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Preface

In the two years since we first started planning this book, so much has been written
about nanotechnology that the subject really needs no introduction. Nanotechnology
has been one of the first major new technologies to develop in the internet age, and as
such has been the topic of thousands of unregulated, unrefereed websites, discussion
sites and the like. In other words, much has been written, but not all is necessarily true.
The press has also made its own, unique contribution: ‘nanotechnology will turn us all
into grey goo’ makes for a good story (in some newspapers at least), and then there’s the
1960s image of nanotechnology, still present today, of Raquel Welch transported in a
nanosubmarine through the bloodstream of an unsuspecting patient. This book isn’t
about any of that! One thing that the recent press coverage of nanotechnology has
achieved is to draw attention to the possible hazards which accompany any new
technology and to pose relevant questions about the likely impact of the various facets
of nanotechnology on our society. Whilst we would certainly encourage investigation
and discussion of such issues, they do not fall within the remit of this book.

Nanoscale Science and Technology has been designed as an educational text, aimed
primarily at graduate students enrolled on masters or PhD programmes, or indeed, at
final year undergraduate or diploma students studying nanotechnology modules or
projects. We should also mention that the book has been designed for students of the
physical sciences, rather than the life sciences. It is based largely on our own masters
course, the Nanoscale Science and Technology MSc, which has been running since 2001
and was one of the first postgraduate taught courses in Europe in this subject area. The
course is delivered jointly by the Universities of Leeds and Sheffield, and was designed
primarily by several of the authors of this book. As in designing the course, so in
designing the book have we sought to present the breadth of scientific topics and
disciplines which contribute to nanotechnology. The scope of the text is bounded by
two main criteria. Firstly, we saw no need to repeat the fine details of established
principles and techniques which are adequately covered elsewhere, and secondly, as
a textbook, Nanoscale Science and Technology is intended to be read, in its entirety, over
a period of one year. In consideration of the first of these criteria, each chapter has a
bibliography indicating where more details of particular topics can be found.

The expertise of the authors ranges from electronic engineering, physics and mater-
ials science to chemistry and biochemistry, which we believe has helped us achieve both
breadth and balance. That said, this book is inevitably our take on nanotechnology, and
any other group of authors would almost certainly have a different opinion on what
should be included and what should be emphasised. Also, in such a rapidly developing
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field, our reporting is in danger of fast becoming out of date (one of our co-authors,
who was the most efficient in composing his text, paid the rather undeserved penalty of
having to make at least two sets of revisions simply to update facts and figures to reflect
new progress in research). We should certainly be grateful to receive any information on
errors or omissions.

Although most of the chapters have been written by different authors, we were keen
that, to better fulfil its role as a textbook, this volume should read as one coherent whole
rather than as a collection of individual monographs. To this end, not only have we as
editors made numerous adjustments to improve consistency, and avoid duplication and
omission, but in some places we have also made more substantial editorial changes.
We should like to acknowledge the tolerance of our co-authors throughout this process.
We are all still on speaking terms – just! It is not really necessary for us to tabulate in
detail exactly who contributed what to each chapter in the final manuscript, except that
we note that the nanostructured carbon section in Chapter 6 was provided by Rob
Kelsall. Finally, we should like to acknowledge Terry Bambrook, who composed
virtually all of the figures for chapters 1 and 2.

Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan

Book cover acknowledgments

The nano images of silicon were taken by Dr Ejaz Huq and appear courtesy of the
CCLRC Rutherford Appleton Laboratory Central Microstructure Facility; the images
of carbon nanotubes appears courtesy of Z. Aslam, B. Rand and R. Brydson (Uni-
versity of Leeds); the image of a templated silica nanotube appears courtesy of
J. Meegan, R. Ansell and R. Brydson (University of Leeds); the image of microwires is
taken from E. Cooper, R. Wiggs, D. A. Hutt, L. Parker, G. J. Leggett and T. L. Parker,
J. Mater. Chem. 7, 435–441 (1997), reproduced by permission of the Royal Society of
Chemistry, and the AFM images of block copolymers are adapted with permission from
T. Mykhaylyk, O. O. Mykhaylyk, S. Collins and I. W. Hamley, Macromolecules 37,
3369 (2004), copyright 2004 American Chemical Society.
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1
Generic methodologies for
nanotechnology: classification and
fabrication

1.1 INTRODUCTION AND CLASSIFICATION

1.1.1 What is nanotechnology?

Nanotechnology is the term used to cover the design, construction and utilization of
functional structures with at least one characteristic dimension measured in nanometres.
Such materials and systems can be designed to exhibit novel and significantly improved
physical, chemical and biological properties, phenomena and processes as a result of the
limited size of their constituent particles or molecules. The reason for such interesting
and very useful behaviour is that when characteristic structural features are intermedi-
ate in extent between isolated atoms and bulk macroscopic materials; i.e., in the range of
about 10�9 m to 10�7 m (1 to 100 nm), the objects may display physical attributes
substantially different from those displayed by either atoms or bulk materials. Ultim-
ately this can lead to new technological opportunities as well as new challenges.

1.1.2 Classification of nanostructures

As we have indicated above, a reduction in the spatial dimension, or confinement of
particles or quasiparticles in a particular crystallographic direction within a structure
generally leads to changes in physical properties of the system in that direction. Hence
one classification of nanostructured materials and systems essentially depends on the
number of dimensions which lie within the nanometre range, as shown in Figure 1.1:
(a) systems confined in three dimensions, (b) systems confined in two dimensions,
(c) systems confined in one dimension.

Nanoscale Science and Technology Edited by R. W. Kelsall, I. W. Hamley and M. Geoghegan

� 2005 John Wiley & Sons, Ltd
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Nanoparticles and nanopores exhibit three-dimensional confinement (note that his-
torically pores below about 100 nm in dimension are often sometimes confusingly
referred to as micropores). In semiconductor terminology such systems are often called
quasi-zero dimensional, as the structure does not permit free particle motion in any
dimension.

Nanoparticles may have a random arrangement of the constituent atoms or molecules
(e.g., an amorphous or glassy material) or the individual atomic or molecular units may
be ordered into a regular, periodic crystalline structure which may not necessarily be the
same as that which is observed in a much larger system (Section 1.3.1). If crystalline, each
nanoparticle may be either a single crystal or itself composed of a number of different
crystalline regions or grains of differing crystallographic orientations (i.e., polycrystalline)
giving rise to the presence of associated grain boundaries within the nanoparticle.

(i)

(ii) (iii)

(a)

Figure 1.1 Classification of nanostructures. (a) Nanoparticles and nanopores (nanosized in three

dimensions): (i) high-resolution TEM image of magnetic iron oxide nanoparticle, (ii) TEM image

of ferritin nanoparticles in a liver biopsy specimen, and (iii) high-resolution TEM image of

nanoporosity in an activated carbon). (b) Nanotubes and nanofilaments (nanosized in two

dimensions): (i) TEM image of single-walled carbon nanotubes prepared by chemical vapour

deposition, (ii) TEM image of ordered block copolymer film, and (iii) SEM image of silica

nanotube formed via templating on a tartaric acid crystal. (c) Nanolayers and nanofilms (nano-

sized in one dimension): (i) TEM image of a ferroelectric thin film on an electrode, (ii) TEM image

of cementite (carbide) layers in a carbon steel, and (iii) high-resolution TEM image of glassy grain

boundary film in an alumina polycrystal. Images courtesy of Andy Brown, Zabeada Aslam, Sarah

Pan, Manoch Naksata and John Harrington, IMR, Leeds

2 GENERIC METHODOLOGIES FOR NANOTECHNOLOGY
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(i)

(ii) (iii)

(b)

(c)

(i)

(ii) (iii)

Figure 1.1 Continued

INTRODUCTION AND CLASSIFICATION 3
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Nanoparticles may also be quasi-crystalline, the atoms being packed together in an
icosahedral arrangement and showing non-crystalline symmetry characteristics. Such
quasi-crystals are generally only stable at the nanometre or, at most, the micrometre scale.

