApoAI locus. Ignoring evolutionary history
can lead to many false conclusions in medical genetics. Our understanding of the present
must be predicated upon a knowledge of how the current genetic variation arose during its
evolutionary past. When dealing with a DNA region in which there is a poor or no correla-
tion between linkage disequilibrium and physical position, we must always be cautious in
interpreting marker association data in genetic disease studies.

The linkage disequilibrium found in small DNA regions can, if used properly, actually
help us in our search for disease associations. For example, loci coding for apoproteins
have been associated not only with coronary artery disease but also with Alzheimer’s dis-
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Figure 2.8. Genetically variable sites in autosomal ApoE, ApoCI region of human genome that have
been associated with risk for Alzheimer’s disease.

ease, a mental dementia that afflicts many people as they age. Figure 2.8 shows another
autosomal apoprotein coding region in the human genome, this segment coding for apopro-
tein E and apoprotein CI. As shown, there are two polymorphic sites in the coding re-
gion of the ApoE locus, each associated with an amino acid change. There is extensive
linkage disequilibrium between these two sites such that only three of the four possible
gamete types defined by these two polymorphisms exist and |D′| = 1 (indeed, there is no
evidence that recombination has ever occurred between these polymorphic nucleotide sites).
These three gamete types define three distinct alleles at the ApoE locus named ε2, ε3, and
ε4. Many studies have revealed an association between the ε4 allele and a high risk for
Alzheimer’s disease (such an association does not mean that ε4 causes Alzheimer’s dis-
ease). Nearby, a HpaI restriction site polymorphism was found in the ApoCI locus that also
has a significant association with risk for Alzheimer’s disease (Chartier-Harlin et al. 1994),
with people bearing the allele in which the enzyme HpaI cuts this site having increased risk.
Note that both of these single-locus studies subdivide people into two risk categories (high
and low) for Alzheimer’s disease. However, the HpaI site is also in linkage disequilibrium
with the ApoE sites, so does this ApoCI site actually provide new risk information or is it re-
dundant with the information previously documented in ApoE? When the ApoE alleles and
the ApoCI restriction site are considered simultaneously, three, not two, risk categories for
Alzheimer’s disease are revealed (Table 2.4) (Templeton 1995). So when combined, these
two apoprotein loci do indeed provide more refined information about risk for Alzheimer’s
disease than either locus separately. Moreover, note from Table 2.4 that the HpaI restriction
site is associated with both the highest and the lowest risk categories, depending upon which
ApoE allele it is combined with. On the basis of the associations of the HpaI restriction
site alone, we would have placed into the “high” HpaI risk category both those people

Table 2.4. Risk for Alzheimer’s Disease as Associated with ε2, ε3, and ε4 Alleles at ApoE
Locus and HpaI Restriction Site Polymorphism in ApoCI Locus

Risk Category ApoE ApoCI

High ε3 or ε4 HpaI cuts
Medium ε3 HpaI does not cut
Low ε2 HpaI cuts

Note: See Figure 2.8.
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with highest and lowest risk to Alzheimer’s disease. Thus, ignoring evolutionary history
as manifested in linkage disequilibrium could have led to erroneous medical advice in this
case.

As shown in this chapter, the Hardy–Weinberg law, a seemingly simple model, never-
theless leads to many important insights about the evolutionary process. This model played
an important role in the establishment of Mendelian genetics and natural selection dur-
ing the first half of the twentieth century. The two-locus version of this law is currently
playing a critical role in medical genetics in the twenty-first century. The difference in the
potential for evolutionary change between the one-locus and two-locus versions shows that
we must be cautious in generalizing inferences from our reductionist models. It is there-
fore critical to examine what happens when some of the other assumptions of the original
Hardy–Weinberg model are altered or relaxed. In the next chapter, we focus upon one of
these critical assumptions: system of mating.
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SYSTEMS OF MATING

As defined in Chapter 1, a deme is a collection of interbreeding individuals of the same
species that live in sufficient proximity that they share a common system of mating—the
rules by which pairs of gametes are chosen from the local gene pool to be united in a zygote.
Sufficient proximity depends upon the geographical range of the group of individuals and
their ability to disperse and interbreed across this range. These geographical factors will
be dealt with in Chapter 4. Here we simply note that, depending upon the geographical
scale involved and the individuals’ dispersal and mating abilities, a deme may correspond
to the population of the entire species or to a subpopulation restricted to a small local region
within the species’ range. A deme is not defined by geography but rather by a shared system
of mating. The Hardy–Weinberg model assumes one particular system of mating—random
mating—but many other systems of mating exist. Moreover, as shown in Chapter 2, it is
possible for different loci or complexes of loci within the same deme to have different
systems of mating. It is therefore more accurate to say that a deme shares a common system
of mating for a particular genetic system or locus. The purpose of this chapter is to investigate
some alternatives to random mating and their evolutionary consequences.

