Multi-antenna Transceiver Techniques for 3G and Beyond

Ari Hottinen Nokia Research Center, Finland

Olav Tirkkonen Nokia Research Center, Finland

Risto Wichman Helsinki University of Technology, Finland

This page intentionally left blank

Multi-antenna Transceiver Techniques for 3G and Beyond

This page intentionally left blank

Multi-antenna Transceiver Techniques for 3G and Beyond

Ari Hottinen Nokia Research Center, Finland

Olav Tirkkonen Nokia Research Center, Finland

Risto Wichman Helsinki University of Technology, Finland

Copyright © 2003 John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, W1T 4LP, UK, without the permission in writing of the Publisher.

Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England, or emailed to: permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Fransisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W1L1 British Library Cataloguing in Publication Data

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0470 84542 2

Produced from files supplied by the author.

Printed and bound in Great Britain by Antony Rowe Limited, Chippenham, Wiltshire.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface	xi
Acronyms	xiii

Part I Introduction

1	Background			3
	1.1 Modular System Design			5
	1.2	Diver	sity Techniques in 3G Systems	9
		1.2.1	WCDMA Rel99 and Rel4	9
		1.2.2	WCDMA: Recent Releases	13
		1.2.3	cdma2000	15
	1.3	GSM/	EDGE	15
	1.4 Multi-antenna Modems for 3G and Beyond		antenna Modems for 3G and Beyond	16
		1.4.1	Motivation	16
		1.4.2	Examples of Recent Multi-antenna Transmission Methods	17
	1.5	Summ	pary	18
2	Dive	ersity Ga	ain, SNR Gain and Rate Increase	21
	2.1	Chan	nel Models	21
		2.1.1	Multipath Channels	25
		2.1.2	Spatial Channels	25

	2.1.3	MIMO Channel Models	26
	2.1.4	Polarization Diversity	29
2.2	Perfor	mance Limits of Transmit Diversity	29
2.3	Theor	etical MIMO Channel Capacity	31
	2.3.1	No Channel State Information at Transmitter	34
	2.3.2	Channel State Information at Transmitter	36
2.4	MIMO	O Capacity in Correlated Channels	38
2.5	Perfor	mance Measures for Closed-loop Transmit Diversity	44
2.6	Summ	ary	45

Part II Open-loop Methods

3	Ope	n-loop (Concepts: Background	49	
	3.1	Delay	Diversity	49	
	3.2	Implicit Diversity via Phase Modulation			
	3.3	Code	and Time Division Transmit Diversity	53	
	3.4	3.4 Diversity Transform			
	3.5	Space	-Time Coding	57	
		3.5.1	Space–Time Trellis Codes	58	
		3.5.2	Space–Time Code Design Criteria	59	
		3.5.3	Space-Time Trellis Versus Space-Time Block Coding	61	
	3.6	Space	-Time Block Codes	62	
		3.6.1	Two Tx Antennas: STTD	63	
		3.6.2	More Than Two Tx Antennas	63	
		3.6.3	Space–Time Block Coding Terminology	66	
	3.7	3.7 Non-linear Matrix Modulation			
	3.8	Summ	pary	68	
4	Mat	rix Mod	ulation: Low SNR Aspects	69	
	4.1	Linea	r Matrix Modulation	70	
		4.1.1	Basis Matrices	71	
		4.1.2	Diversity and Self-interference	71	
	4.2	Exam	ples	74	
	4.3	Heuri	stic Design Rules at Low SNR	78	
		4.3.1	Frobenius Orthogonality	79	
		4.3.2	Minimal Self-interference	80	
		4.3.3	Symbol Homogeneity	81	
		4.3.4	Maximal Symbolwise Diversity	81	
		4.3.5	Maximizing Mutual Information	82	
	4.4	Match	ned Filtering and Maximum Likelihood Metric	82	