Nanoparticles may be present within another medium, such as nanometre-sized precipi-
tates in a surrounding matrix material. These nanoprecipitates will have a specific
morphology (e.g., spherical, needle-shaped or plate-shaped) andmay possess certain crystal-
lographic orientation relationships with the atomic arrangement of the matrix depending on
the nature (coherency) of the interfacewhichmay lead to coherency strains in the particle and
the matrix. One such example is the case of self-assembled semiconductor quantum dots,
which form due to lattice mismatch strain relative to the surrounding layers and whose
geometry is determined by the details of the strain field (Chapter 3). Another feature which
may be of importance for the overall transport properties of the composite system is the
connectivity of such nanometre-sized regions or, in the case of a nanoporous material,
nanopore connectivity.

In three dimensions we also have to consider collections of consolidated nanopar-
ticles; e.g., a nanocrystalline solid consisting of nanometre-sized crystalline grains each
in a specific crystallographic orientation. As the grain size d of the solid decreases the
proportion of atoms located at or near grain boundaries, relative to those within the
interior of a crystalline grain, scales as 1/d. This has important implications for proper-
ties in ultrafine-grained materials which will be principally controlled by interfacial
properties rather than those of the bulk.

Systems confined in two dimensions, or quasi-1D systems, include nanowires, nano-
rods, nanofilaments and nanotubes: again these could either be amorphous, single-
crystalline or polycrystalline (with nanometre-sized grains). The term ‘nanoropes’ is
often employed to describe bundles of nanowires or nanotubes.

Systems confined in one dimension, or quasi-2D systems, include discs or platelets,
ultrathin films on a surface and multilayered materials; the films themselves could be
amorphous, single-crystalline or nanocrystalline.

Table 1.1 gives examples of nanostructured systems which fall into each of the three
categories described above. It can be argued that self-assembled monolayers and multi
layered Langmuir–Blodgett films (Section 1.4.3.1) represent a special case in that they
represent a quasi-2D system with a further nanodimensional scale within the surface
film caused by the molecular self-organization.

1.1.3 Nanoscale architecture

Nanotechnology is the design, fabrication and use of nanostructured systems, and the
growing, shaping or assembling of such systems either mechanically, chemically or
biologically to form nanoscale architectures, systems and devices. The original vision of
Richard Feynman1 was of the ‘bottom-up’ approach of fabricating materials and devices
at the atomic or molecular scale, possibly using methods of self-organization and self-
assembly of the individual building blocks. An alternative ‘top-down’ approach is the

1 R. Feynman, There’s plenty of room at the bottom, Eng. Sci. 23, 22 (1960) reprinted in J. Micromech
Systems 1, 60 (1992).
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ultraminiaturization or etching/milling of smaller structures from larger ones. These
methods are reviewed in Section 1.4. Both approaches require a means of visualizing,
measuring andmanipulating the properties of nanostructures; computer-based simulations
of the behaviour of materials at these length scales are also necessary. This chapter
provides a general introduction to the preparation and properties of nanostructures,
whilst the subsequent chapters give greater detail on specific topics.

1.2 SUMMARY OF THE ELECTRONIC PROPERTIES OF ATOMS

AND SOLIDS

To understand the effects of dimensionality in nanosystems, it is useful to review certain
topics associated with the constitution of matter, ranging from the structure of the isolated
atom through to that of an extended solid.

1.2.1 The isolated atom

The structure of the atom arises as a direct result of the wave–particle duality of
electrons, which is summarized in the de Broglie relationship, � ¼ h/mev, where � is
the (electron) wavelength, me is the (electron) mass, v is the velocity and

Table 1.1 Examples of reduced-dimensionality systems

3D confinement

Fullerenes

Colloidal particles

Nanoporous silicon

Activated carbons

Nitride and carbide precipitates in high-strength low-alloy steels

Semiconductor particles in a glass matrix for non-linear optical components

Semiconductor quantum dots (self-assembled and colloidal)

Quasi-crystals

2D confinement

Carbon nanotubes and nanofilaments

Metal and magnetic nanowires

Oxide and carbide nanorods

Semiconductor quantum wires

1D confinement

Nanolaminated or compositionally modulated materials

Grain boundary films

Clay platelets

Semiconductor quantum wells and superlattices

Magnetic multilayers and spin valve structures

Langmuir–Blodgett films

Silicon inversion layers in field effect transistors

Surface-engineered materials for increased wear resistance or corrosion resistance

SUMMARY OF THE ELECTRONIC PROPERTIES OF ATOMS AND SOLIDS 5
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h ¼ 6:63� 10�34 J s is the Planck constant. The wave–particle duality of the electron
means that an electron behaves both as a wave (i.e., it is extended over space and has a
wavelength and hence undergoes wave-like phenomena such as diffraction) and a particle
(i.e., it is localized in space and has a position, a velocity and a kinetic energy). This is
conveniently summarized in the idea of a wave packet a localized wave that is effectively
the summation of a number of different waves of slightly differing wavelengths.

Using these ideas we come to our first model of the atom, the Rutherford–Bohr
model. Here the small central nucleus of the atom consists of positively charged protons
and (neutral) neutrons. Electrons orbit the nucleus in stable orbits. The allowed, stable
orbits are those in which the electron wavelength, given by the de Broglie formula, is an
integral multiple n of the circumference of the orbit r:

2�r ¼ n� ¼ nh

mev
: ð1:1Þ

This implies that

mevr ¼ nh

2�
; ð1:2Þ

in otherwords, the angular momentum mevr is quantized in that it is an integral multiple
of h/2�.

The Bohr model leads to the idea that only certain electron orbits or shells are allowed
by this quantization of angular momentum (i.e., the value of n). The Bohr shells in an
atom are labelled according to the quantum number, n, and are given the spectroscopic
labels K, L, M, N, etc. (where n ¼ 1, 2, 3, 4, . . .). To understand the form of the periodic
table of elements, it is necessary to assume that each Bohr shell can contain 2n2 electrons.
For instance, a K shell (n ¼ 1) can contain 2 electrons, whereas an L shell (n ¼ 2) can
accommodate 8 electrons. As well as having a distinct form and occupancy, each shell
also has a corresponding well-defined energy. It is usual to define the zero of the energy
scale (known as the vacuum level) as the potential energy of a free electron far from the
atom. In order to correspond with atomic emission spectra measured experimentally, the
energies of these levels En are then negative (i.e., the electrons are bound to the atom) and
are proportional to 1/n2. Such a simplified picture of the structure of an isolated Mg atom
and the associated energy level diagram are shown in Figure 1.2.

A much more sophisticated model of the atom considers the wave-like nature of the
electrons from the very beginning. This uses wave mechanics or quantum mechanics.
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Figure 1.2 Bohr shell description of an Mg atom and the associated energy level diagram
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Here each electron is described by a wavefunction  which is a function of spatial
position (x,y,z) and, in general, of time. Physically j j2 represents the probability of
finding the electron at any point. To work out the energy of each electron, we need to
solve the Schrödinger equation which, in the time-independent case, takes the form

� �h2

2me
r2 þ Vðx; y; zÞ ¼ E ; ð1:3Þ

where V(x,y,z) describes the potential energy function in the environment of the elec-
tron. Solution of the Schrödinger equation, under certain boundary conditions, leads to
a set of solutions for the allowed wavefunctions  n of the atomic electrons together with
their associated energies En.

This equation can only be solved analytically for the case of the hydrogen atom,
where there is only one electron moving in the potential of a single proton, the hydrogen
nucleus. Only a certain set of electronic wavefunctions and associated energy levels fulfil
this Schrödinger equation. The wavefunctions may be expressed as a radial part,
governing the spatial extent of the wavefunction, multiplied by a spherical harmonic
function which determines the shape. The allowed wavefunctions form the electron
orbitals, which we term 1s, 2s, 2p, 3s, 3p, 3d, etc. (here 1, 2, 3, . . . are alternative labels
for K, L,M, . . .). These allowed wavefunctions now depend on not just one quantum
number but four: n, l, m and s. These numbers may be summarized as follows:

. n is the principal quantum number; it is like the quantum number used for the case of
Bohr shells (n ¼ 1, 2, 3, . . . ).

. l is the angular momentum quantum number; it can vary from l ¼ 0, 1, 2, . . . , (n� 1).
The value of l governs the orbital shape of the subshell: l ¼ 0 is an s orbital, which is
spherical; l ¼ 1 is a p orbital, which has a dumbbell shape; while l ¼ 2 is a d orbital,
which has a more complex shape such as a double dumbbell.