INBREEDING

In its most basic sense, inbreeding is mating between biological relatives. Two individuals
are related if among the ancestors of the first individual are one or more ancestors of the
second individual. Because of shared common ancestors, the two individuals could share
genes at a locus that are identical copies of a single ancestral gene (via premise 1—DNA can
replicate). Such identical copies due to shared ancestry are said to be identical by descent.
In contrast, the same allele can arise more than once due to recurrent mutation. Identical

Population Genetics and Microevolutionary Theory, By Alan R. Templeton
Copyright C© 2006 John Wiley & Sons, Inc.

48



JWDD020-03 JWDD020-Templeton August 17, 2006 1:59 Char Count= 0

INBREEDING 49

copies of a gene due to recurrent mutation from different ancestral genes are said to be
identical by state.

Virtually all individuals within most species are related to all other individuals if you go
far enough back in time. For example, computer simulations using reasonable assumptions
about humanity’s demographic history indicate that all humans living today share at least
one common ancestor who lived sometime between 55 CE (Common Era) and 1415 BCE
(Before the Common Era) (Rohde et al. 2004). Thus, all humans are biological relatives
if we could trace our ancestry back a few thousand years. In practice, we often know
pedigree relationships only for a few generations into the past. Given our ignorance about
long-term pedigrees, how do we decide who is a relative and who is not? The solution
to this practical problem is to regard some particular generation or set of individuals as
the reference population whose members are regarded as unrelated. We assume that we
can ascertain the biological relatedness of any two individuals in the current population by
going back to but not beyond the individuals in that reference population. By assumption,
all the genes in this reference population are regarded as not being identical by descent. If
two identical genes today are traced back to different genes in the reference population, this
pair of genes is regarded as being identical by state and not by descent.

There are several alternative ways of measuring inbreeding within this basic concept
of mating between known relatives. Many of these alternatives are incompatible with one
another because they focus on measuring different biological phenomena that are associated
with matings between relatives. Unfortunately, all of these alternative ways of measuring
“inbreeding” are typically called “inbreeding coefficients” in the population genetic litera-
ture. This lack of verbal distinctions between different biological concepts has resulted in
confusion and misunderstanding. Jacquard (1975) tried to clarify this confusion in an excel-
lent article entitled “Inbreeding: One Word, Several Meanings,” but the many meanings of
the word inbreeding coefficient are still rarely specified in much of the population genetic
literature. The responsibility for making the distinctions among the several distinct and
mutually incompatible inbreeding coefficients therefore often falls upon the reader. Conse-
quently, it is important to be knowledgeable of the more common concepts of inbreeding,
which we will examine in this chapter.

Definitions of Inbreeding

Pedigree Inbreeding. When two biological relatives mate, the resulting offspring could
be homozygous for an allele through identity by descent. In other words, the gene at a
particular autosomal locus being passed on by the father could be identical to the homologous
gene being passed on by the mother because both genes are identical copies of a single piece
of DNA found in a common ancestor. The amount of inbreeding in this case is measured by
F (the first of many inbreeding coefficients), defined as the probability that the offspring is
homozygous due to identity by descent at a randomly chosen autosomal locus. Offspring
for whom F > 0 (that is, offspring with a finite chance of being homozygous at a locus
through identity by descent) are said to be inbred. Because F is a probability, it can range in
value from 0 (no chance for any identity by descent) to 1 (all autosomal loci are identical by
descent with certainty). The probability F can be calculated for an individual by applying
Mendel’s first law of 50–50 segregation to the pedigree of that individual.

As an example, consider the pedigree in Figure 3.1, which shows an offspring produced
by a mating between two half sibs. For pedigree data, the reference population is simply
the set of individuals for which no further pedigree information exists. In Figure 3.1, the



JWDD020-03 JWDD020-Templeton August 17, 2006 1:59 Char Count= 0

50 SYSTEMS OF MATING

A

B C

D

Simplify pedigree
by excluding

individuals
who cannot
contribute to
identity by
descent

A

B C

D

Aa

A A

AA
(or aa)

1
2

1
2

1
2

1
2

1
2

1
16

1
16

1
16

1
8

Probability(D = AA) = (    )4 =

Probability(D=AA or D=aa) =     +     =

Figure 3.1. Mating between two half sibs (individuals B and C) who share a common mother (individual
A, who is heterozygous Aa) to produce an inbred offspring (individual D). The left side of the figure
portrays the pedigree in the standard format of human genetics, where squares denote males, circles
denote females, horizontal lines connecting a male and female denote a mating, and vertical lines
coming off from the horizontal mating lines indicate the offspring. The right side of the figure shows
how this pedigree is simplified for the purposes of calculating the inbreeding coefficient F by deleting
all individuals from the pedigree who are not common ancestors of the offspring of interest (individual
D in this case). Shading in the pedigree on the left indicates the deleted individuals. The Mendelian
probabilities associated with transmitting the A allele are indicated in the simplified pedigree.