		4.4.1	Equivalent Channel Matrix	82
		4.4.2	Maximum Likelihood Detection Metric	84
		4.4.3	Design Criteria and ML Metric	85
	4.5	Mutua	al Information	86
		4.5.1	Information and Interference	86
		4.5.2	Expanding Information	87
	4.6	Expar	ision around Diagonal Dominance	92
		4.6.1	Diagonal Dominance in Information Measures	93
		4.6.2	Diagonal Dominance in Performance Measures	94
	4.7	Perfor	rmance of Examples	95
	4.8	Summ	hary	97
5	Incr	easing S	Symbol Rate: Quasi-orthogonal Layers	<i>9</i> 9
	5.1	Ortho	ogonal Designs	99
		5.1.1	Performance Optimum for Linear Space-Time Codes	100
		5.1.2	Consequences of Unitarity and Linearity	100
		5.1.3	Construction of Orthogonal Designs	101
		5.1.4	Orthogonal Designs and Information	103
	5.2	Comp	lexity Issues: Choosing Symbol Rate and Target Tx	
		Diver	sity	104
		5.2.1	Reaching Capacity	104
		5.2.2	Linear Detection	105
		5.2.3	Choosing the Symbol Rate	107
		5.2.4	Choosing Target Tx Diversity Degree	107
	5.3	Multir	modulation Schemes	108
	5.4	Matri.	x Modulation with Quasi-orthogonal Layers	110
		5.4.1	Clifford Basis for Matrix Modulation	110
		5.4.2	Idle Directions of a Modulation Matrix	111
		5.4.3	Layered Schemes for $N_{\rm t}$ = 2, $N_{\rm r}$ = 2	112
		5.4.4	Minimal Self-interference 3+1 Layered 4×4 Schemes	114
		5.4.5	Minimal Self-interference 2+2 Layered 4×4 Schemes	118
		5.4.6	Quasi-orthogonal Schemes for $N_{\rm t} > 4$, $N_{\rm r} = 1$	119
	5.5	Summ	pary	121
6	Rece	eiver Alg	gorithms	123
	6.1	Chani	nel Estimation Issues	123
	6.2	Maxin	num Likelihood Detection	124
	6.3	Quasi	orthogonality Assisted Maximum Likelihood	.
	<i>.</i> .	Detec	tion	127
	6.4	Linea	r Receivers	128
	6.5	Iterati	ive Receivers	129

	6.6	Joint 1	Decoding and Detection	131
	6.7	Exam	ple: Linear Detection for ABBA	132
	6.8	Perfor	rmance	133
	6.9	Summ	nary	135
7	Mati	rix Mod	ulation: High SNR Aspects	137
	7.1	Symm	etries of Information and Performance	140
		7.1.1	Orthogonal Real Symbol Symmetry	140
		7.1.2	Unitary Left and Right Symmetries	141
		7.1.3	Examples	142
	7.2	Optim	izing Performance with Orthogonal Symbol Rotations	143
		7.2.1	Symbol Rotations that Preserve Performance	144
		7.2.2	Symbol Rotations that Change Diversity Degree	146
		7.2.3	Performance-changing, Diversity-preserving Symbol Rotations	147
	7.3	Explic	cit Performance Optima for ABBA	148
		7.3.1	Scalar Constellation Rotations	149
		7.3.2	Matrix Rotations	154
		7.3.3	Performance	157
	7.4	Impro	wed Performance by Extending Block	159
		7.4.1	Extending ABBA	159
		7.4.2	Extending 3+1 Layered	160
	7.5	Comp	arison of Layered Schemes for Four Tx Antennas	162
		7.5.1	Design Metrics	163
		7.5.2	Performance	164
		7.5.3	Detection Complexity	166
	7.6	Weigh Modu	nted and Multimodulation Non-orthogonal Matrix	167
		7.6.1	Weighted ABBA	167
		7.6.2	Multimodulation ABBA	169
	7.7	Summ	ary	170
8	Robi	ust and l	Practical Open-loop Designs	171
	8.1	Rando	omized Matrix Modulations	172
		8.1.1	Randomization for Non-orthogonal Schemes	173
		8.1.2	Randomization for Orthogonal Space-Time Block	176
	87	Space	Units Time Block Code with Rotated Constellations	178
	0.2	821	Transformed STBC-OTD Construction	181
		822	Fifect on Faujualent Channel Correlation Matrix	187
		823	Improved Performance in Correlated Channels	182
		0.4.0	improved i erjormanee in Correlated Chamtels	100