. m is the magnetic quantum number; it can vary from m ¼ 0, �1, . . . ,�l. The value
of m governs the spatial orientation of the different orbitals within a subshell; i.e.,
there are three p orbitals (l ¼ 1) px, py, and pz corresponding to the three values of m
which are 0, þ1 and �1. In the absence of a magnetic field, all these orbitals within
a particular subshell will have the same energy.

. s is the spin quantum number which, for an electron, can take the values �1/2. Each
(n, l, m) orbital can contain two electrons of opposite spin due to the Pauli exclusion
principle, which states that no two electrons can have the same four quantum numbers.

Using this identification in terms of the quantum numbers, each electron orbital in an
atom therefore has a distinct combination of energy, shape and direction (x, y, z) and
can contain a maximum of two electrons of opposite spin.

In an isolated atom, these localized electronic states are known as Rydberg states and
may be described in terms of simple Bohr shells or as combinations of the three quantum
numbers n, l and m known as electron orbitals. The Bohr shells (designated K, L,M, . . .)
correspond to the principal quantum numbers n equal to 1, 2, 3, etc. Within each of
these shells, the electrons may exist in (n� 1) subshells (i.e., s, p, d, or f subshells, for
which the angular momentum quantum number l equals 0, 1, 2, 3, respectively).

SUMMARY OF THE ELECTRONIC PROPERTIES OF ATOMS AND SOLIDS 7
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The occupation of the electronic energy levels depends on the total number of
electrons in the atom. In the hydrogen atom, which contains only one electron, the set
of Rydberg states is almost entirely empty except for the lowest-energy 1s level which is
half full. As we go to higher energies, the energy spacing between these states becomes
smaller and smaller and eventually converges to a value known as the vacuum level
(n ¼ 1), which corresponds to the ionization of the inner-shell electron. Above this
energy the electron is free of the atom and this is represented by a continuum of empty
electronic states. In fact, the critical energy to ionize a single isolated hydrogen atom is
equal to 13.61 eV and this quantity is the Rydberg constant.

This description is strictly only true for hydrogen; however, other heavier atoms
are found to have similar wavefunction (hydrogenic-like) solutions, which ultimately
leads to the concept of the periodic table of elements, as each atom has more and
more electrons which progressively fill the allowed energy levels. This is shown for a
magnesium atom in Figure 1.2. The chemical properties of each atom are then princi-
pally determined by the number of valence electrons in the outermost electron shell
which are relatively loosely bound and available for chemical reaction with other atomic
species.

1.2.2 Bonding between atoms

One way to picture the bonding between atoms is to use the concept of Molecular
Orbital (MO) Theory. MO theory considers the electron wavefunctions of the individual
atoms combining to form molecular wavefunctions (or molecular orbitals as they are
known). These orbitals, which are now delocalized over the whole molecule, are then
occupied by all the available electrons from all the constituent atoms in the molecule.
Molecular orbitals are really only formed by the wavefunctions of the electrons in the
outermost shells (the valence electrons); i.e., those which significantly overlap in space
as atoms become progressively closer together; the inner electrons remain in what are
essentially atomic orbitals bound to the individual atoms.

A simple one-electron molecule is the Hþ
2 ion, where we have to consider the

interactions (both attractive and repulsive) between the single electron and two nucleii.
The Born–Oppenheimer approximation regards the nuclei as fixed and this simplifies
the Hamiltonian used in the Schrödinger equation for the molecular system. For a one-
electron molecule, the equation can be solved mathematically, leading to a set of
molecular wavefunctions  which describe molecular orbitals and depend on a quantum
number � which specifies the angular momentum about the internuclear axis.
Analogous to the classification of atomic orbitals (AOs) in terms of angular momentum l
as s, p, d, etc., the MOs may be classified as �, �, � depending on the value of �
(� ¼ 0, 1, 2, respectively). Very simply a � MO is formed from the overlap (actually a
linear combination) of AOs parallel to the bond axis, whereas a �MO results from the
overlap of AOs perpendicular to the bond axis. For the Hþ

2 ion, the two lowest-energy
solutions are known as 1s�g and 1s�u. Here 1s refers to the original atomic orbitals; the
subscripts g and u refer to whether the MO is either symmetrical or non-symmetrical
with respect to inversion about a line drawn between the nucleii (viz. an even or odd
mathematical function). This is shown in figure 1.3.

8 GENERIC METHODOLOGIES FOR NANOTECHNOLOGY
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As can be seen the electron density is concentrated between the nuclei for the 1s�g
MO, which is known as a bonding orbital since the energy of the molecular wavefunc-
tion is lower (i.e., more stable) than the corresponding isolated atomic wavefunctions.
Conversely, the electron density is diminished between the nuclei for 1s�u, which is
known as an antibonding orbital since the energy of the molecular wavefunction is
higher (i.e., less stable) than the corresponding isolated atomic wavefunction.

More generally, it is necessary to be able to solve the Schrödinger equation for
molecules containing more than one electron. One way to do this is to use approximate
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Figure 1.3 Molecular orbital description and energy level diagram for an Hþ
2 ion
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solutions similar to those obtained for the hydrogen atom, since when an electron is
near a particular nucleus it will have a hydrogen-like form. Using this approach we can
then construct a set of molecular orbitals from a linear combination of atomic orbitals
(LCAO). For instance, as shown in Figure 1.4, the 1s�g bonding MO is formed from the
in-phase overlap (i.e., addition) of two 1s atomic orbitals, whereas the 1s�u antibonding
MO is formed from the out of-phase overlap (i.e., subtraction) of two 1s atomic orbitals.
Similar considerations apply to overlap of p orbitals, although now these may form
both � and � bonding and antibonding MOs.

The stability of simple diatomic molecules such as H2, H
�
2 and He2 depends on the

relative filling of the bonding and antibonding MOs; e.g., H�
2 contains three electrons,

two of which fill the bonding MO (1s�g level) while the third enters the antibonding MO
(1s�u level); consequently, the overall bond strength is approximately half that in H2.
Meanwhile He2 is unstable as there are an equal number of electrons in bonding MOs as
in antibonding MOs. The same principles apply to more complicated diatomic mol-
ecules. However, if the atoms are different then the energy levels of the electrons asso-
ciated with the constituent atoms will also be different and this will lead to an
asymmetry in the MO energy level diagram.

+

+
+ +

–AO 1s AO 1s 
+

–

+

+ –

In phase MO 1sσg (bonding)

MO 1sσu (antibonding)Out of phase

+

AO 2p AO 2p 

+

–

++ –

+ –+ –

– +

+ +

– –

––

MO 2pσu (antibonding)

MO 2pσg (bonding)In phase

Out of phase

AO  2p AO  2p

+

+
–

+

+

–

–
+

–

–
+

+

+

+

–

–

–

MO 2pπg (antibonding)

MO 2pπu (bonding)In phase

Out of phase

Figure 1.4 Formation of molecular orbitals from a linear combination of atomic orbitals; the

þ and � signs indicate the signs (phases) of the wavefunctions
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For polyatomic molecules such as BF3 a greater variety of molecular orbitals can be
formed. MO theory emphasizes the delocalized nature of the electron distribution, so in
general these MOs are extended over not just two, but all the constituent atoms. The
total number of MOs (bonding, antibonding or non-bonding) is equal to the number of
valence atomic orbitals used to construct them.

1.2.3 Giant molecular solids

When atoms come into close proximity with other atoms in a solid, most of the electrons
remain localized and may be considered to remain associated with a particular atom.
However, some outer electrons will become involved in bonding with neighbouring
atoms. Upon bonding the atomic energy level diagram is modified. Briefly, the well-
defined outer electron states of the atom overlap with those on neighbouring atoms and
become broadened into energy bands. One convenient way of picturing this is to
envisage the solid as a large molecule. Figure 1.5 shows the effect of increasing the
number of atoms on the electronic energy levels of a one-dimensional solid (a linear
chain of atoms).