reference population consists of individual A and the two males with whom she mated.
These three individuals are assumed to be unrelated, and any alleles they carry, even if
identical, are not considered to be identical by descent but rather to be identical by state. In
Figure 3.1, there is only one shared ancestor (A) common to both the mother (C) and the
father (B). Assuming that the common ancestor herself has no inbreeding in the pedigree
sense, her two alleles at an autosomal locus cannot be identical by descent and are indicated
by A and a (they may be identical by state). The probability that the common ancestor (A)
passes on the A allele to her son (B) is 1

2 from Mendel’s first law, and likewise the probability
that she passes on the A allele to her daughter (C) is 1

2 . Both the son (B) and daughter (C)
also received an allele at this locus from their fathers, who are not common ancestors and
cannot contribute to identity by descent. Therefore, the only way for the offspring (D) to
be identical by descent for this locus is for both the father (B) and the mother (C) to pass
on the allele they inherited from their common ancestor (A), and each of these gamete
transmissions also has a probability of 1

2 under Mendel’s first law (Figure 3.1). Because
the four segregation probabilities shown in Figure 3.1 are all independent, the probability
that all four occurred as shown is ( 1

2 )4 = 1
16 = probability that individual D is homozygous

by descent for allele A. The common ancestor (A) also had a second allele a, and the
probability that individual D is homozygous by descent for allele a is likewise 1

16 . Hence,
the total probability of individual D being identical by descent at this locus is 1

16 + 1
16 = 1

8
since the event of D being AA is mutually exclusive from the event of D being aa. By
definition, the pedigree inbreeding coefficient for individual D is therefore F = 1

8 .
The calculation of F can become much more difficult when there are many common

ancestors and ways of being identical by descent and when the common ancestors themselves
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Figure 3.2. Inbreeding associated with mating of two full sibs.

are inbred in the pedigree sense. However, the basic principles are the same: Nothing more
than Mendel’s first law is applied to the pedigree to calculate the pedigree inbreeding
coefficient F . For example, consider the case of two full sibs mating to produce an inbred
offspring (Figure 3.2). In this case, the inbred offspring can be homozygous by descent
for an allele from its grandmother or grandfather (Figure 3.2). Since an individual can be
homozygous by descent for an allele from one and only one of the common maternal/paternal
ancestors, identity by descent for an allele from the grandmother is mutually exclusive from
identity by descent for an allele from the grandfather. Hence, the total probability of identity
by descent, regardless of which common ancestor provided the allele, is the sum of the
identity probabilities associated with the grandmother and grandfather, each of which is 1

8
(Figure 3.2). Hence, F = 1

8 + 1
8 = 1

4 for the offspring of two full sibs.
Of course, some pedigrees have many more common ancestors and pathways of potential

identity by descent, making the calculation of F more difficult than the simple examples
shown in Figures 3.1 and 3.2. The algorithms used to make these calculations for more
complicated pedigrees were worked out many centuries ago by the Roman Catholic Church.
Dispensations for incestuous marriages were needed to be granted before the Church could
recognize such marriages. Therefore, priests needed to work out the degree of inbreeding
that would occur in the offspring from such a marriage in order to distinguish degrees
of consanguinity that are dispensable from those that are not (Cavalli-Sforza and Bodmer
1971). Today, many computer programs use these same algorithms to calculate F .

It is critical to note that the pedigree inbreeding coefficient F is applied to a particular
individual coming from a specified union with a specified pedigree. Therefore F is an
individual concept and not a population concept at all. Indeed, a single population often
consists of individuals showing great variation in their F’s. For example, a captive herd of
Speke’s gazelle (Gazella spekei) was established at the St. Louis Zoo between 1969 and
1972 from one male and three females imported from Africa (Templeton and Read 1994).
Assuming that these four imported animals are unrelated (that is, the four founding animals
constitute the reference population), their initial offspring would all have F = 0. However,
because there was only one male in the original herd, the most distant relationship among
captive-bred animals is that of a half sib (all the initial captive-bred offspring must share the
same father). As a consequence, once the initial founders had died or were too old to breed,
the least inbred mating possible among the captive-born animals would be between half
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Figure 3.3. Pedigree inbreeding coefficients for all individuals from captive herd of Speke’s gazelle.

sibs, with F = 1
8 = 0.125 (Figure 3.1). Moreover, in the initial decade of captive breeding,

some father–daughter matings and other highly consanguineous matings occurred as well,
resulting in a herd by 1979 (now split between zoos in St. Louis and Texas) that consisted of
19 individuals with a broad spread of individual F’s ranging from 0 to 0.3125 (Figure 3.3).