		8.2.4	Combined Diversity Transform and STBC	185
	8. <i>3</i>	Perfor	mance Evaluation	186
		8. <i>3.1</i>	Performance without Channel Coding	186
		8.3.2	Performance with an Outer Code	187
	8.4	Summ	ary	189
9	High	n-rate D	esigns for MIMO Systems	191
	9.Ĭ	Sets o	f Frobenius Orthogonal Unitary Matrices	192
		9.1.1	Clifford Basis	192
		9.1.2	Weyl Basis	193
		9.1.3	Hadamard Basis	194
	9.2	Optimizing Rate 2 MIMO-Modulation for $N_t = T = 2$		
	9.3	9.3 Four Transmit Antennas, Rate 2		197
		9.3.1	Double STTD	198
		9.3.2	Double ABBA	199
		9.3.3	Rate 2 Scheme with Three-symbol Quasi-	
			orthogonality	202
	9.4	Four T	Fransmit Antennas, Rate 3	202
	9.5	Four T	Fransmit Antennas, Rate 4	203
	9.6	The In	formation Provided by the Schemes	204
	9.7	Summ	ary	205

Part III Closed-loop Methods

10	Close	ed-loop M	Iethods: Selected Multi-antenna Extensions	209
	10.1	Closed-	loop Transmit Diversity in WCDMA	209
		10.1.1	Calculating the Feedback Weight	210
		10.1.2 g	Quantization and Feedback Signalling	211
		10.1.3	Enhancements	216
	10.2	More th	an Two Transmit Antennas	219
		10.2.1	Extensions Using Fast Feedback Signalling	220
		10.2.2	Linear Preprocessing Using Long-term (Structured) Feedback	223
		10.2.3	Feedback Signalling and Array Parameterization	225
	10.3	Perform	ance	227
	10.4	Summar	ТУ У	228
11	Anal	ysis of Cl	osed-loop Concepts	233
	11.1	General	ized Feedback Signalling Design	233
	11.2	Analysis	s of SNR Gain of the Co-phase Algorithm	236

11.3	Analysis of SNR Gain of the Order and Co-phase Algorithm	239
	11.3.1 Reducing the Amount of Feedback Signalling	243
	11.3.2 Analysis of Two Transmit Antennas	247
11.4	SNR Gain in Multipath Rayleigh Fading Channels	249
11.5	Errors in Feedback Signalling	253
11.6	Feedback Latency	257
11.7	Bit-Error Probability	262
11.8	Transmit Weight Generation for the Order and Co-phase	
	Algorithm	264
11.9	SNR Gain in Correlated Rayleigh Fading Channels	266
	11.9.1 Quantization of Long-term Feedback	267
11.10) Summary	271
12 Hybr	rid Closed-loop and Open-loop Methods	273
12.1	A Comparison of Open-loop and Closed-loop Systems	273
12.2	Transceiver Concepts	277
	12.2.1 Correlated Channels, Precoding and Matrix	
	Modulation	277
	12.2.2 Long-term Beam-forming with MISO Transmission	280
	12.2.3 Long-term Beam-forming with Non-orthogonal	202
10.2	Matrix Modulation	202
12.5 12.7	Space Time Patronomission	202
12,4	12 A L Patransmission with Symbol Pata One Schemes	204
	12.4.1 Retransmission with Symbol Rate Two Schemes	205
	12.4.2 Retransmission with Symbol Rate 1wo Schemes	207
12.5	12.4.5 Numerical Example Adaptive Space Time Modulation Arrangements	200
12.5	Summary	207
12.0	Summary	291
Appendi:	x A: Symmetries, Invariants and Inequalities	293
A.1	Symmetries and Transformations	<i>293</i>
A.2	Unitary Invariants and Determinant Inequalities	294
Appendi.	x B: Matrix Representations of Clifford Algebras	297
B.1	Dimensions of Matrix Representations	298
<i>B.2</i>	Clifford Basis of Generic Matrices	301
Referenc	res	305
Index		323