For a simple diatomic molecule, as discussed previously, the two outermost atomic
orbitals (AOs) overlap to produce two molecular orbitals (MOs) which can be viewed as
a linear combination of the two constituent atomic orbitals. As before, the bonding MO
is formed from the in-phase overlap of the AOs and is lower in energy than the
corresponding AOs, whereas the other MO, formed from the out-of-phase overlap, is
higher in energy than the corresponding AOs and is termed an antibonding MO.
Progressively increasing the length of the molecular chain increases the total number
of MOs, and gradually these overlap to form bands of allowed energy levels which are
separated by forbidden energy regions (band gaps). These band gaps may be thought of
as arising from the original energy gaps between the various atomic orbitals of the
isolated atoms.

Note that the broadening of atomic orbitals into energy bands as the atoms are
brought closer together to form a giant molecular solid can sometimes result in the
overlapping of energy bands to give bands of mixed (atomic) character. The degree to
which the orbitals are concentrated at a particular energy is reflected in a quantity
known as the density of states (DOS) N(E), where N(E) dE is the number of allowed
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Figure 1.5 Electron energy level diagram for a progressively larger linear chain of atoms showing

the broadening of molecular orbitals into energy bands for a one-dimensional solid
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energy levels per unit volume of the solid in the energy range between E and Eþ dE. As
in a simple molecule, each MO energy level in the energy band can accommodate two
electrons of opposite spin. The total number of electrons from all the interacting atomic
orbitals in the large molecule fill this set of MOs, the highest occupied energy level being
known as the Fermi level EF. The sum of the energies of all the individual electrons in
the large molecule gives the total energy of the system, which gives a measure of the
stability of the atomic arrangement in terms of the system free energy.

1.2.4 The free electron model and energy bands

An alternative view of the electronic band structure of solids is to consider the electron
waves in a periodic crystalline potential. The starting point for this approach is the
Drude–Lorentz free electron model for metals. In this model a metallic solid is con-
sidered as consisting of a close packed lattice of positive cations surrounded by an
electron sea or cloud formed from the ionization of the outer shell (valence) electrons.
We can then treat the valence electrons as if they were a gas inside a container and use
classical kinetic gas theory. This works best for the electropositive metals of Groups I
and II as well as aluminium (the so-called free electron metals) and can explain many of
the fundamental properties of metals such as high electrical and thermal conductivities,
optical opacity, reflectivity, ductility and alloying properties.

However, a more realistic approach is to treat the free electrons in metals quantum
mechanically and consider their wave-like properties. Here the free valence electrons are
assumed to be constrained within a potential well which essentially stops them from
leaving the metal (the ‘particle-in-a-box’ model). The box boundary conditions require
the wavefunctions to vanish at the edges of the crystal (or ‘box’). The allowed wave-
functions given by the Schrödinger equation then correspond to certain wavelengths as
shown in Figure 1.6. For a one-dimensional box of length L, the permitted wavelengths
are �n ¼ 2L/n, where n¼ 1, 2, 3 . . . is the quantum number of the state; the permitted
wavevectors kn ¼ 2�/� are given by kn ¼ n�/L.

This simple particle-in-a-box model results in a set of wavefunctions given by

 n ¼ ð2=LÞ1=2 sinðn�x=LÞ; ð1:4Þ

where n¼ 1, 2, 3 . . . ., and for each n the corresponding energy of the electronic level is

En ¼ n2h2

8mL2
: ð1:5Þ

En represents solely kinetic energy since the potential energy is assumed to be zero
within the box. Thus there is a parabolic relationship between En and n, and therefore
between En and k since k depends directly on n as described above. The permitted energy
levels on this parabola are discrete (i.e., quantized): however in principle the size of L for
most metal crystals (ranging from microns to millimetres or even centimetres) means
that the separation between levels is very small compared with the thermal energy kBT,
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and we can regard the energy distribution as almost continuous (quasi-continuous) so
that the levels form a band of allowed energies as shown in figure 1.7.

Note that as the electron becomes more localized (i.e., L decreases), the energy of a
particular electron state (and more importantly the spacing between energy states)
increases; this has important implications for bonding and also for reduced-dimension-
ality or quantum-confined systems which are discussed later.
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Figure 1.6 Energy level diagram also showing the form of some of the allowed wavefunctions for

an electron confined to a one-dimensional potential well
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Figure 1.7 Schematic version of the parabolic relationship between the allowed electron wave

vectors and the their energy for electrons confined to a one-dimensional potential well. Shaded
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1.2.5 Crystalline solids

The above arguments may be extended from one to three dimensions to consider the
electronic properties of bulk crystalline solids. For a perfectly ordered three dimensional
crystal, the periodic repetition of atoms (or molecules) along the one dimensional linear
chain considered in Section 1.2.2 is replaced by the periodic repetition of a unit cell in all
three dimensions. The unit cell contains atoms arranged in the characteristic configur-
ation of the crystal, such that contiguous replication of the unit cell throughout all space
is sufficient to generate the entire crystal structure. In otherwords, the crystal has
translational symmetry, and the crystal structure may be generated by translations of
the unit cell in all three dimensions. Translation symmetry in a periodic structure is a
so-called discrete symmetry, because only certain translations – those corresponding to
integer multiples of the lattice translation vectors derived from the unit cell – lead to
symmetry-equivalent points. (This may be contrasted with the case of empty space,
which displays a continuous translation symmetry because any translation leads to a
symmetry-equivalent point.) Common unit cells are simple cubic, face centred cubic,
body centred cubic, and the diamond structure, which comprises two interlocking face-
centred cubic lattices. However, in general, the lattice spacing may be different along the
different principal axes, giving rise to the orthorhombic and tetragonal unit cells, and
sides of the unit cell may not necessarily be orthogonal, such as in the hexagonal unit
cell (refer to the Bibliography for further reading on this topic).

Generally, symmetries generate conservation laws; this is known as Noether’s theorem.
The continuous translation symmetry of empty space generates the law of momentum
conservation; the weaker discrete translation symmetry in crystals leads to a weaker
quasi-conservation law for quasi- or crystal momentum. An important consequence of
discrete translation symmetry for the electronic properties of crystals is Bloch’s theorem,
which is described below.

1.2.6 Periodicity of crystal lattices

The three dimensional periodicity of the atomic arrangement in a crystal gives rise to a
corresponding periodicity in the internal electric potential due to the ionic cores.
Incorporating this periodic potential into the Schrödinger equation results in allowed
wavefunctions that are modulated by the lattice periodicity. Bloch’s theorem states that
these wavefunctions take the form of a plane wave (given by exp (ik.r)) multiplied by a
function which has the same periodicity as the lattice; i.e.,

 ðrÞ ¼ ukðrÞ expðik:rÞ; ð1:6Þ

where the function uk(r) has the property uk(rþT)¼ uk(r), for any lattice translation
vector T. Such wavefunctions are known as Bloch functions, and represent travelling
waves passing through the crystal, but with a form modified periodically by the crystal
potential due to each atomic site. For a one dimensional lattice of interatomic spacing a,
these relationships reduce to

 ðxÞ ¼ ukðxÞ expðikxÞ ð1:7Þ
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with uk(xþ na)¼ uk(x) for any integer n. Now, if we impose periodic boundary condi-
tions at the ends of the chain of atoms of length L¼Na:

 ðNaÞ ¼  ð0Þ; ð1:8Þ
we find that

ukðNaÞ expðikNaÞ ¼ ukð0Þ; ð1:9Þ
from which exp (ikNa)¼ 1, which has the solutions

k ¼ �2n�=Na ¼ �2n�=L ð1:10Þ
for integer n. This result has two important consequences: firstly, it tells us that the
difference between consecutive k values is always 2�/L, which can be interpreted as
representing the volume (or properly, in this simplified one dimensional case, the length)
of k-space occupied by each wavevector state. Applying this argument to each dimen-
sion in turn gives, for a 3D crystal, a k-space volume of 8�3/V occupied by each
wavevector state, where V¼L3 is the crystal volume. Secondly, once the upper limit
on n is determined, equation (1.10) will also tell us how many wavevector states are
contained within each energy band. This point is examined below.