Recall from Chapter 2 that the system of mating used in the Hardy–Weinberg law is a
population concept applied to the level of a deme and to a particular locus. Random mating as
a concept is meaningless for specific individuals within a deme. Figure 3.3 illustrates that F
refers to individuals, not the deme. Hence, pedigree inbreeding (the one most people think
of when they encounter the word “inbreeding”) does not—indeed, cannot—measure the
system of mating of a deme. This means that F cannot be used to look for deviations from
the Hardy–Weinberg assumption. However, this does not mean that pedigree inbreeding
has no population genetic or evolutionary implications.

One of the most important evolutionary implications of pedigree inbreeding (F) is that
it displays strong interactions with rare, recessive alleles and epistatic gene complexes.
Consider first a model in which a recessive allele is lethal when homozygous. Let B be the
sum over all loci of the probability that a gamete drawn from the gene pool bears a recessive
lethal allele at a particular locus. Because B is a sum of probabilities of non–mutually
exclusive events, B can be greater than 1. Indeed, the simplest biological interpretation of
B is that it is the average number of lethal alleles over all loci borne by a gamete in the
gene pool. When pedigree inbreeding occurs, then BF is the rate of occurrence of both
gametes bearing lethal alleles that are identical by descent, thereby resulting in the death
of the inbred individual. Of course, an individual can die from many causes, not just due to
identity by descent for a lethal allele. The only way for an individual to live is (1) not to be
identical by descent for a lethal allele and (2) not to die from something else, either genetic
or environmental.
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Under the assumption that B is a small number, the number of times an inbred individual
will be identical by descent for a lethal allele will follow a distribution known as the
Poisson distribution (Appendix 2). The only way for the individual not to die of identity by
descent for a lethal gene is to have exactly zero lethal genes that are identical by descent
and therefore homozygous. This probability equals e−BF under the Poisson distribution.
Let −A be the natural logarithm of the probability of not dying from any cause other
than being homozgyous for a lethal recessive allele that is identical by descent. Then, the
probability of not dying from something else is e−A. To be alive, both events must be true,
so the probability of being alive is e−BFe−A = e−A−BF. Therefore, we have the expected
mathematical relationship

ln (probability of an inbred individual with F being alive) = −A − BF (3.1)

Note that equation 3.1 predicts that viability (the probability of being alive at a given age)
should decrease with increasing inbreeding (as measured by F). This is an example of
inbreeding depression, the reduction of a beneficial trait (such as viability or birth weight)
with increasing levels of pedigree inbreeding. Inbreeding depression does not always occur
with pedigree inbreeding, nor is it necessarily associated with any of the other definitions of
inbreeding. However, inbreeding depression is a common phenomenon in mammals (Ralls
et al. 1988), including humans, so we need to examine the application of equation 3.1.

One complication of applying equation 3.1 is that any one individual is either dead or
alive, so the realized probability for any one individual is either 0 or 1 regardless of F .
However, equation 3.1 predicts a linear relationship between the natural logarithm of the
probability of being alive with F, so in the model this probability can take on intermediate
values between 0 and 1. Although F is defined for an individual, equation 3.1 cannot
be meaningfully applied to an individual. We must therefore extend the concept of pedigree
inbreeding up to the level of a deme before we can make use of equation 3.1.

To illustrate how to do this, consider the 1979 population of Speke’s gazelle whose
individual F’s are portrayed in Figure 3.3. As can be seen, several animals have identical
levels of pedigree inbreeding: Seven animals share an F = 0, five share an F = 0.125, and
four share an F = 0.25. Although any one animal is either dead or alive at a given age,
the proportion of animals alive at a given age in a cohort that shares a common level of
pedigree inbreeding varies between 0 (everyone in the cohort is dead) and 1 (everyone in
the cohort is alive). Hence, the probability of an inbred individual with a specific F being
alive at a given age is estimated by the proportion of the cohort that all share that same
specific F that are alive at the given age. Complications can arise due to small sample
sizes within certain cohorts, but small sample size corrections can be used to deal with
these difficulties (Templeton and Read 1998). Equation 3.1 is now implemented by doing
a regression (Appendix 2) of the natural logarithm of the cohort viability at a given age
against the various F’s associated with different cohorts to estimate A and B. For example,
for the Speke’s gazelle herd up to 1982, a regression of the natural logarithm of survivorship
up to 30 days after birth upon F yields A = 0.23 and B = 2.62, and survivorship up to one
year (the approximate age of sexual maturity in this species) yields A = 0.42 and B = 3.75
(Figure 3.4). This means that the average gamete from this population behaved as if it bore
3.75 alleles that would kill before one year of age any animal homozygous for such an allele.

