FUNDAMENTAL
PERCEPTIONS IN CONTEMPORARY
NUMBER

THEORY

J. Kannan
Manju Somanath

Computational Mathematics and Analysis

No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services.

Computational Mathematics and Analysis

Fundamental Perceptions in Contemporary Number Theory
J. Kannan, PhD and Manju Somanath, PhD 2023. ISBN: 979-8-88697-794-3 (Hardcover)
2023. ISBN: 979-8-88697-864-3 (eBook)
Internet of Things and Machine Learning in Agriculture
Jyotir Moy Chatterjee and Vishal Jain, PhD (Editors)
2021. ISBN: 978-1-68507-192-9 (Hardcover)
2021. ISBN: 978-1-68507-216-2 (eBook)

Decision-Making with Neutrosophic Set: Theory and Applications in Knowledge Management
Harish Garg (Editor)
2021. ISBN: 978-1-53619-419-7 (Hardcover)
2021. ISBN: 978-1-53619-522-4 (eBook)

Perturbation Methods in Matrix Analysis and Control
Mihail M. Konstantinov and Petko H. Petkov
2020. ISBN: 978-1-53617-470-0 (Hardcover)
2020. ISBN: 978-1-53617-471-7 (eBook)

Understanding Eigenvalues
Ty L. Henson (Editor)
2020. ISBN: 978-1-53617-357-4 (eBook)

Image Recognition: Progress, Trends and Challenges
Charles Z. Liu and S. Ramakrishnan (Editors)
2020. ISBN: 978-1-53617-258-4 (Hardcover)
2020. ISBN: 978-1-53617-259-1 (eBook)

More information about this series can be found at
https://novapublishers.com/product-category/series/computational-mathematics-and-analysis/

J. Kannan, PhD
and
Manju Somanath, PhD

Fundamental Perceptions in
 Contemporary Number Theory

www.novapublishers.com

Abstract

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher.

We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Please visit copyright.com and search by Title, ISBN, or ISSN.

For further questions about using the service on copyright.com, please contact:

Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: info@copyright.com

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers' use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the Publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication.

This publication is designed to provide accurate and authoritative information with regards to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Library of Congress Cataloging-in-Publication Data

Contents

Preface ix
List of Symbols xiii
1 Divisibility 1
1.1. Preliminaries 1
1.2. Division Algorithm 3
1.3. GCD, LCM and Euclidean Algorithm 12
1.4. The Fundamental Theorem of Arithmetic 24
2 Classical Functions of Number Theory 33
2.1. Arithmetic Functions 33
2.2. Some Classical Arithmetic Functions 38
2.2.1. The Mobius Function 38
2.2.2. The Euler Totient Function 43
2.2.3. The Sum and Number of Divisors 46
2.3. Greatest Integer Function 51
3 Theory of Congruences 59
3.1. Basic Properties of Congruences 59
3.2. Divisibility Tests 63
3.3. Theory of Residues 66
3.4. Linear Congruences 69
3.5. Congruences of Higher Degree 78
3.6. Fermat- Little Theorem and its Applications 84
4 Primitive Roots and Indices 95
4.1. Order of an Integer 95
4.2. Primitive Roots 99
4.3. Primitive Root Theorem 101
4.4. Theory of Indices 110
5 Quadratic Reciprocity 121
5.1. Quadratic Residues and Non Residues 121
5.2. Legendre Symbol and Its Properties 125
5.3. Jacobi Symbol and Its Properties 134
5.4. Quadratic Reciprocity Law 138
6 Special Numbers 149
6.1. Perfect Numbers 149
6.2. Mersenne Numbers 153
6.3. Amicable Numbers 159
6.4. Fermat Numbers 160
6.5. Pell Numbers 162
7 Waring's Problem 167
7.1. Sum of Two Squares 167
7.2. Difference of Two Squares 171
7.3. Sum of Three Squares 171
7.4. Sum of Four Squares 172
7.5. Waring's Problem 176
Bibliography 181
Index 183
About the Authors 187

Dedicated to All My Teachers and Students

Preface

Number theory is indeed an area of mathematics that investigates the attributes of positive integers like $1,2,3 \cdots$ Often alluded to as "higher arithmetic," it is one of the most natural and historical mathematical disciplines. This theory of numbers has long held a special place in the field of mathematics. This is as a result of the theory's undeniable historical importance. Both professional and amateur mathematicians have always been attracted by number theory. Although solutions to the issues and proofs of the theorems frequently need for a sophisticated mathematical background, number theory problems and theorems can often be grasped by laypeople, in contrast to other disciplines of mathematics.

Number theory, which has no direct applications to the actual world, was thought to be the most pure area of mathematics until the middle of the $20^{t h}$ century. The development of digital computers and communications showed that number theory may offer novel solutions to practical issues. At the same time, breakthroughs in computer technology allowed number theorists to make outstanding progress in tackling numerical problems that were previously thought to be insurmountable, including factoring big numbers, figuring out primes, testing hypotheses, and more.