The lattice periodicity also gives rise to diffraction effects. Diffraction of X-rays in
crystals is discussed in detail in Chapter 2, as an important structural characterisation
technique. However, since electrons exhibit wave-like properties, the free electrons
present in the crystal also experience the same diffraction phenomena, and this has a
crucial effect on the spectrum of allowed electron energies. If we consider an electron
wave travelling along a one dimensional chain of atoms of spacing a, then each atom
will cause reflection of the wave. These reflections will all be constructive provided that
m� ¼ 2a, for integer m, where � is the electron de Broglie wavelength (this is a special
case of the Bragg Law of diffraction introduced in Section 2.1.2.5). When this condition
is satisfied, both forward and backward travelling waves exist in the lattice, and the
superposition of these creates standing waves. The standing waves correspond to
electron density distributions j (x)j2 which have either all nodes, or all antinodes, at
the lattice sites x¼ a, 2a, 3a, . . . , and these two solutions, although having the same
wavevector value, have quite different associated energies, due to the different inter-
action energies between the electrons and the positively charged ions. Consequently a band
gap forms in the electron dispersion curve at the corresponding values of wavevector:
k ¼ �m�/a (see figure 1.8). The fact that the electron waves are standing waves means that
the electron group velocity

�g ¼ @!

@k
¼ 1

�h

@E

@k
ð1:11Þ

tends to zero at these points. This represents a fundamental difference between the
behaviour of electrons in crystalline solids and that in free space, where the dispersion
relationship remains purely parabolic (E / k2) for all values of k.

The region of k space which lies between any two diffraction conditions is know as a
Brillouin zone: thus, in a one-dimensional crystal, the first Brillouin zone lies between
k ¼ ��/a and k ¼ þ�/a. However, any value of k which lies outside the first Brillouin
zone corresponds, mathematically, to an electron wave of wavelength � < 2a. Such

SUMMARY OF THE ELECTRONIC PROPERTIES OF ATOMS AND SOLIDS 15



//INTEGRAS/KCG/PAGINATION/WILEY/KST/FINALS_03-02-05/C01.3D – 16 – [1–55/55] 7.2.2005 5:52PM

a wave has too high a spatial frequency to be uniquely defined by a set of wave
amplitudes which are only specified at lattice sites: an equivalent wave of wavelength
� > 2a can always be identified. In k-space, this transformation is represented by the
fact that any value of k lying outside the first Brillouin zone is equivalent to some point
lying inside the first Brillouin zone, where the equivalent point is found from the relation

k0 ¼ k� 2m�=a ð1:12Þ

and the set of values 2m�/a are known as the reciprocal lattice vectors for the crystal.
In a three dimensional crystal, the location of energy gaps in the electron dispersion is

still determined from electron diffraction by the lattice planes, but the Brillouin zones
are no longer simple ranges of k, as in 1D: rather, they are described by complex
surfaces in 3D k-space, the geometry of which depends on the unit cell and atomic
structure. When the energy–wavevector relationship for such a crystal extending over
multiple Brillouin zones is mapped entirely into the first Brillouin zone, as described
above, this results in a large number of different energy bands and consequently the
density of energy states takes on a very complex form. An example of the multiple
energy bands and corresponding density of states in a real crystal is shown for the case
of silicon in figure 1.9.

1.2.7 Electronic conduction

We may now observe that the series of allowed k values in equation 1.12 extends up to
the edges of the Brillouin zone, at k ¼ ��/a. Since one of these endpoints may be
mapped onto the other by a reciprocal lattice vector translation, the total number of
allowed k values is precisely N. Recalling that each k state may be occupied by both a
spin up and a spin down electron, the total number of states available is 2N per energy
band. In three dimensions, this result is generalised to 2Nu states per band, where Nu is
the number of unit cells in the crystal. Now, the total number of valence electrons in the

–2π/a –π/a π/a 2π/a0
k

E

Figure 1.8 Schematic version of the parabolic relationship between the allowed electron wavevectors

and the their energy for electrons confined to a one-dimensional potential well containing a periodi-

cally varying potential of period a. Shaded energy regions represent those occupied with electrons
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crystal is zNu, where z is the number of valence electrons per unit cell. This leads to two
very different electronic configurations in a solid. If z is even, then one energy band is
completely filled, with the next band being completely empty. The highest filled band is
the valence band, and the next, empty band, is the conduction band. The electrons in the
valence band cannot participate in electrical conduction, because there are no available
states for them to move into consistent with the small increase in energy required by
motion in response to an externally applied voltage: hence this configuration results in
an insulator or, if the band gap is sufficiently small, a semiconductor. Alternatively,
if z is odd, then the highest occupied energy band is only half full. In such a material,
there are many vacant states immediately adjacent in energy to the highest occupied
states, therefore electrical conduction occurs very efficiently and the material is a metal.
Figure 1.10 shows schematic energy diagrams for insulators, metals and semiconductors
respectively. There is one further, special case which gives rise to metallic behaviour:
namely, when the valence band is completely full (z is even), but the valence and
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Figure 1.9 Electron energy band structure diagram and density of states for crystalline silicon.

The symbols �, L, X, U and K on the horizontal (wavevector) axis of the band structure plot

represent different symmetry points in 3D k-space. � corresponds to k ¼ 0, the origin of the

Brillouin zone; the range �–X represents a path through the Brillouin zone from centre to edge

along the 100 direction; �–L and �–K represent middle to edge paths along the h111i and h110i
directions, respectively, and X–U represents a path along the Brillouin zone boundary starting

from the zone edge on the h100i axis and moving in a direction parallel to h101i

Energy
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band CB 
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Insulator:
CB and VB
separated by
large forbidden
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Metal:
VB is only
partially filled or
the CB and VB
overlap

Semiconductor:
CB and VB
separated by
narrow forbidden
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Band gap
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Figure 1.10 Electron energy band diagram for an insulator, a conductor and a semiconductor
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conduction bands overlap in energy, such that there are vacant states immediately
adjacent to the top of the valence band, just as in the case of a half-filled band. Such
a material is called a semi-metal.

In the same way as was defined in the molecular orbital theory of section 1.2.3, the
uppermost occupied energy level in a solid is the Fermi level EF, and the corresponding
Fermi wavevector is given by EF ¼ �hk2F/2me. As mentioned above, the volume of
k-space per state is 8�3/V. Therefore, the volume of k space filled by N electrons is
4N�3/V, accounting for the fact that 2 electrons of opposite spins can occupy each
wavevector state. If we equate this volume to the volume of a sphere in k space, of
radius kF (the Fermi sphere), we obtain the result

kF ¼ ð3�2neÞ1=3 ð1:13Þ

where ne¼N/V is the electron density, and hence

EF ¼ �hð3�2neÞ2=3=2me: ð1:14Þ

If the Fermi sphere extends beyond the first Brillouin zone, as occurs in many metals,
then the appropriate mapping back into the zone results in a Fermi surface of complex
topology.

The density of states N(E)dE is defined such that Ns ¼
R
N(E)dE gives the total

number of states per unit crystal volume in an energy band. Now, from the above
argument, the number of wavevector states per unit volume of k space is V/8�3. Thus,
the total number of states per band may be calculated from

Ns ¼ 2� V=8�3
Z

dk ð1:15Þ

where the factor of 2 accounts for the 2 spin states per k value. In three dimensions,
dk ¼ 4�k2dk and thus we may write

Ns ¼ V

4�3

Z
4�k2

dk

dE
dE: ð1:16Þ

For parabolic bands, E ¼ �h2k2/(2me) and hence dk/dE ¼ me/(�h
2k), from which

NðEÞ ¼ 4�ð2meÞ3=2E1=2

h3
: ð1:17Þ

The dependence of the density of states on E1/2(/ k) is simply a consequence of the
increased volume of phase space available at larger values of energy. The actual
population of electrons as a function of energy is given by the product of the density
of states and the occupation probability f(E) which, for electrons or holes, is given by
the Fermi Dirac function

fðEÞ ¼ 1

expððE� EFÞ=kBTÞ þ 1
; ð1:18Þ
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from which we may observe that the Fermi energy corresponds to the energy at which
the occupation probability is exactly one half.

In the zero temperature limit, f(E)¼ 1 for all E<EF, and f(E)¼ 0 for all E>EF:
in otherwords, all electron states below the Fermi energy are filled, and all those
above EF are empty, as previously described; the electron population at any energy
E<EF is then given just by N(E). At non-zero temperatures f(E) describes the fact
that some electrons are thermally excited from states just below EF to states just
above EF, and the sharpness of the cut-off of N(E) at EF decreases with increasing
temperature. Both zero temperature and non-zero temperature cases are shown in
Figure 1.11.