In general, lethality can arise from several other genetic causes under inbreeding besides
homozygosity for a recessive, lethal allele. For example, homozygosity for an allele may
lower viability but may not necessarily be absolutely lethal. Nevertheless, homozygosity
for such deleterious alleles could reduce the average survivorship for a cohort of animals
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Figure 3.4. Inbreeding depression in captive herd of Speke’s gazelle. From Templeton and Read (1984).

sharing a common F . Alternatively, some homozygous combinations of alleles at different
loci may interact to reduce viability through epistasis. For example, knockout (complete
loss of function) mutations were induced for virtually all of the 6200 genes in the yeast
(Saccharomyces cerevisiae) genome. Yeast can exist in a haploid phase that genetically
mimics the state of F = 1 for every locus, so the effects of these knockout mutants could
be studied in the equivalent of a homozygous state. Given the compact nature of the yeast
genome, it was anticipated that most of these knockouts would have lethal consequences;
that is they would behave as recessive, lethal alleles. Surprisingly, more than 80% of these
knockout mutations were not lethal and seemed “nonessential” (Tong et al. 2001). However,
when yeast strains were constructed that bore pairs of mutants from this nonessential class,
extensive lethality emerged from their interactions (Tong et al., 2001, 2004). Similarly, a
detailed analysis of the genetic causes of the inbreeding depression found in the captive pop-
ulation of Speke’s gazelle revealed that epistasis between loci was a significant contributor
to the observed B (Templeton and Read, 1984; Templeton, 2002a). The yeast experiments
and the results obtained with the Speke’s gazelle make it clear that B should be regarded
as the number of “lethal equivalents” rather than the number of actual lethal alleles. The
term lethal equivalents emphasizes that we really do not know the genetic architecture
underlying inbreeding depression from these regression analyses, but lethal equivalents do
allow us to measure the severity of inbreeding depression in a variety of populations using
the standard reference model of equation 3.1.

Because each diploid animal results from the union of two gametes and, by definition,
the only animals that survive are those not homozygous for any lethal equivalent, a living
animal is expected to bear about 2B lethal equivalents in heterozygous condition. In the
original non-inbred population of Speke’s gazelles, the average number of lethal equivalents
for one-year survivorship borne by the founding animals of this herd is therefore 7.5 lethal
equivalents per animal. Studies on inbreeding in humans from the United States and Europe
yield values of 2B between 5 and 8 (Stine 1977). These numbers mean that most humans,
just like most Speke’s gazelles, are bearers of multiple potentially lethal genetic diseases
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or gene combinations. Consequently, there is a large potential for inbreeding depression
and other deleterious genetic effects in most human populations when pedigree inbreeding
does occur. For example, cousin matings represent only 0.05% of matings in the United
States (Neel et al. 1949), but 18–24% of albinos and 27–53% of Tay-Sachs cases (a lethal
genetic disease) in the United States come from cousin matings (both of these are autosomal
recessive traits, with the recessive allele being rare). This same pattern is true for many
other recessive genetic diseases. Hence, even small amounts of pedigree inbreeding in a
population that is either randomly mating or even avoiding system-of-mating inbreeding
(to be discussed next) can increase the incidence of some types of genetic disease by orders
of magnitude in the pedigree-inbred subset of the population.

Because of inbreeding depression and the tendency for increased incidence of genetic
disease in consanguineous matings in humans, “inbreeding”—regardless of the exact defi-
nition being used—is often viewed as something deleterious for a population. The idea that
inbreeding is deleterious has raised many concerns for endangered species, as such species
often are reduced to small sizes, which as we have seen leads to pedigree inbreeding. Studies
on pedigree inbreeding depression, such as those performed for Speke’s gazelle, demon-
strate that these concerns are real, and much of applied conservation genetics focuses on
dealing with inbreeding in its various senses and consequences. However, is inbreeding
always deleterious? The answer appears to be no. For example, many higher plants have
extensive self-mating, the most extreme form of inbreeding, and this inbreeding can be
adaptive under many conditions (Holsinger 1991). To understand the ultimate cause for
why inbreeding is not always deleterious, we must turn our attention from inbreeding at the
level of an individual to inbreeding at the level of a deme’s system of mating.

Inbreeding as Deviation from Random-Mating Expectations. To obtain a system
of mating measure of inbreeding at the deme level, we must examine deviations from
Hardy–Weinberg genotype frequencies that are due to nonrandom mating. First, recall
the random-mating model for the simple one-locus, two-allele (A and a) model shown in
Table 2.2. Note that in Table 2.2 the genotype frequencies are obtained by multiplying
the allele frequencies associated with the male and female gametes. Now, suppose that
gametes are put together in such a way that there is a deviation from the product rule of
Hardy–Weinberg in producing genotype frequencies but that the marginal allele frequencies
remain the same. Let λ be this deviation parameter from the simple product of the gamete
frequencies, as shown in Table 3.1. Note from Table 3.1 that λ only affects the genotype
frequencies and not the gamete frequencies. This is because λ is designed to measure how
gametes come together to form genotypes for a given set of gamete frequencies. Also,
note that λ is applied to a deme and measures deviations from Hardy–Weinberg genotype
frequencies in that deme. In contrast, F is defined for individuals, not demes, and measures
the probability of identity by descent for that individual and not the system of mating of the
deme as a whole. Biologically, λ is quite different from F .