Elementary number theory, algebraic number theory, analytic number theory, geometric number theory, and probabilistic number theory are some of the sub-fields of modern number theory. The approaches taken to solve integerrelated problems are reflected in these categories. Counting has existed since the beginning of time. Archaeological artefacts, such a bone from the Congo region of Africa that is 10,000 years old and has tally marks etched on itsigns of an unidentified ancestor tallying somethingevidence this. People had begun to understand the concept of "multiplicity" very early on in the history of civilization, opening the door to the study of numbers.

Because ancient tablets, papyri, and temple carvings from Mesopotamia, Egypt, China, and India have survived, it is certain that these civilizations had a mathematical understanding at the time. A good example is the Plimpton 322 tablet, which was discovered in Babylonia around 1700 BCE. Pythagoras (c. $580-500 B C E$) supposedly worked in southern Italy among loyal followers. His thought emphasised the importance of number as the overarching idea required to comprehend everything from celestial mechanics to artistic melody.

Euclid, on the other hand, introduced number theory plainly. He described a number as "a plurality constituted of units" at the beginning of Book VII of his Elements. The plural in this instance left out 1; according to Euclid, 2 was the smallest "number." Later, he went on to define a perfect number as one that equals the sum of its proper divisors, a composite as a number that is not prime, and a prime as a number "measured by a unit alone" (i.e., whose only proper divisor is 1). From then, Euclid established a series of theorems that serve as the foundation for number theory as a branch of mathematics.

Number theory got little serious attention as mathematics spread from the Islamic world to Renaissance Europe. Important developments in geometry, algebra, and probability occurred between 1400 and 1650 , as well as the discovery of logarithms and analytic geometry. However, number theory was viewed as just a small discipline with mostly recreational significance.

The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning.

In this book, there are eight chapters. An overview of the initial stages of Divisibility is given in the introduction of Chapter 1 . In-depth discussion is given on the division and the fundamental theorem of arithmetic. The Greatest Integer Function and other Classical Functions of Number Theory are discussed in Chapter 2. Congruence theory, along with some of its fundamental characteristics and theorems, are covered in Chapter 3. Primitive roots and indices are discussed in Chapter 4 with emphasis on the Primitive Root Theorem. Quadratic reciprocity and its features are covered in Chapter 5. Chapter 6 defines and discusses special numbers. Waring's Problem and Sum of Squares are presented in Chapter 7. Also, the questions from CSIR- NET Mathematics examination
(conducted by National Testing Agency, Govt. of India) are included at the end of each chapter.

List of Symbols

\mathbb{N}	Set of all natural numbers
\mathbb{Z}	Set of all integers
\mathbb{R}	Set of all real numbers
$x \in S$	x belongs to the set S
$x \notin S$	x doos not telong to the set S
$\|x\|$	Absolute value of x
$n!$	n Factorial
$\binom{n}{r}$	Binomial coefficient
$a \mid b$	a divides b
$a \nmid b$	a does not divide b
(a, b)	GCD of a and b
$[a, b]$	LCM of a and b
$a \equiv b(\bmod m)$	a is congruent to b modulo m
$a \not \equiv b(m)$	a is not congruent to b modulo m
F_{n}	Fermat Number
M_{n}	Mersenne Number
P_{n}	Pell Number
$\mu(n)$	Mobius Function
$\phi(n)$	Euler Totient Function
$f * g$	Dirichlet Product of f and g
f^{-1}	Dirichlet inverse of f
$\tau(n)$	Number of positive divisors of n
$\sigma_{\alpha}(n)$	Sum of α th power of positive divisors of n
$i n d_{g}(a)$	Index of a to the base g
$\left(\frac{a}{p}\right)$	Legendre Symbol
$(a \mid m)$	Jacobi Symbol
$m R p$	m is a quadratic residue modulo p
$m \bar{R} p$	m is a quadratic non residue modulo p
$o r d_{m}(a)$	Order of a modulo m
$[a]_{m}$	Residue class a modulo m
a^{*}	Modulo inverse of a
$[x]$	Greatest integer less than or equal to x

Chapter 1

Divisibility

$" M a t h e m a t i c s ~ i s ~ t h e ~ l a n g u a g e ~ w i t h ~ w h i c h ~ G o d ~ w r o t e ~ t h e ~ u n i v e r s e " ~$

- Galileo

The fundamental ideas of elementary number theory are addressed in this chapter, encompassing divisibility, GCD, LCM, Primes. Principles of induction, Division and Euclidean Algorithms, Fundamental Thoerem of Arithmetic are the ultimate aim in this chapter. The following integer properties are used extensively in many of the proofs.