In addition to the total DOS, which has already been mentioned, it is possible to
project the DOS onto a particular atomic site in the unit cell and determine the so-called
local DOS; this is the contribution of that particular atomic site to the overall electronic
structure. If a unit cell contains a particular type of atom in two distinct crystallographic
environments, then the local DOS will be correspondingly different. Similar projections
may be performed in terms of the angular momentum symmetry (i.e., the s, p, d or f
atomic character of the DOS).

Until now we have been concerned with crystalline systems. However, it is also
possible to consider the DOS of an amorphous material; here the DOS is primarily
determined by the short-range order in the material; i.e., the nearest neighbours. An
alternative approach is to represent the amorphous solid by a very large unit cell with
a large number of slightly different atomic environments.

1.3 EFFECTS OF THE NANOMETRE LENGTH SCALE

The small length scales present in nanoscale systems directly influence the energy band
structure and can lead indirectly to changes in the associated atomic structure. Such
effects are generally termed quantum confinement. The specific effects of quantum
confinement in one, two and three dimensions on the density of states are discussed in
detail in the Chapter 3 for the case of semiconductor nanostructures; however, initially
we outline two general descriptions that can account for such size-dependent effects in
nanoscale systems.

N(E )

N(E )∝E 1/2

N(E )

T = 0 T = 273 K
EF EF

Figure 1.11 The density of electron states for free electrons and the occupation of electron energy

levels (shaded region) at zero and room temperature
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1.3.1 Changes to the system total energy

In the free electron model, it is clear that the energies of the electronic states depend on
1/L2 where L is the dimension of the system in that particular direction; the spacing
between successive energy levels also varies as 1/L2. This behaviour is also clear from the
description of a solid as a giant molecule: as the number of atoms in the molecule
increases, the MOs gradually move closer together. Thus if the number of atoms in a
system, hence the length scale, is substantially different to that in a normal bulk material,
the energies and energy separations of the individual electronic states will be very
different. Although in principle the Fermi level (Section 1.2.5) would not be expected to
change since the free electron density N/V should remain constant, there may be asso-
ciated modifications in structure (see below) which will change this quantity. Further-
more, as the system size decreases, the allowed energy bands become substantially
narrower than in an infinite solid. The normal collective (i.e., delocalized) electronic
properties of a solid become severely distorted and the electrons in a reduced-dimensional
system tend to behave more like the ‘particle in a box’ description (Section 1.2.5); this is
the phenomenon of quantum confinement. In otherwords, the electronic states are more
like those found in localized molecular bonds rather than those in a macroscopic solid.

The main effect of these alterations to the bulk electronic structure is to change the
total energy and hence, ignoring entropy considerations, the thermodynamic stability of
the reduced length scale system relative to that of a normal bulk crystal. This can have a
number of important implications. It may change the most energetically stable form of a
particular material; for example, small nanoparticles or nanodimensional layers may
adopt a different crystal structure from that of the normal bulk material. For example,
some metals which normally adopt a hexagonal close-packed atomic arrangement have
been reported to adopt a face-centred cubic structure in confined systems such as
metallic multilayers. If a different crystallographic structure is adopted below some
particular critical length scale, then this arises from the corresponding change in the
electronic density of states which often results in a reduced total energy for the system.

Reduction of system size may change the chemical reactivity, which will be a
function of the structure and occupation of the outermost electronic energy levels.
Correspondingly, physical properties such as electrical, thermal, optical and magnetic
characteristics, which also depend on the arrangement of the outermost electronic
energy levels, may be changed. For example, metallic systems can undergo metal–
insulator transitions as the system size decreases, resulting from the formation of a
forbidden energy band gap. Other properties such as mechanical strength which, to a
first approximation, depends on the change in electronic structure as a function of
applied stress and hence interatomic spacing, may also be affected. Transport properties
may also change in that they may now exhibit a quantized rather than continuous
behaviour, owing to the changing nature and separation of the electron energy levels.

1.3.2 Changes to the system structure

A related viewpoint for understanding the changes observed in systems of reduced
dimension is to consider the proportion of atoms which are in contact with either a
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free surface, as in the case of an isolated nanoparticle, or an internal interface, such as a
grain boundary in a nanocrystalline solid. Both the surface area to volume ratio (S/V)
and the specific surface area (m2g�1) of a system are inversely proportional to particle
size and both increase drastically for particles less than 100 nm in diameter. For isolated
spherical particles of radius r and density �, the surface area per unit mass of material is
equal to 4�r2/(4/3�r3�) ¼ 3/r�. For 2 nm diameter spherical particles of typical dens-
ities, the specific surface area (SSA) can approach 500m2 g�1. However, for particles in
contact this value will be reduced by up to approximately half. This large surface area
term will have important implications for the total energy of the system. As discussed
above this may lead to the stabilization of metastable structures in nanometre-sized
systems, which are different from the normal bulk structure or, alternatively, may
induce a simple relaxation (expansion or contraction) of the normal crystalline lattice
which could in turn alter other material properties.

If an atom is located at a surface then it is clear that the number of nearest-neighbour
atoms are reduced, giving rise to differences in bonding (leading to the well-known
phenomenon of surface tension or surface energy) and electronic structure. In a small
isolated nanoparticle, a large proportion of the total number of atoms will be present
either at or near the free surface. For instance, in a 5 nm particle approximately 30–50%
of the atoms are influenced by the surface, compared with approximately a few percent
for a 100 nm particle. Similar arguments apply to nanocrystalline materials, where a
large proportion of atoms will be either at or near grain boundaries. Such structural
differences in reduced-dimensional systems would be expected to lead to very different
properties from the bulk.

1.3.2.1 Vacancies in nanocrystals

Another important consideration for nanostructures concerns the number of atomic
vacancies nv which exist in thermal equilibrium in a nanostructure. Vacancies are point
defects in the crystalline structure of a solid and may control many physical properties
in materials such as conductivity and reactivity. In microcrystalline solids at tempera-
tures above 0K, vacancies invariably exist in thermal equilibrium. In the simple case of
metals with one type of vacancy, the number of vacancies in a crystal consisting of
N atom sites is approximated by an Arrhenius-type expression

nv ¼ N expð�Qf=RTÞ; ð1:19Þ

where T is the absolute temperature, R is the gas constant and Qf is the energy required
to form one mole of vacancies. Qf is given by the relationship Qf ¼ NAqf, where NA is
the Avogadro number and qf is the activation energy for the formation of one vacancy.
However, the value of qf is not well defined but is generally estimated to be the energy
required to remove an atom from the bulk interior of a crystal to its surface. As a rough
approximation, a surface atom is bonded to half the number of atoms compared with an
interior atom, so qf represents half the bonding energy per atom. Since the melting
temperature Tm of a metal is also a measure of the bond energy, then qf is expected to be
a near linear function of Tm.
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From a continuum model, Qf may be estimated from the latent heat of vaporisation,
since on leaving the surface an atom breaks the remaining (half) bonds. In practice it is
found that the latent heat of vaporisation is considerably higher than Qf. Alternatively,
Qf may be estimated from the surface energy per unit area. Given that one atom occupies
an area b2, the number of atoms per unit area is equal to 1/b2 and the surface energy � is
therefore qf/b

2. Surface energies depend on melting temperature and vary within the
range 1:1 Jm�2 (for aluminium) to 2:8 Jm�2 (for tungsten). Taking an average value of
� as 2:2 Jm�2 and b ¼ 2:5� 10�10 m, we may calculate Qf ¼ NA�b

2 as 83� 103 Jmol�1,
which is close to the accepted value of 90 kJmol�1.

Furthermore, the value of Qf may be modified for nanoparticles through the influ-
ence of the surface energy term, �, which is related to the internal pressure, P, by the
simple relationship P ¼ 4�/d, where d is the diameter of the nanoparticle. The effect of
P is to require an additional energy term, qn, for the formation of a vacancy, which is
approximately given by Pb3. Again taking � as 2:2 Jm�2, we may calculate this add-
itional energy per mole Qn ¼ NAqn as 8:3� 103 Jmol�1 for a 10 nm diameter nanopar-
ticle. This term is only approximately 10% ofQf and rapidly decreases for larger particle
sizes. Thus we may conclude that the effect of the surface energy (internal pressure)
factor on the vacancy concentration will be small. Additionally, the internal pressure P
results in an elastic, compressive volume strain, and hence linear strain, ", given
approximately as

" ¼ P=3E ¼ 4�=3dE ð1:20Þ

where E is the Young’s modulus. This expression suggests that the linear strain will be
inversely proportional to particle size and that there will be a decrease in lattice
parameter or interatomic spacing for small nanoparticles. This prediction correlates
reasonably well with the data in Figure 1.12.