Mathematically, λ is also quite different from F . Recall that F is a probability and like
all probabilities is defined only between 0 and 1 inclusively. In contrast, as can be seen
in Box 3.1, λ is the covariance (see Appendix 2) between uniting gametes. A covariance
is proportional to the correlation coefficient (Appendix 2) and can take on both positive
and negative values and is mathematically noncomparable to a probability such as F . If
λ > 0, there is a positive correlation between uniting gametes in excess of random-mating
expectations. This means that the alleles borne by the uniting gametes are more likely to
share the same allelic state than expected under random mating. If λ < 0, there is a negative
correlation between uniting gametes, and the alleles borne by the uniting gametes are less



JWDD020-03 JWDD020-Templeton August 17, 2006 1:59 Char Count= 0

56 SYSTEMS OF MATING

Table 3.1. Multiplication of Allele Frequencies Coupled with Deviation from Resulting Products
as Measured by 1 to Yield Zygotic Genotypic Frequencies under System of Mating That Allows
Deviation from Random Mating.

Male gametes

Allele

Marginal allele
frequencies in deme

Marginal allele
frequencies in deme

A a
Frequency p q

Allele Frequency 

Female A           p
gametes

a          q

AA (p2  + λ) + (pq − λ) 

− λ

p2 + λ

q2

Aa
− λpq = p2 + pq = p( p + q) 

= p

(p2 + λ)  + (qp − λ) 
= p2 + qp = p(p + q) 
= p

(pq − λ) + (q2 + λ) 
= pq + q2 = q(p + q) 
= q

(qp − λ) + (q2  − λ) 
= qp + q2 = q( p + q)
= q

aA
qp + λ

aa

Summed frequencies in zygotes:

AA: G'AA = +
+

λ

+ λ
− −λ − λ λ

p2

Aa: G'Aa pq qp 2pq 2
aa: G'aa q2

= =
=

Note: The zygotic genotype frequencies are indicated by G ′
k .

likely to share the same allelic state than expected under random mating. Random mating
occurs when there is no correlation between uniting gametes (λ = 0). The actual correlation
between uniting gametes is λ/(pq) (see Box 3.1). The correlation coefficient (Appendix 2)
has a standardized range of −1 to + 1 inclusively, in contrast to the covariance that has
no standardized range. Hence, it is more convenient to measure deviations from Hardy–
Weinberg at the deme level in terms of the correlation of uniting gametes as opposed to
the covariance of uniting gametes. Accordingly, we define the inbreeding coefficient to be
f ≡ λ/(pq), defined as the correlation of uniting gametes within the deme. From Table 3.1,
we can now see that the genotype frequencies that emerge from this system of mating can
be expressed as

G ′
AA = p2 + λ = p2 + pq

(
λ

pq

)
= p2 + pq f

G ′
Aa = 2pq − 2λ = 2pq − 2pq

(
λ

pq

)
= 2pq − 2pq f = 2pq(1 − f )

G ′
aa = q2 + λ = q2 + pq

(
λ

pq

)
= q2 + pq f

(3.2)

Because f is a correlation coefficient, it can take on both positive and negative values (as
well as zero, the random-mating case). Generally, when f is positive, the system of mating
of the deme is described as one of inbreeding, and when f is negative, the system of mating
of the deme is described as one of avoidance of inbreeding. However, regardless of whether
or not f is positive or negative, f is called the inbreeding coefficient.
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BOX 3.1 THE CORRELATION OF UNITING GAMETES

In order to show that λ is the covariance among uniting gametes, we must first define a
random variable to assign to the gametes. In our simple genetic model, the gametes bear
only one of two possible alleles, A and a. Let x be a random variable that indicates the
allele borne by a male gamete such that x = 1 if the male gamete bears an A allele and
x = 0 if the male gamete bears an a allele. Similarly, let y be a random variable that
indicates the allele borne by a female gamete such that y = 1 if the female gamete bears
an A allele and y = 0 if the female gamete bears an a allele. Let p be the frequency of
A−bearing gametes in the gene pool. Because we are dealing with an autosomal locus,
p is the frequency of A for both male and female gametes.