Preface

The target of this book is to present the core ideas behind a very up-to-date research area involving modulation design for multi-input multi-output (MIMO) wireless channels. Our discussion is aimed at presenting the key principles of different mathematical and engineering approaches that have recently emerged in a number of current and upcoming standards. We restrain ourselves from delving into the physical aspects related to the design of practical antenna elements for mobile or fixed wireless communication units. Rather, we choose to explore and develop multi-antenna transceiver techniques from the signal processing perspective. Such an approach is commonly used when proposing and developing new coding or modulation concepts for wireless systems.

Many of the concepts described herein are aimed at improving data rates, signal quality, capacity or system flexibility. To reach this goal, we adopt matrix-valued modulation alphabets, defined over two orthogonal dimensions, usually referred to as *space* and *time*. The space-dimension is realized by using multiple transmit and receive antennas, and involve multi-antenna transceiver structures. Such multi-antenna techniques are generally considered as the most promising avenue for significantly increasing the bandwidth efficiency of wireless data transmission systems. In MIMO systems, multiple antennas are deployed both at the transmitter and the receiver. In ideal situations, this allows signalling over several parallel channels between the transmitter and receiver. These channels can be separated using signal processing means, provided that the channels are sufficiently different. In MISO (multiple-input single-output) systems, the receiver has only one antenna, and the multiple transmit antennas are used for transmit diversity.

This book presents the key aspects of multiple antenna transceiver techniques for evolving 3G systems and beyond. MIMO and MISO (transmit diversity) techniques are explained in a common setting. A special emphasis is put on combining theoretical understanding with engineering applicability.

In particular, the book covers linear processing transmit diversity methods with and without side information at the transmitter, including a description of the current transmit diversity concepts in the WCDMA and cdma2000 standards, as well as promising MIMO concepts, crucial for future high data-rate systems. Furthermore, examples of high throughput, low complexity matrix modulation schemes will be provided, when signalling without side information (open loop concepts). The theory of linear matrix modulations will be developed, and optimal non-orthogonal high throughput schemes will be constructed, both for MIMO and MISO systems.

Performance may be further improved by feedback from receiver to transmitter. The corresponding closed-loop modes in the current 3GPP specifications will be discussed, along with their extensions for more than two transmit antennas. In addition, feedback signalling for MIMO channels will be addressed, as well as optimal quantization methods of the feedback messages. Finally, hybrid schemes are constructed, where the amount of overhead due to feedback is reduced by combining open-loop transmission with closed-loop signalling.

We would like to express our gratitude to a number of colleagues who have helped in preparing this work. We thank Drs Jyri Hämäläinen, Rinat Kashaev and Jussi Vesma and Mr Mikko Kokkonen for fruitful collaboration related to the subject matter of this book. Numerous discussions with colleagues at Nokia Research Center are also acknowledged. Drs Nikolai Nedefov and Kari Kalliojärvi provided a number of constructive comments that enabled us to improve the readability of the text. Financial support from Nokia Foundation is also gratefully acknowledged. A large part of the results documented here have been developed at Nokia Research Center in recent years with support from Dr Jorma Lilleberg at Nokia Mobile Phones. Finally, we appreciate the seemingly unlimited patience of our respective home troops.

Acronyms

Adaptive Modulation and Coding
Angle Of Arrival
Automatic Repeat reQuest
Azimuth Spread
Adaptive Space–Time Modulation Arrangement
Bit-Error Probability
Bit-Error Rate
Bit Interleaved Coded Modulation
Bell Laboratories Layered Space-Time architecture
Binary PSK
Base Station
Code Division Multiple Access
Code Division Transmit Diversity
Closed-Loop
Common PIlot CHannel
Channel Quality Indicator
Channel State Information
Direction Of Transmission
Double STTD
Diagonal BLAST