Finally, substituting a value of Qf ¼ 90� 103 Jmol�1 into the Arrhenius expression
(1.19) for the vacancy concentration, we obtain values for the ratio nv/N of 2:4� 10�16

(at 300K), 6:5� 10�7 (at 600K) and 4:8� 10�4 (at 1000K), illustrating the exponential
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Figure 1.12 Schematic diagram of the change in nearest-neighbour (nn) distance as a function of

cluster size or particle size for copper
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increase in vacancy concentration with temperature. Now consider a spherical nanopar-
ticle, say 50nm in diameter, and in which each atom occupies a volume b3. Again taking
b ¼ 0:25 nm, there are a total of 4:2� 106 atoms in the particle, which implies that
nv << 1, except at very high temperatures. Therefore nanocrystals are predicted to be
essentially vacancy-free; their small size precludes any significant vacancy concentra-
tion. This simple result also has important consequences for all thermomechanical
properties and processes (such as creep and precipitation) which are based on the
presence and migration of vacancies in the lattice.

1.3.2.2 Dislocations in nanocrystals

Planar defects, such as dislocations, in the crystalline structure of a solid are extremely
important in determining the mechanical properties of a material. It is expected that
dislocations would have a less dominant role to play in the description of the properties
of nanocrystals than in the description of the properties of microcrystals, owing to the
dominance of crystal surfaces and interfaces. The free energy of a dislocation is made up
of a number of terms: (i) the core energy (within a radius of about three lattice planes
from the dislocation core); (ii) the elastic strain energy outside the core and extending to
the boundaries of the crystal, and (iii) the free energy arising from the entropy con-
tributions. In microcrystals the first and second terms increase the free energy and are
by far the most dominant terms. Hence dislocations, unlike vacancies, do not exist in
thermal equilibrium.

The core energy is expected to be independent of grain size. Estimates are close to
1 eV per lattice plane which, for an interplanar spacing b of 0.25 nm, translates to a
value of about 6:5� 10�10 Jm�1. The elastic strain energy per unit length for an edge
dislocation is given by

E ¼ Gb2

4�ð1� �Þ � ln
r1

r0

� �
ð1:21Þ

whereG is the bulk modulus, r0 is the core radius, r1 is the crystal radius and � is Poisson’s
ratio. � is typically around 1/3 for a crystalline sample. The expression for a screw
dislocation omits the (1� �) term, giving an energy about 2/3 that of an edge dislocation.
For G ¼ 40� 109 Pa, the constant term Gb2/4�(1� �) has a value of 3� 10�10 Jm�1.
The grain size dependence is given in the ln (r1/r0) term, which for grain size (2r1) values of
10, 50, 1000 and 10000 nm increases as 3, 4.6, 7.6 and 9.9 respectively. Hence it can be
seen that the elastic strain energy of dislocations in nanoparticles and nanograined
materials is about one-third of that in microcrystals and that, for a 10nm grain size the
core energy is comparable with the elastic strain energy. In comparison, the core energy is
about one-tenth of the elastic strain energy for a microcrystal.

This reduction in the elastic strain energy of dislocations in nanocrystals has import-
ant consequences. The forces on dislocations due to externally applied stresses are
reduced by a factor of about three and the interactive forces between dislocations are
reduced by a factor of about 10. Hence recovery rates and the annealing out of
dislocations to free surfaces are expected to be reduced. For a dislocation near the
surface of a semi-infinite solid, the stress towards the surface is given by the interaction
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of the stress field of an image dislocation at an equal distance on the opposite side. Since
nanocrystals do not approximate to semi-infinite solids, such image stresses will operate
across all surfaces and the net effect, together with the reduced elastic strain energy,
results in dislocations that are relatively immobile.

Finally, we estimate the entropy contributions to the free energy. These arise as a
result of (i) configurational entropy (i.e., the dislocation can be arranged in a variety of
ways), (ii) a further contribution if the dislocation is assumed to be perfectly flexible,
and (iii) the effect of the dislocation on the thermal vibrations of the crystal. Factors
(ii) and (iii) are independent of crystal size and their values can be estimated to be 2kBT
and 3kBT, respectively, per atomic plane. Assuming a temperature of 300K, these values
correspond to about 3� 10�11 Jm�1, considerably less than the core and elastic strain
energy terms. The configurational entropy contribution to the free energy is given by

E ¼ bkBT

L
ln

L2

b2

� �
ð1:22Þ

per atom plane, where L is the length of the dislocation. At 300K this gives values of
3:0� 10�12, 5:7� 10�14 and 7:6� 10�15 Jm�1 for L ¼ 10, 1000 and 10 000 nm, respect-
ively. These values are again much smaller than the core and elastic strain energy terms
and hence it may be concluded that dislocations in nanocrystals, as with microcrystals,
do not exist as thermodynamically stable lattice defects.

1.3.3 How nanoscale dimensions affect properties

Many properties are continuously modified as a function of system size. Often these are
extrinsic properties, such as resistance, which depend on the exact size and shape of the
specimen. Other properties depend critically on the microstructure of the material; for
example, the Hall–Petch equation for yield strength, �, of a material as a function of
average grain size hd i is given by

� ¼ khd i�1=2þ �0 ð1:23Þ

where k and �0 are constants. Intrinsic materials properties, such as resistivity, should
be independent of specimen size, however, even many of the intrinsic properties of
matter at the nanoscale are not necessarily predictable from those observed at larger
scales. As discussed above this is because totally new phenomena can emerge, such as:
quantum size confinement leading to changes in electronic structure; the presence of
wave-like transport processes, and the predominance of interfacial effects.

1.3.3.1 Structural properties

The increase in surface area and surface free energy with decreasing particle size leads to
changes in interatomic spacings. For Cu metallic clusters the interatomic spacing is
observed to decrease with decreasing cluster size, as shown in Figure 1.12. This effect
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can be explained by the compressive strain induced by the internal pressure arising from
the small radius of curvature in the nanoparticle (Section 1.3.2.2). Conversely, for
semiconductors and metal oxides there is evidence that interatomic spacings increase
with decreasing particle size.

A further effect, previously mentioned, is the apparent stability of metastable struc-
tures in small nanoparticles and clusters, such that all traces of the usual bulk atomic
arrangement become lost. Metallic nanoparticles, such as gold, are known to adopt
polyhedral shapes such as cube–octahedra, multiply twinned icosahedra and multiply
twinned decahedra (Figure 1.13). These nanoparticles may be regarded as multiply
twinned crystalline particles (MTPs) in which the shapes can be understood in terms of
the surface energies of various crystallographic planes, the growth rates along various
crystallographic directions and the energy required for the formation of defects such as
twin boundaries. However, there is compelling evidence that such particles are not
crystals but are quasiperiodic crystals or crystalloids. These icosahedral and decahedral
quasicrystals form the basis for further growth of the nanocluster, up until a size where
they will switch into more regular crystalline packing arrangements.

Crystalline solids are distinct from amorphous solids in that they possess long-range
periodic order and the patterns and symmetries which occur correspond to those of the
230 space groups. Quasiperiodic crystals do not possess such long-range periodic order
and are distinct in that they exhibit fivefold symmetry, which is forbidden in the 230 space
groups. In the cubic close-packed and hexagonal close-packed structures, exhibited by
many metals, each atom is coordinated by 12 neighbouring atoms. All of the coordinating
atoms are in contact, although not evenly distributed around the central atom. However,
there is an alternative arrangement in which each coordinating atom is situated at the
apex of an icosahedron and in contact only with the central atom. If however we relax this
‘rigid atomic sphere’ model and allow the central atom to reduce in diameter by 10%, the
coordinating atoms come into contact and the body now has the shape and symmetry of a
regular icosahedron with point group symmetry 235, indicating the presence of 30 two-
fold, 20 threefold and 12 fivefold axes of symmetry. This geometry represents the nucleus
of a quasiperiodic crystal which may grow in the forms of icosahedra or pentagonal
dodecahedra. These are dual solids with identical symmetry, the apices of one being
replaced by the faces of the other. Such quasiperiodic crystals are known to exist in an
increasing number of aluminium-based alloys and may be stable up to microcrystalline
sizes. It should be noted that their symmetry is precisely the same as that of the fullerenes
C20 (dodecahedrene with 12 pentagonal faces of a pentagonal dodecahedron, but
unstable) and C60 (the well-known buckyball with 12 pentagonal faces and 20 hexagonal
faces of a truncated icosahedron). Hence, like the fullerenes, quasiperiodic crystals are
expected to have an important role to play in nanostructures.