Using these definitions and the standard formula for means, variances, and covariances
(Appendix 2), we have

Mean(x) = μx = 1 × p + 0 × q = p
Mean(y) = μy = 1 × p + 0 × q = p

Variance(x) = σ 2
x = (1 − μx )2 × p + (0 − μx )2 × q

= (1 − p)2 p + (−p)2 q = pq
Variance(y) = σ 2

y = pq
Covariance(x, y) = (1 − μx )(1 − μy)(p2 + λ) + (1 − μx )(0 − μy)(2pq − 2λ)

+(0 − μx )(0 − μy)(q2 + λ)
= q2(p2 + λ) − pq(2pq − 2λ) + p2(q2 + λ)
= λ(q2 + 2pq + p2)
= λ

Hence, λ is the covariance between uniting gametes under a system of mating that
produces the genotype frequencies given in Table 3.1. Because covariances do not have
a standardized range whereas correlations do, it is usually more convenient to measure the
nonrandom associations between uniting gametes through their correlation coefficient
rather than their covariance. The correlation coefficient is (Appendix 2)

ρx,y = Cov (x, y)√
σ 2

x σ 2
y

= λ

pq

Although inbreeding as measured by f alters the genotype frequencies from Hardy–
Weinberg (equations 3.2), it does not cause any change in allele frequency. The frequency
of the A allele in the final generation in Table 3.1 is

p′ = 1 × (p2 + pqf ) +1 /2[2pq(1 − f )] = p2 + pqf + pq(1 − f )

= p2 + pqf + pq − pqf = p2 + pq = p(p + q) = p

Because the allele frequencies are not changing over time in Table 3.1, inbreeding as
measured by f is not an evolutionary force by itself at the single-locus level (that is,
system-of-mating inbreeding alone does not change the frequencies of alleles in the gene
pool).
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Another interpretation of f is suggested by equations 3.2: In addition to f being a
correlation coefficient, f is also a direct measure of the deviation of heterozygote genotype
frequencies from Hardy–Weinberg expectations. Note that the frequency of heterozygotes
in equations 3.2 is 2pq(1 − f ), and recall from Chapter 2 that the expected frequency of
heterozygotes under Hardy–Weinberg is 2pq. Hence, an alternative mathematical definition
of f is

f = 1 − observed frequency of heterozygotes in deme

expected frequency of heterozygotes under Hardy–Weinberg
(3.3)

From equation 3.3, we can see that a positive correlation between uniting gametes leads to
a heterozygote deficiency in the deme (typically called an inbreeding system of mating), no
correlation yields Hardy–Weinberg frequencies (random mating), and a negative correlation
(typically called avoidance of inbreeding) yields an excess of heterozygotes in the deme.

In most of the population genetic literature, both f and F are called inbreeding coef-
ficients and are often assigned the same mathematical symbol. That will not be the case
in this book. The symbol F , which will be called pedigree inbreeding, refers to a specific
individual, measures that individual’s probability of identity by descent for a randomly
chosen autosomal locus, and ranges from 0 to 1. In contrast, f will be called system-of-
mating inbreeding, refers to a deme, measures deviations from Hardy–Weinberg genotype
frequencies, and ranges from −1 to +1 (Table 3.2). Because f and F are both called in-
breeding coefficients and frequently assigned the same symbol in much of the literature,
it is not surprising that these two extremely different definitions of inbreeding have often
been confused. We will illustrate the difference between these two inbreeding coefficients
by returning to the example of the captive herd of Speke’s gazelle.

Recall that the captive herd of the Speke’s gazelle was founded at the St. Louis Zoo with
one male and three females between 1969 and 1972. Because there was only one male,
all animals born in this herd were biological relatives. Under the assumption that the four
founding animals were unrelated (our reference population), all of these original founders
and the offspring between them have F = 0; that is, these individuals were not “inbred.”
By 1982, these older animals had all died off and all animals in the herd had F > 0. Given

Table 3.2. Contrast between Pedigree Inbreeding Coefficient F and System-of-Mating
Inbreeding Coefficient f

Property F f

Data used to calculate Pedigree data for specific individuals Genotype frequency data for
specific locus and deme

Type of mathematical Probability Correlation coefficient
measure

Range of values 0 ≤ F ≤ 1 −1 ≤ f ≤ 1
Biological level of Individual Deme

applicability
Biological meaning Expected chance of identity by descent

at randomly chosen autosomal locus
for specific individual caused by
biological relatedness of individual’s
parents

System of mating of deme
measured as deviations
from random-mating
genotype frequency
expectations
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that all animals bred in captivity had to be at least half sibs of one another (there was only
one founding male), this inbred state of the descendants of the original founders and their
offspring was inevitable regardless of system of mating. The average F in 1982 was 0.149
relative to the founder reference population, making this captive herd one of the most highly
inbred populations of large mammals known. An isozyme survey (Appendix 1) was also
performed on these same animals in 1982. For example, at the polymorphic general protein
locus (GP), the observed heterozygosity was 0.500, but the expected heterozygosity under
random mating was 0.375. Hence, for this locus, f = −0.333. Several other polymorphic
isozyme loci were scored, all yielding f < 0, with the average f over all loci being −0.291.
This highly negative f indicates a strong avoidance of system-of-mating inbreeding.