1.1. Preliminaries

The fundamental concepts required to comprehend basic number theory are covered in this part. That includes, what are integers and their properties, principles involoving natural numbers.

The set of all integers is denoted by \mathbb{Z}. That is, $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3 \cdots\}.$,

Properties of Integers. Let $a, b, c \in \mathbb{Z}$. Then
(i) $a+b=b+a$
(ii) $a-b=-(b-a)$
(iii) $a b=b a$
(iv) $a+(b+c)=(a+b)+c$
(v) $a(b c)=(a b) c$
(vi) $|a|=\left\{\begin{array}{l}a, \text { if } a \geq 0 \\ -a, \text { if } a<0\end{array}\right.$
(vii) $a+0=0+a=a$
(viii) $a-a=0$

Principle of Weak Induction. Let $P(n)$ be a statement regarding a positive integer n and let $a \in \mathbb{N}$ be fixed. If
(i) $P(a)$ is true
(ii) for every $m \geq a$, if $P(m)$ is true, then $P(m+1)$ is true, then $P(n)$ is true for all $n \geq a$.

Principle of Strong Induction. Let $P(n)$ be a statement regarding a positive integer n and let $a \in \mathbb{N}$ be fixed. If
(i) $P(a)$ is true
(ii) for every $m \geq a$, if $P(a), P(a+1), \cdots, P(m)$ are true, then $P(m+1)$ is true,
then $P(n)$ is true for all $n \geq a$.
Theorem 1.1 (Well-Ordering Principle). Every non-empty set of positive integers contains a least element.

Proof. Let A be a non- empty subset of \mathbb{N} and that has no least element and $B=\mathbb{N} \backslash A$. Let us prove that if $n \in \mathbb{N}$, then $n \in B$. If $1 \in A$, then 1 is the least element in the set A. But this is not possible by the construction of A . Thus $1 \notin A$ and so $1 \in B$. Assume that $n \in B$. If $2,3, \cdots, n-1 \in A$, then A contains a least element. Hence $2,3, \cdots, n-1 \notin A$ and so $2,3, \cdots, n-1 \in B$. If $n+1 \in A$, then it is the least element in A. Thus $n+1 \notin A$ and so $n+1 \in B$. Hence $n \in B$ for all $n \in \mathbb{N}$. That is, $B=\mathbb{N}$ and hence A must be empty, a contradiction.

Problem 1.1. Let a and b be integers such that $a>b>0$. Then the set $\{a-$ $b, a-2 b, \cdots\}$ contains a least positive integer.

Solution. Suppose the set $\{a-b, a-2 b, a-3 b, \cdots\}$ contains no positive integer. Then $a-n b \leq 0$, for all $n \geq 1$. But we have $a>b$. This implies $a-b>0$. This is a contradiction to $a-n b \leq 0$, for all $n \geq 1$. Therefore, there exist $n \in \mathbb{N}$ such that $\{a-b, a-2 b, \cdots, a-n b\}$ is a set of positive integers. By well ordering principle $\{a-b, a-2 b, \cdots, a-n b\}$ contains a least positive integer and it is the least positive integer in $\{a-b, a-2 b, a-3 b, \cdots\}$.

Problem 1.2. Let a be a negative integer and b be a positive integer. Then the set $\{a+b, a+2 b, a+3 b, \cdots\}$ contains a least positive integer.

Solution. Since $a<0$, let it be $a=-a_{1}, a_{1}>0$. We have to find $n \in \mathbb{N}$ such that $a+n b>0$.

Case 1. If $a_{1}=b$, then we have $n=2$, since $a+n b=-a_{1}+2 a_{1}=a_{1}>0$.
Case 2. If $a_{1}>b$, then we have $n=a_{1}+b$, Since $a+n b=a_{1}(b-1)+b^{2}>0$, for all $b \in \mathbb{N}$.

Case 3. If $a_{1}<b$, then we have $n=1$, Since $a+n b=b-a_{1}>0$.
Thus in all cases, we can find n such that $a+n b>0$. Since $n<n+1$, we must have $a+n b<a+(n+1) b$. Thus $0<a+n b<a+(n+1) b<\cdots$ and so $\{a+n b, a+(n+1) b, \cdots\}$ is a set of positive integers. By well ordering principle $\{a+n b, a+(n+1) b, \cdots\}$ contains a least positive integer and it is the least positive integer of the given set.

1.2. Division Algorithm

The most crucial and frequently applied notion relating to integers (divisibility) is covered in this section. Additionally, examples are provided that address the quotient and remainders while dividing as well as the parity of integers and their divisibility. The division algorithm, which provides the path to acquire quotient and remainders, is the major subject of this section.

Definition 1.1. An integer b is said to be divisible by an integer $a(\neq 0)$, if b is a multiple of a.
If b is divisible by a, we write $a \mid b$, (i.e. a divides b) and otherwise we write $a \nmid b$ (i.e. a does not divide b).