Cubo-octahedron Decahedron Icosahedron

Figure 1.13 Geometrical shapes of cubo-octahedral particles and multiply twinned decahedral

and icosahedral particles
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The size-related instability characteristics of quasiperiodic crystals are not well
understood. A frequently observed process appears to be that of multiple twinning,
such crystals being distinguished from quasiperiodic crystals by their electron diffrac-
tion patterns. Here the five triangular faces of the fivefold symmetric icosahedron can be
mimicked by five twin-related tetrahedra (with a close-packed crystalline structure)
through relatively small atomic movements.

1.3.3.2 Thermal properties

The large increase in surface energy and the change in interatomic spacing as a function of
nanoparticle size mentioned above have a marked effect on material properties. For
instance, the melting point of gold particles, which is really a bulk thermodynamic char-
acteristic, has been observed to decrease rapidly2 for particle sizes less than 10nm, as shown
in Figure 1.14. There is evidence that for metallic nanocrystals embedded in a continuous
matrix the opposite behaviour is true; i.e., smaller particles have higher melting points.3

1.3.3.3 Chemical properties

The change in structure as a function of particle size is intrinsically linked to the changes
in electronic properties. The ionization potential (the energy required to remove an
electron) is generally higher for small atomic clusters than for the corresponding bulk
material. Furthermore, the ionization potential exhibits marked fluctuations as a func-
tion of cluster size. Such effects appear to be linked to chemical reactivity, such as the
reaction of Fen clusters with hydrogen gas (Figure 1.15).

Nanoscale structures such as nanoparticles and nanolayers have very high
surface area to volume ratios and potentially different crystallographic structures which
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Figure 1.14 Schematic diagram of the variation in melting point of gold nanoparticles as a

function of particle size

2 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata (Institute of
Physics 1996) and references therein.

3 U. Dahmen et al., Inst.Phys. Conf. Ser. 168, 1 (IOP Publishing 2001).
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may lead to a radical alteration in chemical reactivity. Catalysis using finely divided
nanoscale systems can increase the rate, selectivity and efficiency of chemical reactions
such as combustion or synthesis whilst simultaneously significantly reducing waste and
pollution. Gold nanoparticles smaller than about 5 nm in diameter are known to adopt
icosahedral structures rather than the normal face centred cubic arrangement. This
structural change is accompanied by an extraordinary increase in catalytic activity.
Furthermore, nanoscale catalytic supports with controlled pore sizes can select the
products and reactants of chemical reactions based on their physical size and thus ease
of transport to and from internal reaction sites within the nanoporous structure. Add-
itionally, nanoparticles often exhibit new chemistries as distinct from their larger particu-
late counterparts; for example, many new medicines are insoluble in water when in the
form of micron-sized particles but will dissolve easily when in a nanostructured form.

1.3.3.4 Mechanical properties

Many mechanical properties, such as toughness, are highly dependent on the ease of
formation or the presence of defects within a material. As the system size decreases, the
ability to support such defects becomes increasingly more difficult and mechanical
properties will be altered accordingly. Novel nanostructures, which are very different
from bulk structures in terms of the atomic structural arrangement, will obviously show
very different mechanical properties. For example, single- and multi-walled carbon
nanotubes show high mechanical strengths and high elastic limits that lead to consider-
able mechanical flexibility and reversible deformation.

As the structural scale reduces to the nanometre range, for example, in nano-
ayered composites, a different scale dependence from the usual Hall–Petch relationship

R
el

at
iv

e 
re

ac
tiv

ity

Cluster size (no. of atoms)

5 10 15 20 25

10–1

100

101

102

103

104

–6.5

–6.0

–5.5

–5.0

E
le

ct
ro

n 
bi

nd
in

g 
en

er
gy

 (
eV

)

Figure 1.15 Schematic diagram of the dependence of the electron binding energy and relative

chemical reactivity of iron clusters to hydrogen gas as a function of cluster size
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(Equation 1.23) for yield strength often becomes apparent with large increases in
strength reported. In addition, the high interface to volume ratio of consolidated
nanostructured materials appears to enhance interface-driven processes such as plasticity,
ductility and strain to failure. Many nanostructured metals and ceramics are observed
to be superplastic, in that they are able to undergo extensive deformation without
necking or fracture. This is presumed to arise from grain boundary diffusion and
sliding, which becomes increasingly significant in a fine-grained material. Overall these
effects extend the current strength–ductility limit of conventional materials, where
usually a gain in strength is offset by a corresponding loss in ductility.

1.3.3.5 Magnetic properties

Magnetic nanoparticles are used in a range of applications, including ferrofluids, colour
imaging, bioprocessing, refrigeration as well as high storage density magnetic memory
media. The large surface area to volume ratio results in a substantial proportion of atoms
(those at the surface which have a different local environment) having a different magnetic
coupling with neighbouring atoms, leading to differing magnetic properties. Figure 1.16
shows the magnetic moments of nickel nanoparticles as a function of cluster size.

Whilst bulk ferromagnetic materials usually form multiple magnetic domains, small
magnetic nanoparticles often consist of only one domain and exhibit a phenomenon
known as superparamagnetism. In this case the overall magnetic coercivity (Section 4.1)
is then lowered: the magnetizations of the various particles are randomly distributed
due to thermal fluctuations and only become aligned in the presence of an applied
magnetic field.

Giant magnetoresistance (GMR) is a phenomenon observed in nanoscale multi-
layers consisting of a strong ferromagnet (e.g., Fe, Co) and a weaker magnetic or
non-magnetic buffer (e.g., Cr, Cu); it is usually employed in data storage and sensing.
In the absence of a magnetic field the spins in alternating layers are oppositely
aligned through antiferromagnetic coupling, which gives maximum scattering from
the interlayer interface and hence a high resistance parallel to the layers. In an
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Figure 1.16 Schematic diagram of the variation in magnetic moments of clusters as a function of

cluster size. The Bohr magneton is the classical magnetic moment associated with an electron

orbiting a nucleus which has a single positive charge
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oriented external magnetic field the spins align with each other and this decreases
scattering at the interface and hence resistance of the device. Further details are given
in Chapter 4.

1.3.3.6 Optical properties

In small nanoclusters the effect of reduced dimensionality on electronic structure has
the most profound effect on the energies of the highest occupied molecular orbital
(HOMO), essentially the valence band, and the lowest unoccupied molecular orbital
(LUMO), essentially the conduction band. Optical emission and absorption depend on
transitions between these states; semiconductors and metals, in particular, show large
changes in optical properties, such as colour, as a function of particle size. Colloidal
solutions of gold nanoparticles have a deep red colour which becomes progressively
more yellow as the particle size increases; indeed gold colloids have been used as a
pigment for stained glass since the seventeenth century. Figure 1.17 shows optical
absorption spectra for colloidal gold nanoparticles of varying sizes. Semiconductor
nanocrystals in the form of quantum dots show similar size-dependent behaviour in
the frequency and intensity of light emission as well as modified non-linear optical
properties and enhanced gain for certain emission energies or wavelengths. Other
properties which may be affected by reduced dimensionality include photocatalysis,
photoconductivity, photoemission and electroluminescence.

1.3.3.7 Electronic properties

The changes which occur in electronic properties as the system length scale is reduced
are related mainly to the increasing influence of the wave-like property of the electrons
(quantum mechanical effects) and the scarcity of scattering centres. As the size of the
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Figure 1.17 Size dependence of the optical absorption wavelength for gold nanoparticles and

(inset) the corresponding value of the full width at half maximum (FWHM) of the absorption peak
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