We now have what appears to be a contradiction, at least for those who confuse f and
F . This herd of gazelles is simultaneously one of the most highly inbred (pedigree sense
F) populations of large mammals known and is also strongly avoiding inbreeding (system-
of-mating sense f ). There is no paradox here except verbally; the two types of inbreeding
and inbreeding coefficients are measuring completely different biological attributes. The
negative f indicates that the breeders of this managed herd were avoiding inbreeding in
a system-of-mating sense within the severe constraints of this herd of close biological
relatives.

If inbreeding were being avoided at the level of system of mating, then why did every
individual in the herd have an F > 0? Keep in mind that “random mating” means that fe-
males and males are paired together “at random” regardless of their biological relationship.
In any finite population, there is always a finite probability of two related individuals being
paired as mates under random mating. The smaller the population, the more likely it is
to have biological relatives mate at random. Hence, random mating ( f = 0) implies some
matings among biological relatives that will yield F > 0 in any finite population. Indeed,
even avoidance of inbreeding ( f < 0) can still result in matings among biological relatives
in a finite population. For example, many human cultures (but not all) have incest taboos
that often extend up to first cousins. Assuming a stable sized population of Nadults with an
average and variance of two offspring per family (the number of offspring being Poisson),
then f = −1/(N − 10) when relatives up to and including first cousins are excluded as
mates but mating is otherwise random (Jacquard 1974). Note that as N increases, f ap-
proaches 0. This means that although incest taboos are common in human societies, the
Hardy–Weinberg law fits very well for most loci within most large human demes. However,
some human demes are small. Suppose N = 50 (a small local human population, but still
found in some hunter/gathering societies); then f = −0.025 under this nonrandom sys-
tem of mating. Nevertheless, such small human populations typically contain many inbred
(F > 0) individuals despite their incest taboos in choosing mates ( f < 0).

Consider, for example, a set of religious colonies in the upper great plains of North
America that are descendants of a small group of anabaptist Protestants who originally
immigrated from the Tyrolean Alps (Steinberg et al. 1966). There has been very little
immigration into these religious colonies from other human populations, so they represent
a genetic isolate. Internally, their system of mating is one of strong avoidance of mating
between close relatives as incest is considered a sin. Despite this strong avoidance of pedigree
inbreeding, the average F for one isolated subsect was 0.0255. This makes this population
one of the more highly inbred human populations known despite a system of mating that
avoids inbreeding. The reason for this seeming contradiction is that these colonies were
founded by relatively few individuals, so virtually everyone in the colony today is related
to everyone else. Hence, the pedigree inbreeding is due to the small population size at
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the time the colonies were founded and not due to the system of mating (such “founder
effects” will be discussed in more detail in the next chapter). Indeed, if these individuals
truly mated at random, then the average F under random mating would be 0.0311, a value
considerably larger than the observed average F of 0.0255. As this population reveals,
avoidance of inbreeding in the system-of-mating sense does not necessarily result in no
pedigree inbreeding (F = 0) but rather results in lower levels of pedigree inbreeding than
would have occurred under random mating. The strong avoidance of inbreeding in this
human population also results in large deviations from Hardy–Weinberg expectations. For
example, a sample from this population scored for the MN blood group had 1083 individuals
with genotype MM, 1220 with MN, and 260 with NN. Using the test given in Chapter 2,
the resulting chi square is 9.68 with one degree of freedom, which is significant at the
0.002 level. Hence, unlike most other human populations (see Chapter 2 for two examples),
this religious colony does not have Hardy–Weinberg genotype frequencies for the MN
locus. Instead, there is a significant excess of heterozygotes (only 1149 are expected under
random mating, versus the 1220 that were observed). Using equation 3.2, this results in
f = −0.0615. Thus, this religious colony started from a small number of founders is
highly inbred in the pedigree sense (F = 0.0255), even though the population is strongly
avoiding inbreeding in the system-of-mating sense ( f = −0.0615). The two inbreeding
coefficients F and f are most definitely not the same either mathematically or biologically
in this human population.

Another human example is given in Figure 3.5 (Roberts 1967) that illustrates how small
founding population size can result in pedigree inbreeding despite strong avoidance of
system-of-mating inbreeding. Twenty people colonized the remote Atlantic island of Tristan
da Cunha in the early 1800s, with a few more migrants coming later (more details will be
given in the next chapter). Despite a strong incest taboo among these Christian colonists and
a system of mating characterized by f < 0, individuals with pedigree inbreeding began to
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Figure 3.5. Average pedigree inbreeding coefficient for human population on Tristan da Cunha as
function of decade of birth.