Example. 1. If $a=5, b=10$, then $b=2 a$ and so $a \mid b$.
2. If $a=3, b=4$, then $a \nmid b$.

Note. 1. $1 \mid$ a for any $a \in \mathbb{Z}$.
2. $a \mid 0$ for any $a \in \mathbb{Z}$.
3. $a \mid$ a for any $a \in \mathbb{Z}$.

Properties. For any integers $a(\neq 0), b, c, d$, the following hold:

1. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
2. If $a \mid b$, then $a \mid b c$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.
4. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever $m \& n$ are integers.
5. $a \mid 1$ iff $a= \pm 1$.
6. If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
7. $a \mid b$ and $b \mid a$ if and only if $a= \pm b$.
8. If $a \mid b$ and $b \neq 0$, then $|a| \leq|b|$.

Proof. 1. Suppose $a \mid b$ and $a \mid c$. Then $b=k_{1} a$ and $c=k_{2} a$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Now, $b+c=\left(k_{1}+k_{2}\right) a$. Since $k_{1}+k_{2} \in \mathbb{Z}$, we can conclude that $a \mid(b+c)$.
2. Suppose $a \mid b$. Then $b=k a$ for some $k \in \mathbb{Z}$. Multiply both sides by c, we have $b c=(k c) a$. Since $k c \in \mathbb{Z}$, we have $a \mid b c$.
3. Suppose $a \mid b$ and $b \mid c$. Then $b=k_{1} a, c=k_{2} b$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Now,

$$
\begin{aligned}
c & =k_{2} b \\
& =k_{2}\left(k_{1} a\right) \\
c & =\left(k_{2} k_{1}\right) a
\end{aligned}
$$

Therefore, $a \mid c$.
4. Suppose $a \mid b$ and $a \mid c$. Then $b=k_{1} a$ and $c=k_{2} a$ for some $k_{1} k_{2} \in \mathbb{Z}$. Let $m, n \in \mathbb{Z}$. Then $b=k_{1} a \quad \Longrightarrow \quad m b=m\left(k_{1} a\right)=m_{1} a$, where $m_{1}=m k_{1} \in \mathbb{Z}$ and $c=k_{2} a \quad \Longrightarrow \quad n c=n\left(k_{2} a\right)=n_{1} a$, where $n_{1}=n k_{2} \in \mathbb{Z}$. Thus we obtain $m b=m_{1} a$ and $n c=n_{1} a$. Therefore, $a|m b \& a| n c$ and so $a \mid(m b+n c)$
5. Suppose $a \mid 1$. Then $1=k a$ for some $k \in \mathbb{Z}$. Since k and a are integer, this is possible only if $k=1, a=1$ or $a=-1, k=-1$. That is, $a= \pm 1$.
Conversely, suppose that $a= \pm 1$. Then $1=k a$, where $k=1, a=1$ and $-1=k a$ where $k=1, a=-1$. Therefore, $a \mid 1$.
6. Suppose $a \mid b$ and $c \mid d . b=k_{1} a$ and $d=k_{2} c$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Then

$$
\begin{aligned}
b=k_{1} a \Longrightarrow b d & =\left(k_{1} a\right) d \\
b d & =\left(k_{1} k_{2}\right) a c
\end{aligned}
$$

Therefore, $a c \mid b d$.
7. Suppose $a \mid b$ and $b \mid a$. Then $b=k_{1} a$ and $a=k_{2} b$ where $k_{1}, k_{2} \in \mathbb{Z}$. Now,

$$
\begin{aligned}
b=k_{1} a & \Longrightarrow b=k_{1}\left(k_{2}\right) b \\
& \Longrightarrow b=\left(k_{1} k_{2}\right) b \\
& \Longrightarrow k_{1} k_{2}=1 \\
& \Longrightarrow k_{1}=1=k_{2} \text { or } k_{1}=-1=k_{2}
\end{aligned}
$$

Therefore, $a=k_{2} b \quad \Longrightarrow \quad a= \pm b$. Conversely, suppose that $a= \pm b$. Then $a=b \Longrightarrow a=1(b) \Longrightarrow b \mid a$. $a=-b \quad \Longrightarrow \quad b=-a \quad \Longrightarrow \quad b=(-1) a \quad \Longrightarrow \quad a \mid b$. Therefore, $b|a \& a| b$.
8. Suppose $a \mid b$ and $b \neq 0$. Then $b=k a$, for some $k \in \mathbb{Z}$. Taking modulus on both sides, we get $|b|=|k a|=|k||a| \geq|a|$. Therefore, $|a| \leq|b|$.

Definition 1.2 (Even Integer). An integer a is said to be even if $2 \mid a$.
Definition 1.3 (Odd Integer). An integer a is said to be odd if $2 \nmid a$.

